橡胶隔振设计指导-精

橡胶隔振设计指导-精
橡胶隔振设计指导-精

橡胶隔振设计指导

设计和选用的原则:

优先选用标准产品,对于一些有特殊要求而又无标准的产品,则可根据需要自行隔振

设计。

隔振设计主要流程:

1)输入:隔振系统固有频率和减振装置刚度的要求,输出:减振装置的形状和几何

尺寸;

2)输入:系统通过共振区的振幅要求,输出:阻尼系数或阻尼比;

3)输入:隔振系统所处的环境和使用期限,输出:橡胶的材料。

隔振设计原则:

结构紧凑、材料适宜、形状合理、尺寸尽量小以及隔振效率高。具体设计和选用时,

还应注意以下因素:

1)载荷特点:确保支撑物的重心与支撑点中心重合,载重后的支撑面与基础面平行。

很多零件支撑大多采用几何对称布置,而设备的重心却往往偏离几何对称轴,设计时需将该偏差考虑进去。在设计和选用减振器时,不仅要考虑总重量,还应考虑各支撑部位的重力大小,以确定每个减振器的实际承载量,使产品安装减振器后,其安装平面与基础平行。

2)减振装置的总刚度应满足隔振系数的要求。此外,无论产品的支撑布置是否与几

何中心对称,均应使各支撑部位的减振装置刚度对称于系统的惯性主轴。

3)减振装置的总阻尼既要考虑系统通过共振区时对振幅的要求,也要考虑隔振区隔

振效率,尤其是在频率较高时对振动衰减的要求。

减振装置设计:

橡胶减振器是以橡胶作为减振器的弹性元件,以金属作为支撑骨架,故称为橡胶一金

属减振器。这种减振器由于使用橡胶材料,因而阻尼较大,对高频振动的能量吸收尤为显著,当振动频率通过共振区时,也不至产生过大的振幅。橡胶能承受瞬时的较大

形变,因此能承受冲击力,缓冲性能较好。这种减振器采用天然橡胶,受温度变化大,当温度过高时,表面会产生裂纹并逐渐加深,最后失去强度。此外,天然橡胶耐油性差,对酸性和光等反应敏感,容易老化。近年来化工技术的发展,人工橡胶使其工作

性能大大提高,如有多种可在油中使用的改性橡胶,出现了使用温度可在 1 00 ℃以上的改性橡胶。

常用的橡胶减振器有 JP 型和 JW 型,性能基本相同,仅结构外形上有区别。这两种减振器额定载荷范围是 45 ~ 157.5 N ,在常温和额定负荷下,垂直方向静压缩位移为1.2 ~ 2.0 mm ,其固有频率可查表求出。

硬度:用于减振装置的橡胶肖氏硬度范围为 30 - 700 胶的疲劳现象不明显。实验表明,经 3 0 万次振动后,其弹性模量几乎没有变化。

温度:橡胶材料对温度比较敏感,在不同的温度下橡胶的弹性模量会发生变化。当电子设备及其隔振系统的温度变化范围较宽时,尤其要注意当弹性模量改变时对隔振性能的影响。橡胶材料的弹性模量通常是在常温下给出的,如果产品的环境温度交化较大,在计算弹性模量或刚度时,应将求得的参数乘上温度影响系数,,所得修正参数才是橡胶材料在实际环境中的性能参数。.然后根据材料受温度影响的程度,判断其是否适应产品在不同环境中的使用要求。

形状系数:弹性模量与橡胶的相对变形和外形尺寸有关。根据橡胶的使用状态,将其表面分为约束面与自由面。约束面为加载面,在加载过程中,该面不变形;自由面是非加载面,该面在加载时产生变形。约束面积与自由面积两者的比值称为形状系数。

相同的橡胶材料,形状系数不同其性才量也不同。在实验中,将测量所得的与形状系数有关的弹性模量称为表观弹性模量。

形状系数越大,则橡胶的总硬度越大。当橡胶减振器形状不太复杂时,其弹簧刚度可直接用计算方法求得。当形状复杂时,一般是将其分解成若干简单形状,分别求出各简单形状的刚度值,然后组合成减振器的刚度。

橡胶减振器的选用原则为:①由电子设备的使用场合及运载工具,可以明确其所承受机械因素的性质和大小,如振动频率、加速度和冲击加速度等。②由电子设备的使用温度条件,可以明确所需减振器的工作条件。如一般橡胶减振器的工作温度为一

40 ~ 80 ℃。过冷橡胶硬化,过热则橡胶软化。③由电子设备的外形、尺寸、重量和重心位置等,可以决定布置减振器的位置,并确定支撑点(设备上固定减振器的点)数量。

金属橡胶冲击隔振系统试验

第24卷第7期2009年7月 航空动力学报 Journal of Aerospace Power Vol.24No.7 Jul.2009 文章编号:1000-8055(2009)07-1518-05 金属橡胶冲击隔振系统试验 闫 辉1 ,姜洪源1 ,刘文剑1 ,郝德刚 2 (1 哈尔滨工业大学机电学院,哈尔滨150001;2 哈尔滨工业大学航天学院,哈尔滨150001) 摘 要:金属橡胶抗冲击隔振器利用干摩擦和弹性变形消耗冲击能量,实现缓冲减振的目的.针对某飞行器抗冲击隔振的需求,设计了金属橡胶抗冲击隔振器,并进行了冲击试验,结果表明最大加速度响应和冲击隔离系数随着冲击时间增加而加大,同时冲击隔离系数受冲击载荷的大小影响.在冲击载荷较小时冲击隔离系数随冲击载荷增加而减小,超过一定范围后,冲击隔离系数随着冲击载荷的增加而加大.关 键 词:金属橡胶;抗冲击;隔振器;隔离系数中图分类号:T H113 1 文献标识码:A 收稿日期:2008-06-16;修订日期:2009-01-05 基金项目:国家自然科学基金(50705016);国家博士后科学基金(20080430926);国家博士后基金(200801297)作者简介:闫辉(1974-),男,黑龙江绥陵人,讲师,博士,从事特种阻尼隔振技术研究. Experimental research on metal rubber shock isolation system YAN H ui 1,JIANG H ong -yuan 1,LIU Wen -Jian 1,HAO De -gang 2 (1 School of M echatronic Eng ineer ing, H arbin Institute of T echno logy,H arbin 150001,China; 2 School of Astro nautics,H arbin Institute of T echno logy,H arbin 150001,China) Abstract:The dam ping performance o f metal rubber (M R)ant-i sho ck isolator depends on the dry friction and elastic defor mation that dissipates vibr ating energy.An M R isolato r w as investigated to satisfy the need of sho ck isolation system of som e aircrafts by the sho ck ex periments.The results show that the max imal accelerator response and the sho ck iso lation coefficient increase w ith the shock duration,w hile the shock isolatio n coefficient is affected by sho ck lo ad.It is concluded that under sm aller sho ck load,the sho ck isolatio n coefficient of M R isolator decreases w ith the increase of external load,ho w ever,w hen the load exceeds a certain value,the shock isolation co efficient increases w ith ex ternal lo ad. Key words:metal rubber (M R);ant-i shock;isolato r;isolation co efficient 飞行器在启动、飞行、着陆过程中,设备受到恶劣的振动、冲击等扰动作用.为了提高设备中元器件的安全性和可靠性,应采取必要的隔振或减振措施对设备进行保护[1-2].研究资料表明,约2/3的飞行器故障与由振动和冲击引起的失效有关[3] .造成这种现象的一个重要原因是由于纯金属结构材料自身的阻尼减振性能通常十分有限,易出现振动疲劳破坏和噪声,因而不能直接用作航 空航天阻尼减振材料[4-5] .振动和冲击是航空航天、 国防军品等高科技领域,急需解决的各种动态设计和控制问题之一[6].从20世纪70年代开始至今,采用钢丝绳、金属丝网和黏弹性材料的新型被动式隔振器、半主动液压型开关式隔振器、以及主动控制的隔振器相继问世,以取代传统的橡胶或金属弹簧隔振器.这些以耗散相对运动能量为主要特征的高阻尼隔振产品在航空航天领域内得到了广泛应

1、隔振理论的要素及隔振设计方法

隔振理论的要素及隔振设计方法 采用隔振技术控制振动的传递是消除振动危害的重要途径。 隔振分类 1、主动隔振 对于本身是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。 2、被动隔振 对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。 隔振理论的基本要素 1、质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负 载的重量。 2、弹性元件的静刚度K(N/mm) 在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在隔振装置下,其弹性元件的总刚度计算方法如下: 如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚度K=K1+K2+K3+…+Kn。 如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下其总刚度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。

3、弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的 高低,使用橡胶的品种有关,一般的计算办法是该隔振器的静刚度乘以动态系数d,动态系数d按下列选取: 当橡胶为天然胶,硬度值Hs=40-60,d=1.2-1.6 当橡胶为丁腈胶,硬度值Hs=55-70,d=1.5-2.5 当橡胶为氯丁胶,硬度值Hs=30-70,d=1.4-2.8 d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。 4、激振圆频率ω(rad/s) 当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可视为发动机或电动机的常用轴速n 其激振圆频率的计算公式为ω=(n/60)×2π n—发动机(电动机)转速n转/分 5、固有圆频率ωn(rad/s) 质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg) 6、振幅A(cm) 当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下列公式计算:A=V÷ω V—振动速度cm/s ω—激振圆频率,ω=2πn÷60(rad/s) 7、隔振系数η(绝对传递系数) 隔振系数指传到基础上的力F T与激振力F O之比,它是隔振设计中一个主要要

20121020-LRB铅芯隔震橡胶支座设计指南

桥梁标准构件系列产品 LRB 系列铅芯隔震橡胶支座 设计指南 2012 年08 月

〖LRB 系列铅芯隔震橡胶支座〗设计指南 目录 1. 桥梁减隔震技术概述 (1) 1.1 减隔震技术基本原理 (1) 1.2 减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1 设计依据 (2) 2.2 支座分类 (3) 2.3 支座型号 (3) 2.4 支座结构 (3) 2.5 产品特点 (4) 3. 支座技术性能 (4) 3.1 规格系列 (4) 3.2 剪切模量 (5) 3.3 水平等效刚度 (5) 3.4 等效阻尼比 (5) 3.5 设计剪切位移 (5) 3.6 温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1 支座安装工艺细则 (8) 7.2 支座更换工艺 (14) 7.3 支座的养护与维修 (14) 7.4 支座安装尺寸 (16)

LRB 系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线, 同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的 开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技 术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用 的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然 而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要 付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用 较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图 1 加速度反应谱图 2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和 位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻 地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

隔振器种类

隔振器广泛应用于设备的减震降噪,不同的类型适用的环境是不一样的,通常有下列几种常见的类型: 一、橡胶隔振器 选用橡胶为材料,天然橡胶由于变化小、拉力大、受破坏时延伸率长,价格低廉,所以应用较多。 该隔振器外表全包覆有金属壳,上部为防油密封护盖。使硅橡胶免受油污的侵害,应用于具有油污污染的振动环境。具有自锁装置,保证设备的使用安全。适用于小型发动机或者其他机构的隔振安装。

主要优点是具有持久的高弹性,有良好的隔振、隔冲击和隔声性能;造型和压制方便,能满足刚度和强度的要求;具有一定的阻尼性能,可以吸收机械能量,对高频振动量的吸收尤为突出;由于橡胶材料和金属表面间能牢固的黏结,因此不但易于制造安装,而且还可以利用多层叠加减小刚度,改变其频率范围,价格低廉。 二、软木隔振 软木是一种应用历史悠久的隔振材料。软木具有质轻、耐腐蚀、保温性能好、施工方便等特点,并有一定的弹性和阻尼,适用于高频或冲击设备的隔振。 三、金属隔振器 该隔振器全称为金属橡胶吊装式隔振器,隔振器阻尼大,环境适应能力强、工作频率范围宽、耐高低温、防湿热、霉菌、盐雾、寿命长。广泛应用于航空、航天、机载、舰载、车载等各类电子设备的吊装式振动隔离安装。 四、玻璃纤维

玻璃纤维是一种松散纤维材料,它靠本身良好的弹性和纤维间的压缩和摩擦而具有一定的阻尼和弹性 ,是一种良好的隔振材料,使用较为普遍。玻璃纤维的优点是不易老化、不腐、不蛀,又有抗酸、抗碱和抗油的良好性能,也不会燃烧。 五、毛毡 毛毡的适用频率范围为30Hz左右,适用于对车间内中小型机器隔振降噪处理,毛毡隔振系统的固有频率主要取决于毛毡的厚度,而不是它的面积和静荷载,毛毡压得越密实,系统的固有频率就越高。通常采用的毛毡厚度为10~25mm,当承受2~ 70N/cm2压力时,固有频率约为20~40Hz。其优点:价格便宜、容易安装,可以随意裁剪使用,与其他材料表面黏结性强;变形在25%以内时载荷特性为线形。

橡胶隔振垫道床

郑州市轨道交通I号线一期工程轨道安装工程02标段 橡胶隔振垫减震道床 施工方案 (首件工程施工方案) 编制: 审核: 审批: 中铁十一局集团有限公司郑州市轨道交通I号线一期工程 轨道安装工程02标段项目经理部 2012.5

目录 1、编制依据、原则、范围 (3) 1.1编制依据 (3) 1.2编制原则 (3) 1.3编制范围 (4) 2、工程概述 (4) 2.1 概况 (4) 2.2施工范围 (4) 3.主要技术标准 (4) 3.1正线轨道主要技术标准 (5) 4.2曲线超高 (5) 4.3轨枕布置: (5) 4.4橡胶隔振垫道床混凝土及钢筋: (6) 4.5杂散电流设置: (6) 4.6轨道结构高度: (6) 4.7道床排水设置: (6) 4.8道床伸缩缝设置: (7) 4.9过轨管线设置: (7) 4.10过渡段设置 (7)

4、施工工艺 (7) 4.1工艺流程图 (7) 4.2施工准备 (8) 4.3、基底施工 (8) 4.4、隔振垫整体道床施工 (10) 5、施工相关注意事项 (14) 6. 资源配置 (16) 6.1施工人员配置 (16) 6.2机械设备配置 (17) 7.安全注意事项 (18) 7.1施工现场临时用电安全措施 (18) 7.2施工机械安全保证措施 (19) 7.3地下线施工安全措施 (20) 7.4铺轨施工安全保障措施 (20) 7.5整体道床施工安全保证措施 (21) 7.6施工运输及交通安全措施 (21) 8、质量保证措施 (22)

1、编制依据、原则、范围 1.1编制依据 《地下铁道工程施工及验收规范》(GB50299-2003) 《铁路轨道工程施工质量验收标准》(TB10413-2003) 《铁路轨道施工及验收规范》(TB10302-1996) 《地铁设计规范》(GB50157-2003) 《铁路轨道设计规范》(TB10082-2005) 《无缝线路铺设及养护维修方法》(TB/T2098-2007) 《城市轨道交通工程测量规范》(GB50308-2008) 《混凝土结构工程施工及质量验收规范》(GB50204-2002) 《普通线路轨缝的预留和检查方法》(TB/T1857-1986) 《地铁杂散电流腐蚀防护技术规程》(CJJ49-1992) 《橡胶隔振垫减振道床设计图》 国家和铁道部现行的有关标准、规范及暂行规定。施工期间如有新规范及标准出台,以新规范及标准为准。 1.2编制原则 1.2.1确保施工安全的原则 安全是永恒的主题,施工生产永远将安全放在第一位。所有制定的技术措施、施工方案等均以确保施工安全为前提。 1.2.2确保施工质量的原则 根据工程的实际情况,对人员、机械、材料、管理进行优化配置。按照优质高效、科学管理的原则配置施工要素。通过严格地贯彻执行

1、隔振理论的要素及隔振设计方法

1、隔振理论的要素及隔振设计方法

隔振理论的要素及隔振设计方法采用隔振技术控制振动的传递是消除振动危害的重要途径。 隔振分类 1、主动隔振 对于本身是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。 2、被动隔振 对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。 隔振理论的基本要素 1、质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负 载的重量。 2、弹性元件的静刚度K(N/mm) 在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在 隔振装置下,其弹性元件的总刚度计算方法如下: 如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚度K=K1+K2+K3+…+Kn。 如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下

其总刚度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。 3、弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的 高低,使用橡胶的品种有关,一般的计算办法是该隔振器的静刚度乘以动态系数d,动态系数d按下列选取: 当橡胶为天然胶,硬度值Hs=40-60,d=1.2-1.6 当橡胶为丁腈胶,硬度值Hs=55-70,d=1.5-2.5 当橡胶为氯丁胶,硬度值Hs=30-70,d=1.4-2.8 d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。 4、激振圆频率ω(rad/s) 当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可视为发动机或电动机的常用轴速n 其激振圆频率的计算公式为ω=(n/60)×2π n—发动机(电动机)转速n转/分 5、固有圆频率ωn(rad/s) 质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg) 6、振幅A(cm) 当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下列公式计算:A=V÷ω V—振动速度cm/s ω—激振圆频率,ω=2πn÷60(rad/s) 7、隔振系数η(绝对传递系数)

橡胶隔振设计指导-精

橡胶隔振设计指导 设计和选用的原则: 优先选用标准产品,对于一些有特殊要求而又无标准的产品,则可根据需要自行隔振 设计。 隔振设计主要流程: 1)输入:隔振系统固有频率和减振装置刚度的要求,输出:减振装置的形状和几何 尺寸; 2)输入:系统通过共振区的振幅要求,输出:阻尼系数或阻尼比; 3)输入:隔振系统所处的环境和使用期限,输出:橡胶的材料。 隔振设计原则: 结构紧凑、材料适宜、形状合理、尺寸尽量小以及隔振效率高。具体设计和选用时, 还应注意以下因素: 1)载荷特点:确保支撑物的重心与支撑点中心重合,载重后的支撑面与基础面平行。 很多零件支撑大多采用几何对称布置,而设备的重心却往往偏离几何对称轴,设计时需将该偏差考虑进去。在设计和选用减振器时,不仅要考虑总重量,还应考虑各支撑部位的重力大小,以确定每个减振器的实际承载量,使产品安装减振器后,其安装平面与基础平行。 2)减振装置的总刚度应满足隔振系数的要求。此外,无论产品的支撑布置是否与几 何中心对称,均应使各支撑部位的减振装置刚度对称于系统的惯性主轴。 3)减振装置的总阻尼既要考虑系统通过共振区时对振幅的要求,也要考虑隔振区隔 振效率,尤其是在频率较高时对振动衰减的要求。 减振装置设计: 橡胶减振器是以橡胶作为减振器的弹性元件,以金属作为支撑骨架,故称为橡胶一金 属减振器。这种减振器由于使用橡胶材料,因而阻尼较大,对高频振动的能量吸收尤为显著,当振动频率通过共振区时,也不至产生过大的振幅。橡胶能承受瞬时的较大 形变,因此能承受冲击力,缓冲性能较好。这种减振器采用天然橡胶,受温度变化大,当温度过高时,表面会产生裂纹并逐渐加深,最后失去强度。此外,天然橡胶耐油性差,对酸性和光等反应敏感,容易老化。近年来化工技术的发展,人工橡胶使其工作

橡胶隔振基础施工技术方案

橡胶隔振基础施工技术方案 一、叠层橡胶隔震技术工艺原理 隔震技术是在基础结构与上部结构之间设置隔震层,使上部结构与地震动绝缘,从而保护上部结构不受地震破坏。目前,隔震层通常由橡胶支座和阻尼装置构成,一般设置在基础与上部结构之间,这种技术又称基础隔震技术。隔震技术适用于各种结构型式,从钢筋混凝土结构到钢结构,从普通住宅到大跨度结构,从建筑到桥梁,适用性极广。 隔震结构体系通过设置隔震层,将结构分为上部结构、隔震层和下部结构三部分,地震能量经由结构传到隔震层,由隔震层的隔震装置吸收并消耗主要地震能量后,仅有少部分能量传到上部结构。隔震层的设置改变了上部结构的周期,降低了结构的地震反应,确保上部结构在大地震时仍可处于弹性状态,或保持在弹性变形状态的初期状态。正是隔震技术才使得人们能够在大震时安全,在小震中震时安心,超前地实现抗震规范要求的“小震不坏、设防烈度可修、大震不倒” 的三个设防水准。 二、叠层橡胶隔震技术特点 叠层橡胶垫基础隔震体系的隔震层是由若干个隔震器所组成。隔震器包括叠层橡胶垫和阻尼器,分普通叠层橡胶垫、铅芯橡胶垫和高阻尼橡胶垫。这种隔震体系的周期长、阻尼比大,隔震效果明显,尤其采用后两种隔震器,不需再另外附加阻尼器,便于施工。

叠层橡胶隔震支座施工技术主要特点: 1、能明显有效地减轻结构的地震反应。采用隔震技术的结构在强震作用下其地震反应只有传统抗震结构的1/6~1/3。强震作用下,隔震结构能够很好地保证自身安全。 2、能确保结构安全。在地面剧烈震动时,上部结构仍能处于正常的弹性工作状态。结构内部的财产以及人员安全得以保证。 3、房屋造价不明显提高:对我国已有的隔震结构调查显示,虽然隔震装置需要增加造价(约5%),但建筑总造价不明显提高,在高烈度区还能节省房屋造价。 4、隔震结构无需特别维护。隔震支座的使用寿命在60年以上。 5、上部结构设计限制小。由于上部结构地震作用已经很少,使地震区的建筑及结构设计从过去很多严格的限制中解放出来。 6、橡胶支座的拉伸变形大。极限拉伸变形可达橡胶厚度的3倍以上。经历过拉伸变形为1倍的橡胶厚度的情况下,支座的性能几乎没有降低。 7、橡胶支座的极限剪切(水平)变形能力约为橡胶厚度的350%以上,远大于通常的设计最大变形250%。 8、在竖向荷载比较大的情况下,橡胶支座会出现屈曲的现象,屈曲时的具体情况与压力的大小和变形的大小相关。在设计压应力10 N/mm2~15N/mm2情况下,支座可以不考虑屈曲等等。 三、叠层橡胶隔震支座施工工艺流程及操作要点 3.1工艺流程

减振器设计、选用

减振器设计和选用 (1)设计和选用的原则在电子设备的隔振设计中,应尽量选用已颁布的标准产品,对于一些有特殊要求而又无标准的产品,则可根据需要自行设计减振器。 设计减振器要考虑的主要因素是:①根据对隔振系统固有频率和减振器刚度的要求,决定减振器的形状和几何尺寸。②根据对系统通过共振区的振幅要求,决定阻尼系数或阻尼比。③根据隔振系统所处的环境和使用期限,选取弹性元件的材料以及阻尼材料。 设计和选用减振器的一般原则是:结构紧凑、材料适宜、形状合理、尺寸尽量小以及隔振效率高。具体设计和选用时,还应注意以下因素: ①载荷特点。例如,电子设备的支撑大多采用几何对称布置,而设备的重心却往往偏离几何对称轴。在设计和选用减振器时,不仅要考虑总重量,还应考虑各支撑部位的重力大小,以确定每个减振器的实际承载量,使产品安装减振器后,其安装平面与基础平行。 ②减振器的总刚度应满足隔振系数的要求。此外,无论产品的支撑布置是否与几何中心对称,均应使各支撑部位的减振器刚度对称于系统的惯性主轴。 ③减振器的总阻尼既要考虑系统通过共振区时对振幅的要求,也要考虑隔振区隔振效率,尤其是在频率较高时对振动衰减的要求。 (2)橡胶减振器是以橡胶作为减振器的弹性元件,以金属作为支撑骨架,故称为橡胶一金属减振 器。这种减振器由于使用橡胶材料,因而阻尼较大,对高频振动的能量吸收尤为显著,当振动频率通过共振区时,也不至产生过大的振幅。橡胶能承受瞬时的较大形变,因此能承受冲击力,缓冲性能较好。这种减振器采用天然橡胶,受温度变化大,当温度超过60 aC,表面会产生裂纹并逐渐加深,最后失去强度。此外,天然橡胶耐油性差,对酸性和光等反应敏感,容易老化。近年来化工技术的发展,人工橡胶使其工作性能大大提高,如有多种可在油中使用的改性橡胶,出现了使用温度可在1 00℃以上的改性橡胶。 常用的橡胶减振器有JP型和JW型,性能基本相同,仅结构外形上有区别。这两种减振器额定载荷范围是45~1 5 7.5 N,在常温和额定负荷下,垂直方向静压缩位移为1.2~2.0 mm,其固有频率可查表求出。 ①硬度:用于减振器的橡胶肖氏硬度范围为30 - 700 胶的疲劳现象不明显。实验表明,经3 0万次振动后,其 弹性模量几乎没有变化。 ②温度:橡胶材料对温度比较敏感,在不同的温度下橡胶的弹性模量会发生变化。当电子设备及其隔振系统的温度变化范围较宽时,尤其要注意当弹性模量改变时对隔振性能的影响。橡胶材料的弹性模量通常是在常温下给出的,如果产品的环境温度交化较大,在计算弹性模量或刚度时,应将求得的参数乘上温度影响系数,,所得修正参数才是橡胶材料在实际环境中的性能参数。.然后根据材料受温度影响的程度,判断其是否适应产品在不同环境中的使用要求。 ’③形状系数:弹性模量与橡胶的相对变形和外形尺寸有关。根据橡胶的使用状态,将其表面分为约束面与自由面。约束面为加载面,在加载过程中,该面不变形;自由面是非加载面,该面在加载时产生变形。约束面积与自由面积两者的比值称为形状系数。 相同的橡胶材料,形状系数不同其性才量也不同。在实验中,将测量所得的与形状系数有关的弹性模量称为表观弹性模量。 形状系数越大,则橡胶的总硬度越大。当橡胶减振器形状不太复杂时,其弹簧刚度可直接用计算方法求得。当形状复杂时,一般是将其分解成若干简单形状,分别求出各简单形状的刚度值,然后组合成减振器的刚度。 橡胶减振器的选用原则为:①由电子设备的使用场合及运载工具,可以明确其所承受机械因素的性质和大小,如振动频率、加速度和冲击加速度等。②由电子设备的使用温度条件,可以明确所需减振器的工作条件。如一般橡胶减振器的工作温度为一40~80℃。过冷橡胶硬化,过热则橡胶软化。③由电子设备的外形、尺寸、重量和重心位置等,可以决定布置减振器的位置,并确定支撑点(设备上固定减振器的点)数量。 (3)金属弹簧减振器金属弹簧减振器对环境条件反应不敏感,适用于恶劣环境,如高温、高寒和油污等;工作性能稳定,不易老化;刚度变化范围宽,不但能做得非常柔软,也能做得非常刚硬。其缺点是阻尼比很小,因此,必要时还应另加阻尼器或在金属减振器中加入橡胶垫层和金属丝网等。金属弹簧减振器一般未标准化,需要时可参考相关技术资料根据具体条件来设计。

铅芯隔震橡胶支座设计指南

目录 1. 桥梁减隔震技术概述 (1) 1.1减隔震技术基本原理 (1) 1.2减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1设计依据 (2) 2.2支座分类 (3) 2.3支座型号 (3) 2.4支座结构 (3) 2.5产品特点 (4) 3. 支座技术性能 (4) 3.1规格系列 (4) 3.2剪切模量 (5) 3.3水平等效刚度 (5) 3.4等效阻尼比 (5) 3.5设计剪切位移 (5) 3.6温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1支座安装工艺细则 (8) 7.2支座更换工艺 (14) 7.3支座的养护与维修 (14) 7.4支座安装尺寸 (16)

L R B系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线,同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图1 加速度反应谱图2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

隔振器及隔振元件

1、金属弹簧隔振器 金属弹簧隔振器是目前国内影用最广泛的隔振器,常作为振动设备的减振支撑。优点是固有频率可控制在20Hz以内,价格便宜,性能稳定,耐高温,乃低温,耐油,耐腐蚀,乃老化,寿命长。可适用于各种要求的弹性支撑,可预压呀也可以做成悬吊型使用。缺点是阻尼性能差,高频振动隔振效果差,。在高频,弹簧逐渐成刚性,弹性变差,隔振效果变差,被称为“高频失效”。目前较多使用的是小型螺旋钢弹簧组合,配以铸铁外壳,做一定的阻尼处理,但实际阻尼改善不大。将在安装减振器时垫入橡胶垫和减弱高频失效的影响,但有些橡胶在承压状态下容易老化,有时也可安装在附注楼板上,效果更理想。 2、橡胶隔振器 将橡胶固化、剪切成型,可以形成各式各样的橡胶隔声器。优点是不仅在轴向,而且在回转方向均具有隔离振动的性能,固有频率和控制在15Hz以内。橡胶内部阻尼比金属大很多,高频隔振效果好。安装方便,容易与金属牢固的粘结,体积小,重量轻,价格低。缺点是耐老化问题普通橡胶使用温度范围是0℃-70℃,特殊工艺下限温度方可达-50℃;在空气中容易老化,特别是在阳光直射下会加速老化,一般寿命5-10年,荷载特性常不一致,经受常时间打荷载的作用,会产生松弛现象。橡胶隔振器的性能与质量主要取决于橡胶的配方和硫化工艺,硫化温度和时间是非常重要的,常需经过反复试验总结才能确定最佳工艺。 3、橡胶隔振垫 与橡胶隔振器不同,橡胶隔振垫是一块橡胶板,可大面积的铺在振动设备和基础之间。橡胶隔振垫表面常切划出一些凹槽,是为了受压时变形的需要。因其具有持久的高弹性,有良好的隔振、隔冲、隔声性能,使用非常广泛。橡胶隔振垫的适应隔振固有频率在10-15Hz,多层叠放可低于10Hz。橡胶隔振垫与橡胶隔振器的缺点类似,容易受温度,油质、日光即化学试剂的腐蚀,造成性能下降、老化,一般寿命为5-10年,应定期检查更换。

1隔振理论的要素及隔振设计方法

隔振理论的要素及隔振设计方法采用隔振技术控制振动的传递就是消除振动危害的重要途径。 隔振分类 1、主动隔振 对于本身就是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。 2、被动隔振 对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。 隔振理论的基本要素 1、质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负载的 重量。 2、弹性元件的静刚度K(N/mm) 在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在隔振装置下,其弹性元件的总刚度计算方法如下: 如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚度K=K1+K2+K3+…+Kn。 如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下其总刚度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。

3、弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的 高低,使用橡胶的品种有关,一般的计算办法就是该隔振器的静刚度乘以动态系数d,动态系数d按下列选取: 当橡胶为天然胶,硬度值Hs=40-60,d=1、2-1、6 当橡胶为丁腈胶,硬度值Hs=55-70,d=1、5-2、5 当橡胶为氯丁胶,硬度值Hs=30-70,d=1、4-2、8 d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。4、激振圆频率ω(rad/s) 当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可视为发动机或电动机的常用轴速n 其激振圆频率的计算公式为ω=(n/60)×2π n—发动机(电动机)转速n转/分 5、固有圆频率ωn(rad/s) 质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg) 6、振幅A(cm) 当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下列公式计算:A=V÷ω V—振动速度cm/s ω—激振圆频率,ω=2πn÷60(rad/s) 7、隔振系数η(绝对传递系数) 隔振系数指传到基础上的力F T与激振力F O之比,它就是隔振设计中一个主要

相关文档
最新文档