橡胶减振元件加速寿命试验的仿真研究

橡胶减振元件加速寿命试验的仿真研究
橡胶减振元件加速寿命试验的仿真研究

橡胶减震资料(内容清晰)

伴随着汽车制造工业高性能技术的高速发展,汽车技术的发展一方面谋求汽车的使用经济性,同时,也正在改善汽车的舒适性、安全性。这就从减振、噪音、舒适性和行使稳定性的角度,对橡胶减振元件提出了更高的要求。 与其他减振制品相比,橡胶减振制品具有以下优点 [1] : (1)形状自由度较大; (2)可在 X、Y、Z 方向上旋转,具有六方向弹簧作用: (3)具有适度的阻尼性能,可在低频~高频的范围内加以利用; (4)同时具有减振、缓冲、隔音等多样性能; (5)冲击刚度大于动刚度,动刚度大于静刚度,有利于减小冲击变形和动态变形。 汽车的振动现象十分复杂,最明显的振动是悬挂弹簧装置支承的簧上质量的固有振动。因此,减振橡胶制品主要用于控制汽车振动和噪声及改善汽车操纵稳定性,一般置于汽车发动机机架、压杆装置、悬挂轴衬、中心轴承托架、颠簸限制器和扭振减振器等部位,以改善汽车的安全性和舒适性。 1.橡胶材料性能要求及发展方向 由于汽车的车轮、车型、车种以及悬挂机构不同,减振橡胶元件的种类也各不相同。用橡胶材料作为减振材料的优点在于 [2] : (1)橡胶是非压缩材料,具有良好的阻尼特性,其泊松比接近 0.5,在弹性范围内的相对滞后值可以达到 10~65%,动、静模数之比为 1.5左右。 (2)橡胶的弹性变形比金属大的多(可达10000 倍以上),而弹性模数比金属的小得多(为1/70 0 到 1/4000); (3)形状能自由选择,可自由选择三个方向的弹簧常数比; (4)容易与金属牢固地粘合成一个整体,可使减振橡胶件体积变小,重量减轻,且支承方法也简单化。 (5)橡胶的声速为 40~200m/s,钢的声速却为 5000m/s。 因此具有良好的减振、隔音和缓冲性能 [3] 。减振所用橡胶的品种很多,主要以天然橡胶和丁苯橡胶为主,为改善减振制品的耐热性,也使用丁腈橡胶(NBR)、氯丁橡胶(CR)、丁基橡胶(I R)、三元乙丙橡胶(EPDM)等。通常针对不同的应用环境和使用要求,选用不同的橡胶材料或将几种橡胶共混以及采用某些改性方法来提高橡胶材料的某一项和几项性能。 1.1 低动倍率、高阻尼性能 理想的橡胶减振制品应具有以下功能 [1] : (1)支撑功能:为支撑要求重量的物体,必须确保足够的静态弹簧常数 Ks; (2)减振功能:相对要求的频率,应具有足够低的动态弹簧常数 Kd; (3)防振功能:为了控制共振(不可避免的)时的传导率增幅,所以应具有足够的高阻尼性。 在所要求频率下的动态弹簧常数 Kd 和静态弹簧常数 Ks 的比值,称之为动态比例因子。这一比值愈小,减振性能愈好,但通常是 Kd/Ks>1。为了减小动态比例因子,从橡胶配合方面或材料方面也可加以探讨。在提高防振功能上,采用高阻尼材料是有效的。对通常的硫化胶来讲,随着 Ks 的增加,Kd 不可避免地会出现增大的倾向。因此,从Kd 和 Ks 两者兼备的观点对橡胶的配合加以探讨是十分必要的。 NR 的特点是动态比例因子比其他橡胶低,所以天然橡胶应用最广泛。在天然橡胶胶料中当增加炭黑用量时就可达到高阻尼化,但同时也会使动倍率上升;而增大硫黄用量时动倍率就会降低,但同时也会使阻尼下降。从橡胶配合方面已有很多探讨工作。有专利介绍,在天然橡胶中配

减震橡胶制品的基本常识

7减震橡胶制品的基本常识 一.专业名词 静刚度动刚度动倍率损耗系数扭转刚度耐久性能 1.静刚度: 指减震橡胶在一定的位移范围内,其所受压力(或拉伸力) 变化量与其位移变化量的比值. 静刚度的测定必须在一定的位移范围内测定,不同的位移范围测定的静刚度值是不同的,但有的厂家则要求整个位移范围测定的变化曲线. 2.动刚度: 指减震橡胶在一定的位移范围内, 一定的频率下, 其所受 压力(或拉伸力)变化量与其位移变化量的比值. 动刚度的测定必须在一定的位移范围内,一定的频率下测定,不同的位移范围不同的频率下测定的动刚度值是不同的. 3.动倍率: 指减震橡胶在一定的位移范围内所测定的动刚度与静刚 度的比值. 4.损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之 间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ.通常所说的损耗系数就是橡胶应力与橡胶变形的相位角δ的正切,即损耗系数τ=tgδ. 5.扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转 角之间的比值. 6.耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动 频率下,经往复振动n次后产品完好或将产品往复振动直至破坏时

的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标. 二.减震橡胶的基本常识 1.减震橡胶的作用:代替金属弹簧起到消振,吸振作用.其主要的性能 要求在静刚度、动刚度、耐久性能上. 2.减震橡胶的特点:(与金属弹簧相比胶) ①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥 有不同的性能. ②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞 后性(受力过程中橡胶的变形滞后于橡胶的应力). ③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数. 3.减震橡胶的工作原理: ①吸收振动: 此类减震橡胶件主要是用于发动机与车身之间的连 接,此状态下发动机是振动源, 减震橡胶的作用是吸收发动机产生的振动,避免传递到车身上,同时也减轻发动机自身的振动. ②消减振动: 此类减震橡胶件主要是用于底盘与车身之间的连接, 此状态下底盘车轮是振动源, 减震橡胶的作用是将路面与车轮产生的振动通过高阻尼作用迅速消减,防止振动通过底盘传递到车身. 三.减震橡胶的基本工艺流程 ①纯胶制品的工艺流程 配料混炼预成型硫化修边检验包装入库

减震用橡胶材料及其应用

减震用橡胶材料及其应用 随着现代工业的飞速发展,震动和噪音已经成为各个领域的严重问题:它会降低操作精度,影响产品质量;缩短产品寿命,使得高精仪器不能正常工作;危及安全性,使设备或构建物早期破坏;污染环境及影响人身健康,诸如地震之类的震动甚至还给人类的生命财产造成极大的损害。因此,研究和掌握震动控制与噪音控制技术已是各国工业发展面临的重大课题。 消除震动和噪音的最根本和最好方法是减少或者消除震动源的震动,但实际上要想完全消除震动源的震动是不可能的,因此必须采取其他控制震动的方法。实际应用中最广泛、最有效的方法是使用各种减震制品,尤其是橡胶减震制品。它能够有效地隔离震动与激发源,还可以缓和震动体的震动,因此被广泛地应用于各种机动车辆、飞机、船舰等的动力机械及风机、水泵等辅助设备和仪器的震动隔离。近年来,一些大型建筑物和桥梁等也采用了隔离地震的层压橡胶垫支撑建筑物。对于结构震动和结构噪音的阻尼处理,也广泛地使用特殊的橡胶材料,称为黏弹性高阻尼材料。 1 橡胶的减震作用及减震橡胶材料 橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象的变化产生的,橡胶分子间相互作用会妨碍分子链的运动,又表现出黏性特点,以致应力与应变往往处于不平衡状态。橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力;使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。 橡胶的滞后和内摩擦特性通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热越显著,减震效果越明显。橡胶材料损耗因子的大小不仅与橡胶本身的结构有关,而且与温度和频率有关。在常温下,天然橡胶(NR)和顺丁橡胶(BR)的损耗因子较小,丁苯橡胶(SBR)、氯丁橡胶(CR)、乙丙橡胶(EPR)、聚氨酯橡胶(PU)和硅橡胶的损耗因子居中,丁基橡胶(HR)和丁腈橡胶(NBR)的损耗因子最大。 用作减震目的的橡胶材料一般分5种,即NR,SBR,BR为普通橡胶材料;NBR用于耐油硫化胶;CR用于耐天候硫化胶;IIR用于高阻尼硫化胶;EPR用于耐热硫化胶。NR虽然损耗因子较小,但其综合性能最好,具有优异的弹性,耐疲劳性好,生热低,蠕变小,与金属件黏合性能好,耐寒性、电绝缘性和加工性能也好,因此NR被广泛地用作减震目的,要求耐低温或耐天候性能时,可与BR或CR并用或共混改性。Nishiue等采用NR、BR及碳原子数大于4的含有-OH基团有机酸的金属盐制成的减震器具有较好的耐久性能,在70℃×22h和40℃×148h条件下的压缩永久变形分别为17.0%和11.7%。由于EPDM耐天候、耐臭氧老化、电绝缘性、耐热和耐寒等性能优异,近年来受到广泛关注。最近,日本三井化学公司与鬼怒川橡胶公司通过采用高相对分子质量的EPDM与低相对分子质量的EPDM

浅谈电工电子产品加速寿命试验

浅谈电工电子产品加速寿命试验 广州广电计量检测股份有限公司环境可靠性检测中心颜景莲 1概述 寿命试验是基本的可靠性试验方法,在正常工作条件下,常常采用寿命试验方法去评估产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。因此,在寿命试验的基础上形成的加大应力、缩短时间的加速寿命试验方法逐渐取代了常规的寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,激发产品在短时间内产生跟正常应力水平下相同的失效,缩短试验周期。然后运用加速寿命模型,评估产品在正常工作应力下的可靠性特征。加速环境试验是近年来快速发展的一项可靠性试验技术。该技术突破了传统可靠性试验的技术思路,将激发的试验机制引入到可靠性试验,可以大大缩短试验时间,提高试验效率,降低试验耗损。 2 常见的物理模型 元器件的寿命与应力之间的关系,通常是以一定的物理模型为依据的,下面简单介绍一下常用的几个物理模型。 2.1失效率模型 失效率模型是将失效率曲线划分为早期失效、随机失效和磨损失效三个阶段,并将每个阶段的产品失效机理与其失效率相联系起来,形成浴盆曲线。该模型的主要应用表现为通过环境应力筛选试验,剔除早期失效的产品,提高出厂产品的可靠性。 2.2应力与强度模型 该模型研究实际环境应力与产品所能承受的强度的关系。 应力与强度均为随机变量,因此,产品的失效与否将决定于应力分布和强度分布。随着时间的推移,产品的强度分布将逐渐发生变化,如果应力分布与强度分布一旦发生了干预,产品就会出现失效。因此,研究应力与强度模型对了解产品的环境适应能力是很重要的。 2.3最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。

橡胶元件的性能指标及损坏形式

1.橡胶的主要性能指标 (1)硬度 表示橡胶抵抗外力压入的能力,也是所有胶料的基本性能。橡胶的硬度在一定程度上与其他一些性能相关。例如,胶料的硬度愈高,相对地说,强度就较大,伸长率较小,耐磨性较好,而耐低温性能就较差。高硬度橡胶能抗高压下挤压破坏。因此应根据零件工作特性选用合适的硬度。 橡胶硬度低则承载能力不高,易产生过大的变形;硬度过高则橡胶缺乏弹性,容易产生塑性变形,寿命短。一般用作弹性元件的橡胶硬度为邵氏30~90。(2)拉伸性能 拉伸性能是所有胶料应首先考虑的性能,包括拉伸强度、定伸应力、伸长率、扯断伸长率和扯断永久变形,以及应力—应变曲线。拉伸强度是试样拉伸至断裂的最大拉伸应力。定伸应力(定伸模量)是在规定伸长时达到的应力(模量)。伸长率是试样受拉伸应力而引起的变形,用伸长增量与原长之比的百分数表示。扯断伸长率则是试样拉断时的伸长率。扯断永久变形是拉伸断裂后标距部分的残余变形。 (3)压缩性能 橡胶密封件通常处于受压缩状态。由于橡胶的粘弹性,橡胶受压缩后,压缩应力会随时间而减小,表现为压缩应力松弛;除去压力后,不能恢复原来的外形,表现为压缩永久变形。在高温油介质中,这些现象更为显著。它们会影响密封件的密封性能,是密封件用胶料的重要性能之一。 (4)耐油性能 橡胶在油介质中(燃油、润滑油、液压油等),特别在较高温度下,会导致膨胀、软化和降低强度、硬度,同时橡胶中的增塑剂或可溶性物质可能被油浸出,导致重量减轻,体积减小,引起泄漏。因此橡胶的耐油性是在油介质中工作胶料的重要性能。一般是在一定温度下在油中浸泡若干时间后测定其重量变化、体积变化以及强度、伸长率和硬度的变化。有时也可用耐油系数表示,即在介质中浸泡后的强度或伸长率与原始强度或伸长率之比。 (5)耐老化性能 橡胶受氧(空气)、臭氧、热、光、水分和机械应力等因素的作用后会引起性能变坏,称为橡胶的老化。橡胶的耐老化性能可通过自然老化和人工加速老化

橡胶减震器的类型特点有哪些

橡胶减震器的类型特点有哪些? 时间:2010-10-11 来源:中国市场调研在线作者:市场调研01 点击: 117 次 据中国市场调研在线了解橡胶减震器主要用于吸收钻井中产生的冲击和震动负荷,以提高钻头及其他钻具使用寿命。YLJ型橡胶减震器 YLJ-type rubber mounting 为压路机专用橡胶制品。按其负荷及外形尺寸可分为多种不同型号,分别用于不同型号的压路机。>>>更多信息请参考中国市场调研在线 橡胶减震器的类型特点有哪些? 市场研究表明减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。减震器太软,车身就会上下跳跃,减震器太硬就会带来太大的阻力,妨碍弹簧正常工作。在关于悬挂系统的改装过程中,硬的减震器要与硬的弹簧相搭配,而弹簧的硬度又与车重息息相关,因此较重的车一般采用较硬的减震器。与引震曲轴相接的装置,用来抗衡曲轴的扭转震动(即曲轴受汽缸点火的冲击力而扭动的现象)。 WJ型橡胶减震器WJ‐type rubber mounting 是通用性较强的橡胶减震器。亦称“万能垫”,具有4种不同直径、不同高度的圆柱凸台,上下两面交叉配置。可承受任意方向的载荷,吸收任意方向的振动。受横向压力时不会产生滑动。因而不必采取措施防止机器水平移动,省去庞大基础费用。此产品耐热、耐油,使用方便。有WJ‐40,WJ‐60,WJ‐85和WJ‐90共4种型号。 缓冲橡胶制品 rubber shock absorber 橡胶减震制品的一类。是以吸收冲击能量、缓解冲击作用为主要目的的橡胶制品。包括各种橡胶缓冲器、缓冲垫等。如汽车发动机前后悬置垫、钢板弹簧缓冲块和轨枕垫等。一般为纯橡胶或带金属骨架的橡胶模压制品。由于橡胶冲击刚度大于动刚度,动刚度大于静刚度,有利于减少冲击变形和动变形。此类产品广泛应用于各种车辆、压路机械、施工机械和振动筛等方面。 汽车用橡胶减震器 rubber mounting for automobile;automobile rubber mounting 橡胶减震制品的一类。用于防止或减少汽车在行驶过程中所产生的各种振动和噪声的橡胶配件。根据其使用部位可分为发动机系列用、驱动装置用、操纵装置用、前后悬挂用、车身用、排气系统用和其它系统用七大类。其主要作

可靠性测试产品高加速寿命试验方法指南解析

术语和定义 HALT(High Accelerated Life Test):高加速寿命试验,即试验中对试验对象施加的环境应力比试验对象整个生命周期内,包括运输、存储及运行环境内,可能受到的环境应力大得多,以此来加速暴露试验样品的缺陷和薄弱环节,而后对暴露的缺陷和故障从设计、工艺和用料等诸方面进行分析和改进,从而达到快速提升可靠性的目的。 运行限或操作限(Operation Limit):指产品某应力水平上失效(样品不工作或其工作指标超限),但当应力值略有降低或回复初始值时,试样又恢复正常工作,则样品能够恢复正常的最高应力水平值称为运行限。 破坏限(Destruct Limit):在某应力水平上升到某值时,样品失效,即使当应力回落到低于运行限时,试样仍然不能恢复正常工作,这时的应力水平值称为破坏限。 裕度(Margin):产品运行环境应力的设计限与运行限或破坏限的差值。产品的裕度越大,则其可靠性越高。 夹具(Fixture):在HALT试验的振动项目中固定试样的器具。振动试验必须使用夹具,使振台振动能量有效地传递给试样。 加速度传感器(Accelerometer):在某方向测量试样振动加速度大小的传感器。在HALT试验的振动项目中使用加速度传感器可以监视试验箱振动能量通过夹具有效传递给试样的效率。 振动功率谱密度(Vibrating Power Spectral Density):也称为加速谱密度,衡量振动在每个频率点的加速度大小,单位为(g2/Hz)。 Grms(Gs in a root mean square):振动中衡量振动强度大小的物理单位,与加速度单位相同,物理含义为对振动功率谱密度在频率上积分后的平方根。 热电偶(Thermocouple):利用“不同导体结合在一起产生与温度成比例的电压”这一物理规律制作的温度传感器。在HALT试验的热应力测试项目中,利用热电偶监视产品各点的温度分布。 功能测试(Functional Test):对试样的测试,用以判断试样能否在测试环境下完成规定的功能,性能是否下降。一般是通过测量试样的关键参数是否达到指标或利用诊断模式测试试样的内部性能。 摘要:本文围绕产品HALT试验,详细介绍HALT试验基本要求、总体过程及试验过程。 关键词:HALT试验、基本要求、试验过程 1、HALT试验基本要求 1.1对试验设备的要求 1.1.1对试验箱的要求 做HALT试验的设备必须能够提供振动应力和热应力,并满足下列指标: 振动应力:必须能够提供6个自由度的随机振动;振动能量带宽为2Hz~10000Hz;振台在无负载情况下至少能产生65Grms的振动输出。 热应力:目标是为产品创造快速温度变化的环境,要求至少45℃/min的温变率;温度许可范围至少为-90℃~+170℃。

轨道交通用橡胶减振材料及制品的应用

轨道交通用橡胶减振材料及制品的应用 内容摘要:摘要:本文概述了轨道交通用橡胶减振制品的材料技术和产品的应用 和发展情况。关键词:轨道交通减振橡胶制品橡胶橡胶材料具有以下特性[1]:(1)橡胶具有良好的阻尼特性,在弹性范围内的相对滞后值可以达到10~65%,动、静模数之比为1.5左右。(2)橡胶的弹性变形比金属大的多(可达10000倍以上),而弹性模数比金属的小得多(为1/700到1/4000)。(3)橡胶的声速为40~200m/s,钢的声速却为5000m/s。 摘要:本文概述了轨道交通用橡胶减振制品的材料技术和产品的应用和发展情况。 关键词:轨道交通减振橡胶制品橡胶 ?橡胶材料具有以下特性[1]: ?(1)橡胶具有良好的阻尼特性,在弹性范围内的相对滞后值可以达到10~65%,动、静模数之比为1.5左右; (2)橡胶的弹性变形比金属大的多(可达10000倍以上),而弹性模数比金属的小得多(为1/700到1/4000);?(3)橡胶的声速为40~200m/s,钢的声速却为5000m/s。 ?因此具有良好的减振、隔音和缓冲性能[2]。现代轨道交通为有效减少轮轨作用力和改善系统走行性能,降低高速重载所引起的机车车辆以及线路的系统振动和噪声问题,大量使用各种橡胶弹性元件用于牵引、驱动、连接、支承等,以达到 1.橡胶材料? 舒适、平稳、快速的更高要求[3]。?? 减振所用橡胶的品种很多,用量比较大的有:天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)、丁腈橡胶(NBR)、氯丁橡胶(CR)、丁基橡胶(IR)、乙丙橡胶(EPDM)等。通常针对不同的应用环境和使用要求,选用不同的橡胶材料或将几种橡胶共混以及采用某些改性方法来提高橡胶材料的某一项和几项性能。??1.1 共混技术 NR是橡胶减振领域中用量最大的品种,许多共混的研究都是以其为主体进行的。如Yoshiharu等人[4]采用NR和BR共混制成减振橡胶,在150℃硫化30min后,发现材料具有很好的衰减性能;他们还研究采用天然橡胶和氯丁橡胶共混制成减振橡胶,硫化促进剂只促进其中的天然橡胶硫化而不促进氯丁橡胶硫化,使得减振橡胶的减振特性由材料中的氯丁橡胶组份体现出来[5];Nishiue Takeshi等人[6]使用天然橡胶、含有不饱和键的顺丁橡胶、以及碳原子数大

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常 1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是可以给病人和企业带来利益,病人可以尽早使用这些最新的医疗器械,挽救病人的生命;企业可以增加销售获得效益,而又不会带来任何风险。尽管加速老化试验技术在学术领域已经比较成熟,但是这些技术在医疗器械产品的应用还是有限的。美国FDA 发布了一些关于接触眼镜、药物和生物制品等关于加速老化实验的指导性文件,还没有加速老化试验的标准。在我国尚无关于医疗器械有效期确定的加速老化的实验指导原则。国外许多医疗器械企业根据这些指导原则和文献建立自己的加速老化试验方法。(来源于:《中国医疗器械信息》2008年第14卷第5期《医疗器械加速老化实验确定有效期的基本原理和方法》) 二、实验条件和时间对比表

橡胶隔振设计指导-精

橡胶隔振设计指导 设计和选用的原则: 优先选用标准产品,对于一些有特殊要求而又无标准的产品,则可根据需要自行隔振 设计。 隔振设计主要流程: 1)输入:隔振系统固有频率和减振装置刚度的要求,输出:减振装置的形状和几何 尺寸; 2)输入:系统通过共振区的振幅要求,输出:阻尼系数或阻尼比; 3)输入:隔振系统所处的环境和使用期限,输出:橡胶的材料。 隔振设计原则: 结构紧凑、材料适宜、形状合理、尺寸尽量小以及隔振效率高。具体设计和选用时, 还应注意以下因素: 1)载荷特点:确保支撑物的重心与支撑点中心重合,载重后的支撑面与基础面平行。 很多零件支撑大多采用几何对称布置,而设备的重心却往往偏离几何对称轴,设计时需将该偏差考虑进去。在设计和选用减振器时,不仅要考虑总重量,还应考虑各支撑部位的重力大小,以确定每个减振器的实际承载量,使产品安装减振器后,其安装平面与基础平行。 2)减振装置的总刚度应满足隔振系数的要求。此外,无论产品的支撑布置是否与几 何中心对称,均应使各支撑部位的减振装置刚度对称于系统的惯性主轴。 3)减振装置的总阻尼既要考虑系统通过共振区时对振幅的要求,也要考虑隔振区隔 振效率,尤其是在频率较高时对振动衰减的要求。 减振装置设计: 橡胶减振器是以橡胶作为减振器的弹性元件,以金属作为支撑骨架,故称为橡胶一金 属减振器。这种减振器由于使用橡胶材料,因而阻尼较大,对高频振动的能量吸收尤为显著,当振动频率通过共振区时,也不至产生过大的振幅。橡胶能承受瞬时的较大 形变,因此能承受冲击力,缓冲性能较好。这种减振器采用天然橡胶,受温度变化大,当温度过高时,表面会产生裂纹并逐渐加深,最后失去强度。此外,天然橡胶耐油性差,对酸性和光等反应敏感,容易老化。近年来化工技术的发展,人工橡胶使其工作

加速寿命试验的理论模型与试验方法

产品可靠性试验 6.2.1 可靠性试验的意义与分类 可靠性试验是为分析、评价、提高或保证产品的可靠性水平而进行的试验。产品的研制者通过试验获得产品设计、鉴定所需的可靠性数据(可靠性测定试验)。通过试验暴露产品缺陷,改进设计并获得可靠性增长信息(可靠性增长试验)。产品的制造者通过试验剔除零件批中的不合格品或暴露整机缺陷,消除早期故障(可靠性筛选或老化试验老化试验不是消除早期故障的)产品使用者通过试验验证产品批可靠性水平以保证接收的产品批达到规定要求(可靠性接收试验)。政府或行业管理部门通过试验获得数据库所需基础可靠性数据(可靠性测定试验),认证产品可靠性等级(可靠性验证试验),进行产品的可靠性鉴定与考核(可靠性鉴定试验)。 本节主要介绍可靠性测定试验,这是为获得产品可靠性特征量的估计值而进行的试验,根据需要可由试验结果给出可靠性特征量的点估计值和给定置信度下的区间估计。由于可靠性试验往往是旷日持久的试验,为节省时间与费用常采用加速试验的方式。本节将介绍某些加速寿命试验的理论模型与试验方法。 6.2.2 指数分布可靠性测定试验 大多数电子元器件、复杂机器及系统的寿命都服从指数分布。其待估参数为故障率λ,其他可靠性指标可利用估计值进行计算MTBF 已经有平均的意思了 1.定时截尾试验 (1)点估计试验进行至事先规定的截尾时间t c停止试验,设参与试验的n个样本中有r个发生关联故障,则由极大似然估计理论得出的故障率点估计值为 式中t i——第I个关联故障发生前工作时间(i=1,…,r)。 若在试验过程中及时将已故障产品修复或替换为新产品继续试验,则为有替换的定时截尾试验。此时λ的点估计为

电工电子产品加速寿命试验

电工电子产品加速寿命试验

电工电子产品加速寿命试验之一 1概述 寿命试验是基本的可靠性试验方法,在正常工作条件下,常常采用寿命试验方法去评估产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。因此,在寿命试验的基础上形成的加大应力、缩短时间的加速寿命试验方法逐渐取代了常规的寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,激发产品在短时间内产生跟正常应力水平下相同的失效,缩短试验周期。然后运用加速寿命模型,评估产品在正常工作应力下的可靠性特征。加速环境试验是近年来快速发展的一项可靠性试验技术。该技术突破了传统可靠性试验的技术思路,将激发的试验机制引入到可靠性试验,可以大大缩短试验时间,提高试验效率,降低试验耗损。 2 常见的物理模型 元器件的寿命与应力之间的关系,通常是以一定的物理模型为依据的,下面简单介绍一下常用的几个物理模型。 2.1失效率模型 失效率模型是将失效率曲线划分为早期失效、随机失效和磨损失效三个阶段,并将每个阶段的产品失效机理与其失效率相联系起来,形成浴盆曲线。该模型的主要应用表现为通过环境应力筛选试验,剔除早期失效的产品,提高出厂产品的可靠性。

2.1 失效率模型图示: O 1 典型的失效率曲线 规定的失效率 随机失效 早期 失效 磨损失效 t 2.2应力与强度模型 该模型研究实际环境应力与产品所能承受的强度的关系。 应力与强度均为随机变量,因此,产品的失效与否将决定于应力分布和强度分布。随着时间的推移,产品的强度分布将逐渐发生变化,如果应

加速寿命试验在车用电子喇叭质量改进中的应用肖会全

价值工程 西方就餐使用的是长方形的车餐桌。即使来宾中有地位、身份、 年纪高于主宾的,在排定位次时,仍要紧靠主人就坐。男主人坐主位,右手是第一重要客人的夫人,左手是第二重要客人的夫人,女主人坐在男主人的对面。她的两边是最重要的第一、第二位男客人。现在,如果不是非常正规的午餐或晚餐,这样一男一女的间隔坐法就显得不重要了。长方形餐桌体现出西方人的棱角与独立。 5饮食方式的不同 中西方的饮食方式有很大不同,这种差异对民族性格也有影响。在中国,任何一个宴席,不管是什么目的,都只会有一种形式,就是大家团团围坐,共享一席。筵席要用圆桌,这就从形式上造成了一种团结、礼貌、共趣的气氛。美味佳肴放在一桌人的中心,它既是一桌人欣赏、品尝的对象,又是一桌人感情交流的媒介物。人们相互敬酒、相互让菜、劝菜,在美好的事物面前,体现了人们之间相互尊重、礼让的美德。虽然从卫生的角度看,这种饮食方式有明显的不足之处,但它符合我们民族“大团圆”的普遍心态,反映了中国古典哲学中“和”这个范畴对后代思想的影响,便于集体的情感交流,因而至今难以改革。 西式饮宴上,食品和酒尽管非常重要,但实际上那是作为陪衬。宴会的核心在于交谊,通过与邻座客人之间的交谈,达到交谊的目 的。 如果将宴会的交谊性与舞蹈相类比,那么可以说,中式宴席好比是集体舞,而西式宴会好比是男女的交谊舞。由此可见,中式宴会和西式宴会交谊的目的都很明显,只不过中式宴会更多地体现在全席的交谊,而西式宴会多体现于相邻宾客之间的交谊。与中国饮食方式的差异更为明显的是西方流行的自助餐。此法是:将所有食物一一陈列出来,大家各取所需,不必固定在位子上吃,走动自由,这种方式便于个人之间的情感交流,不必将所有的话摆在桌面上,也表现了西方人对个性、对自我的尊重。但各吃各的,互不相扰,缺少了一些中国人聊欢共乐的情调。 中西的传统餐饮习惯随着时间的变化和社会的国际化慢慢地在变化,在融合。但是这些传统的餐饮文化反映着某一个时间段的中西方的文化特点。有着很大的研究意义和历史意义的。 参考文献: [1]易中天.餐桌上的文化.文汇报.笔会. [2]林大津.跨文化交际研究.福建人民出版社,1996.10:92-127.[3]李天民.现代国际礼仪知识.世界知识出版社出版,2003.12:109. 1车用电子喇叭质量改进中困难 产品质量改进通常需要经历DMAIC 过程,即定义、测量、分析、改进和控制五个阶段[1]。其中,在分析和改进阶段需要对分析结论及改进方案进行验证,常见的验证方式为通过寿命试验获取失效数据,进而通过数据分析估计产品的各种可靠性特征。随着汽车产业技术水平的不断发展,整车寿命及可靠性要求随之提高。车用电子 喇叭产品使用寿命也由过去通常的10万次提高到50万次、 100万次,甚至更高水平,由此带来的问题是获取寿命试验数据变得非常困难。例如:当产品的寿命为50万次时,在通常情况下,失效时间约为29天;当产品寿命为100万次时,失效时间将接近2个月。同时,若考虑到试验过程辅助时间及产品寿命差异,试验时间将变得更长。过长的试验周期造成了试验费用增加、试验设备效率降低、潜在风险升高等问题,更重要的是过长的试验时间使试验在一定程度上失去了意义。在试验进行期间,质量改进工作陷于停顿,延误最佳时机,甚至会造成生产线停工,正常生产被中断,无法满足发货需求或 成千上万的潜在风险品被制造出来。无论哪种情况, 都会给企业造成巨大损失,都是企业不能接受的。 2加速寿命试验 加速寿命试验为解决前述问题提供了有效途径。加速寿命试验(accelerated life testing )是指在超过使用环境条件的应力水平下对 样品进行的寿命试验[2] 。加速寿命试验的特点是:通过分析,选择比 正常使用/试验环境更加严酷的应力水平 (即加速应力水平),在选定的加速应力水平下对样本进行寿命试验。由于试验条件变得严酷,产品失效加快,试验时间被缩短。通过加速寿命试验获取失效数据后,使用加速寿命试验模型对产品在正常使用/试验条件下的可 靠性特征进行估计[3,4] 。需要指出的是,在加速应力水平下,产品的失效机理不能发生变化。例如:正常使用/试验条件下,电子喇叭发音片的失效机理为机械疲劳,在加速应力水平下,失效机理仍应为机 械疲劳。若失效机理发生了变化, 则失去了加速寿命试验实施的前提条件。 2.1截尾试验在寿命试验中,由于试验所需时间较长,通常在全部样品失效前即结束试验,即采用截尾试验。截尾试验总体上分为两类:定数截尾试验和定时截尾试验。定数截尾试验是指当失效样品数达到规定数量或比例后即结束试验;定时截尾试验是指在达到规定试验时间后即结束试验,不考虑此时的失效样品数。 2.2删失数据在寿命试验中,失效数据往往与一般数据不同, 其区别在于它常常是删失的。总体上, 删失数据可区分为如下三种类型[5]:在对电子喇叭进行的寿命试验中,当试验进行到600小时,仍有3只样品未失效,若这时结束试验,对于这3只样品则我们得到的失效数据为寿命时间大于600小时,这种数据称为右删失数据;若当试验进行至600小时,发现某一样品失效,但准确失效时间我们不知道,则只可以判定该样品的寿命时间小于600小时,此时的数据称为左删失数据;同样地,若可以判定某一样品的失效时间在600至650小时之间, 则寿命时间数据为区间删失数据。3车用电子喇叭加速寿命试验应用实例—————————————————————— —作者简介:肖会全(1978-),男,黑龙江铁力人,助理工程师,硕士,研究方向为运作管理与质量管理。加速寿命试验在车用电子喇叭质量改进中的应用 Application of Accelerated Life Testing in improvement of Electrical Automotive Horn 肖会全Xiao Huiquan ;张杰Zhang Jie (北京工业大学经济与管理学院,北京100124) (School of Economics and Management , Beijing University of Technology ,Beijing 100124,China )摘要:针对车用电子喇叭产品在质量改进中的可靠性特征数据难于获取问题,采用加速寿命试验方法缩短试验时间,达到快速获取失效时 间数据的目的。本文通过实例,对应用背景、加速寿命试验条件、样本选取及数据处理进行了分析和说明。同时,针对车用电子喇叭产品的特殊 性,试验中不仅采用了提高工作电压的加速失效方法,同时采用了包括机械结构变更、工作方式调整在内的其它加速失效方法。 Abstract:Accelerated life testing is used here to get the data of failure time rapidly and to solve the problem that it is difficult to get the data of reliability character.An actual example is shown to analyze and explain the processes which include the background of application,conditions for accelerated life testing,samples and analysis for data.At the same time,according to the specificity of electrical automotive horn,different means are used to reduce the failure time,not only include increased voltage,but also include the changing for the structure of samples and the adjusting for the way of horn's work. 关键词:电子喇叭;加速寿命试验;截尾试验;删失数据;发音片Key words:electrical horn ;accelerated life testing ;curtailed test ;censoring data ;sound plate 中图分类号:U46 文献标识码:A 文章编号:1006-4311(2012)14-0298-02 ·298·

减震橡胶理论与应用_唐叶辉

减震橡胶理论及应用 主讲人:唐叶辉

一、减震橡胶基础理论 二、减震橡胶制品常用材料 三、常用减震橡胶产品介绍

一、减震橡胶基础理论 现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的。人们一直致力于振动的产生、控制和消除的研究。所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了。但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏、噪音会影响人类的生活环境等!怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向。 减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震,但当时还没有有效的橡胶粘接技术,橡胶在减震领域的应用没有获得成功,随着橡胶粘接技术的的发展和运用,于1932 年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能,随后越来越多的金属和橡胶粘接的零件应用于差速器、后轴等汽车驱动系统,20世纪50年代起越来越多的发动机悬置得以应用,早在1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展,现在人们正在研究可转换装置和主动装置在工程上的实际应用。

一、减震橡胶基础理论

一、减震橡胶基础理论

2.弹性装置系统 和线型弹性装置系统的单自由度相比,立体系统拥有更多 的自由度和可移动性,一个发动机悬置有三个直移和三个转 动的自由度,六个固有频率需抵制共振使激振力减少到一定程 度,该装置系统主要是减少重心处的振动使之趋向于零,使不 同方向的激振不再相互影响。 该装置系统的设计目标是根据客户的开发设想决定悬置布 一、减震橡胶基础理论 置的位置和悬置的刚度,使得所有的固有频率远不等于干扰频 率,最初的装置主要是决定临时的位置和刚度,最后安装到车 上时要考虑到发动机装置子系统的相互作用,现在人们已能 通过有限元分析软件系统建立汽车整车模型,并通过计算机模 拟进行悬置的优化设计,设计时需考虑找到使舒适性和减少噪 音的最好的折中方法,使得零件可以抵挡所有外力并使力的传 递达到最小化,同时还需满足零件的最大运动和外界环境的要 求。

可靠性-LED加速老化寿命试验方法概论Word文档

一、可靠性理论基础 1.可靠度: 如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为: 随时间的不断增长,将不断下降。它是介于1与0之间的数,即。 2.累积失效概率: 表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数。 如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近 似表示为: 3.失效分布密度: 表示规定条件下工作的发光二极管在t时刻的失效概率。失效分布函数的导函数称为失效分布密度,其表达式如下: ?早期失效期; ?偶然失效期(或稳定使用期) ; ?耗损失效期。 二、寿命 老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大小有关, 可描述为: B t为t时间后的亮度,B0为初始亮度。通常把亮度降到B t=0.5B0所经历的时间t称为二极管的寿命。 1. 平均寿命 如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下: 2. 可靠寿命 可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则: 即可求得T R如下:

3. 中位寿命 中位寿命T0.5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情 况,可得: 二、LED寿命测试方法 LED寿命加速试验的目的概括起来有: ?在较短时间内用较少的LED估计高可靠LED的可靠性水平 ?运用外推的方法快速预测LED在正常条件下的可靠度; ?在较短时间内提供试验结果,检验工艺; ?在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因; ?淘汰早期失效产品,测定元LED的极限使用条件 1. 温度加速寿命测试法 由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。 根据高温加速寿命得的结果外推其他温度下的寿命。LED温度加速老化寿命测试原理是基于Arrhenius 模型。 利用该模型可以发现由温度应力决定的反应速度的依赖关系,即 式中L为寿命,Ea为激活能,A为常数,k为玻尔兹曼常数,T为热力学温度。 因此测试温度应有两个,即还需测得另一个温度T2下器件寿命为L2。可以求得激活能Ea。样便可以求得温度 T1对某温度T3下的加速系数K3: 。有: 可见实验需要测得同一批器件在两个不同温度下的寿命,然后推得其他温度下的寿命。 这就要求被测器件的数量应足够多,才能避免个性影响,而得到共性,即得到统计寿命值才真实。 LED从正常状态进入劣化状态的过程中,存在能量势垒,跃过这个势垒所需要的能量必须由外部供给,这个能量势垒就称为激活能。

【加速老化实验】,加速老化试验计算公式

【加速老化实验】,加速老化试验计算公式 【加速老化实验】加速老化试验计算公式加速寿命试验 寿命试验(包括截尾寿命试验)方法是基本的可靠性试验方法。在正常工作条件下,常常采用寿命试验方法去估计产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,就不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。所以这种方法与产品的迅速发展是不相适应的。经过人们的不断研究,在寿命试验的基础上,找到了加大应力、缩短时间的加速寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,加快产品失效,缩短试验周期。运用加速寿命模型,估计出产品在正常工作应力下的可靠性特征。 下面就加速寿命试验的思路、分类、参数估计方法及试验组织方法做一简单介绍。 1 问题 高可靠的元器件或者整机其寿命相当长,尤其是一些大规模集成电路,在长达数百万小时以上无故障。要得到此类产品的可靠性数量特征,一般意义下的载尾寿命试验便无能为力。解决此问题的方法,目前有以下几种: (1)故障数r=0的可靠性评定方法。 如指数分布产品的定时截尾试验 θL=2S(t0)

2χα(2) 22S(t)χαα00为总试验时间。为风险, =时,.1(2)=≈; 当α=时, χ(2)=≈6。 (2)加速寿命试验方法 如,半导体器件在理论上其寿命是无限长的,但由于工艺水平及生产条件的限制,其寿命不可能无限长。在正常应力水平S0条件下,其寿命还是相当长的,有的高达几十万甚至数百万小时以上。这样的产品在正常应力水平S0条件下,是无法进行寿命试验的,有时进行数千小时的寿命试验,只有个别半导体器件发生失效,有时还会遇到没有一只失效的情况,这样就无法估计出此种半导体器件的各种可靠性特征。因此选一些比正常应力水平S0高的应力水平S1,S2,…,Sk,在这些应力下进行寿命试验,使产品尽快出现故障。 (3)故障机理分析方法 研究产品的理、化、生微观缺陷,研究缺陷的发展规律,从而预测产品的故障及可靠性特征量。 2 加速寿命试验的思路 由产品故障的应力—强度模型(见图5-5) 图5-5 应力—强度模型 其中:R(t)=P(强度>应力),F(t)=P(应力≥强度) 当强度与应力均为确定型时,产品在t2故障。实际上强度与应力是概率风险型的,当均服从正态分布时,产品则可能提前在t1,以一定概率发生故障。

相关文档
最新文档