全等证明--解题方法归纳

全等证明--解题方法归纳
全等证明--解题方法归纳

【第1部分 全等基础知识归纳、小结】

1、全等三角形的定义: 能够完全重合的两个三角形叫全等三角形。两个全等三角形中,

互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。

概念深入理解:

(1)形状一样,大小也一样的两个三角形称为全等三角形。(外观长的像)

(2)经过平移、旋转、翻折之后能够完全重合的两个三角形称为全等三角形。(位置变化)

2、全等三角形的表示方法:若△ABC 和△A′B′C′是全等的,记作“△ABC≌△A′B′C′”其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:

全等是工具、手段,最终是为了得到边等或角等,从而解决某些问题。 (1)全等三角形的对应角相等、对应边相等。

(2)全等三角形的对应边上的高,中线,角平分线对应相等。 (3)全等三角形周长,面积相等。

4、寻找对应元素的方法

3

1

图2

(1)根据对应顶点找

如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找

全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的;运动一般有3种:平移、对称、旋转;

5、全等三角形的判定:(深入理解)

①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS)

⑤斜边,直角边(HL)

注意:(容易出错)

(1)在判定两个三角形全等时,至少有一边对应相等(边定全等);

(2)不能证明两个三角形全等的是,㈠三个角对应相等,即AAA;㈡有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

6、常见辅助线写法:(照着辅助线说明要能做出图、养成严谨、严密的习惯)

如:⑴过点A作BC的平行线AF交DE于F

⑵过点A 作BC 的垂线,垂足为D ⑶延长AB 至C ,使BC =AC ⑷在AB 上截取AC ,使AC =DE ⑸作∠ABC 的平分线,交AC 于D ⑹取AB 中点C ,连接CD 交EF 于G 点

同一条辅助线,可以说法不一样,那么得到的条件、证明的方法也不同。

【第2部分 中点条件的运用】

1、还原中心对称图形(倍长中线法)

中心对称与中心对称图形知识:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这

两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。

中心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。 (2)关于中心对称的两个图形是全等图形。

B'

中心对称图形

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。(一个图形)如:平行四边形

线段本身就是中心对称图形,中点就是它的对称中心,所以遇到中点问题,依托中点借助辅助线还原中点对称图形,可以把分散的条件集中起来(集散思想)。

例1、AD 是△ABC 中BC 边上的中线,

若AB =2,AC =4,则AD 的取值范围是_________。

例2、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF =EF ,

求证:AC =BE 。

例3、如图,D 是△ABC 的边BC 上的点,且CD=AB ,∠ADB=∠BAD,AE 是△ABD

的中线。求证:AC=2AE

例4 △ABC 中,AD 、BE 、CF 是三边对应中线。(则O 为重心)

A B

C

D

E

F

求证:①AD、BE 、CF 交于点O 。(类倍长中线); ②AOB BOC COA S S S ==V V V 练习

1、在△ABC 中,D 为BC 边上的点,已知∠BAD =∠CAD ,BD =CD ,求证:AB =AC

A

B

C

D

2、如图,已知四边形ABCD 中,AB =CD ,M 、N 分别为BC 、AD 中点,延长MN 与AB 、

CD 延长线交于E 、F ,求证∠BEM =∠CFM

3、如图,AB=AE ,AB⊥AE,AD=AC ,AD⊥AC,点M 为BC 的中点,求证:DE=2AM (基本型:同角或等角的补角相等、K 型)

2、两条平行线间线段的中点(“八字型”全等)

如图,1l ∥2l ,C 是线段AB 的中点,那么过点C

直线都可以和二条平行线以及AB 构造“8字型”全等

E

F

A

C

D

M

B

例1 已知梯形ABCD ,AD∥BC,点E 是AB 的中点,连接DE 、CE 。

求证:ABCD 1

2

DEC S S =V 梯

例2 如图,在平行四边形ABCD 中,AD=2AB ,M 是AD 的中点,CE⊥AB 于点E ,

∠CEM=40°,求∠DME 的大小。(提示:直角三角形斜边中线等于斜边的一半)

例3 已知△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE=90°,连接DE ,设M 为DE

的中点。⑴求证:MB =MC ;⑵设∠BAD =∠CAE,固定Rt△ABD,让Rt△ACE 移至图示位置,此时MB =MC

是否成立?请证明你的结论。

练习 1、已知:如图,梯形ABCD 中,AD∥BC,∠ABC=90°.若BD=BC ,F 是CD 的中

E

A

B

E

A

C

D

M B

E

A

C

D

M

B

点,试问:∠BAF 与∠BCD 的大小关系如何?请写出你的结论并加以证明;

2、Rt△ABC 中,∠BAC=90°,M 为BC 的中点,过A 点作某直线l ,过B 作BD l ⊥于点D ,过C 作CE l ⊥于点E 。

(1)中的结论是否任然成立?

3

、如图(1),在正方形ABCD 和正方形CGEF (CG >BC )中,点B 、C 、G 在同一直线上,M 是AE 的中点,(1)探究线段MD 、MF 的位置及数量关系,并证明;

(2)将图(1)中的正方形CGEF 绕点C 顺时针旋转,使正方形CGEF 的对角线CE 恰好与正方形ABCD 的边BC 在同一条直线上,原问题中的其他条件不变。(1)中得到的两个结

A B

C

D

F

3、构造中位线

三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线 三角形中位线性质:三角形的中位线平行于第三边并且等于第三边的一半.

重点区分:要把三角形的中位线与三角形的中线区分开,三角形中线是连结一顶点和它对边的中点;而三角形中位线是连结三角形两边中点的线段。

(全等法)在△ABC 中,D 、E 分别是AB 、AC 边的中点,证明:DE∥BC,DE=

1

2

BC 证明:延长DE 至F 点,使DE=EF ,连接CF (倍长中线)

三角形的中位线在位置关系和数量关系二方面把三角形有关线段联系起来,将题目给出 的分散条件集中起来(集散思想)。注:题目中给出多个中点时,往往中点还是不够用的。

例1 在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、

求证:四边形EFGH 是平行四边形。

例2 已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M

、N 分别是AB 、

CD 的中点,MN 分别交BD 、AC 于点E 、F. 你能说出OE 与OF 的大小关系并加以证明吗?

B

D B

练习 1、三角形ABC 中,AD 是∠BAC 的角平分线,BD⊥AD,点D 是垂足,点E 是边BC 的中点,如果AB=6,AC=14,求DE 的长。

2、AB∥CD,BC∥AD ,DE⊥BE ,DF=EF ,甲从B 出发,沿着BA->AD->DF 的方向运动,乙B 出发,沿着BC->CE->EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达F 点?

3、等腰Rt△ABC 与等腰Rt△CDE 中,∠ACB=∠EDC=90°,连AE 、BE ,点M 为BE 的中点,连DM 。 (1)当D 点在BC 上时,求

DM

AE

的值 (2)当△CDE 绕点C 顺时针旋转一个锐角时,上结论是否任然成立,试证明

F

B

D

4、△ABC、△CEF 都为等腰直角三角形,当E 、F 在AC 、BC 上,∠ACB=90°,连BE 、 AF ,点M 、N 分别为AF 、BE 的中点 (1)MN 与AE 的数量关系

(2)将△CEF 绕C 点顺时针旋转一个锐角,MN 与AE 的数量关系

4、与等面积相关的图形转换

A F

A

F

在涉及三角形的面积问题时,中点提供了底边相等的条件,这里有个基本几何图形

如图,△ABC 中,E 为BC 边的中点,那么显然

△ABE 和△AEC 有相同的高AD ,底边也相等,故面积相等。

例 E 、F 是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则

AGCD

ABCD

S S 四边形矩形=

扩展 如图,等腰Rt △A CD 与Rt △A BC 组成一个四边形ABCD ,AC=4,对角线BD 把

四边形ABCD 分成了二部分,求ABD BCD S S V V 的值。

【5、等腰三角形中的“三线合一”】

“三线合一”是相当重要的结论和解题工具,它告诉我们等腰三角形与直角三角形有着极为亲密的关系。

例 △ABC 中,AB=AC ,BD⊥AC 于D ,问∠CBD 和∠BAC 的关系?

B

C

F

B

B

B

A

C

分析:∠CBD 和∠BAC 分别位于不同类型的三角形中,可以考虑转为同类三角形。

例 在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,

MN⊥AC 于点N ,则MN=_____

【6、直角三角形斜边上的中线等于斜边的一半】

这可以作为一个定理直接运用,关于这个定理的证明有多种方法,包括利用前面所讲中点的一些知识。

例 如图Rt△ABC 中,∠ACD=90°,CD 为斜边AB 上的中线 求证:CD=

1

2

AB (1)利用垂直平分线的性质:垂直平分线上任一点到线段 的二个端点的距离相等。

取AC 的中点E ,连接DE 。则DE∥BC(中位线性质) Q ∠ACB=90°∴BC⊥AC ,DE⊥AC 则DE 是线段AC 的垂直平分线∴AD=CD

(2)全等法,证法略。

例 在三角形ABC 中,AD 是三角形的高,点D 是垂足,点E 、F 、G

的中点,求证:四边形EFGD 是等腰梯形。

练习 1、在Rt△AB C 中,∠A=90°,AC=AB ,M 、N 分别在AC 、AB 上,且AN=BM 。

B

E

B

B

O 为斜边BC 的中点。试判断△OMN 的形状,并说明理由。

2、ΔABC 中,∠A=90°,D 是BC 的中点,DE⊥ DF。求证: 2

2

2

BE CF EF += (集散思想)

3、ΔABC 中,AB=AC ,点D 在BC 上,E 在AB 上,且BD=DE ,点P 、M 、N 分别为AD 、BE 、BC 的中点

(1)若∠BAC=90°,则∠PMN=_______,并证明 (2)若∠BAC=60°,则∠PMN=_______

【中点问题练习题】

1、假设给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题: (1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;

(2)如图1

,在△ABC 中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分别为BC 、AD

的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形; (3)如图2,若点D 在△ABC 的内部,(2)中的其他条件不变,EF 与CD 交于点H ,是否

B

B

C

存在等邻角四边形,若存在,是哪个四边形,不必证明;若不存在,请说明理由.

2、已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC=∠ADE=90°,点M 是CE 的中点,连接BM

(1)如图①,点D 在AB 上,连接DM ,并延长DM 交BC 于点N ,可探究得出BD

与BM 的数量关系为_________________,写出证明过程。

(2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不

成立,说明理由。

3、在△AOB 中,AB=OB=2,△COD 中,CD=OC=3,∠ABO=∠DCO.连接AD 、BC ,点

M 、N 、P 分别为OA 、OD 、BC 的中点.

C

B

C

B

C

A

E

若A、O、C三点在同一直线上,∠ABO=60°,则△PMN

的形状是___________,此时AD

=____________

BC

4、已知:如图①,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于

F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45o,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的

E

(完整版)全等三角形基础练习证明题

全等三角形的判定 班级: 姓名: 1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。 2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF 3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD 4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD 5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE . 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE 7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A B C E H A C M E F B D A B C D F E C B D E F D C F E A B A D E B C 1 2 A D C E F B A D B A D F E C M A B C D 1 2 D C F E A B

中学全等三角形经典证明题汇总

中学全等三角形经典证明题汇总 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 已知:∠1=∠2,CD=DE ,EF 如图,四边 形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 B A D B C C B A C D F 2 1 E C D B A

8.已知:AB 知:AB=CD ,∠A=∠D ,求证:∠B=∠C 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

16.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B 17.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 18.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 19.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. 20、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 21、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC 的中线。

七年级全等三角形证明经典题

七年级数学下册《全等三角形》专题练习 1、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C(做AB=AE交AC于E点) 6、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE(做AD=AF交AB于F点) 8. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求 证:BC=AB+DC。 C D B A

9、已知:AB 知:如图所示,AB = AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。 35.在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ?≌CEB ?;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由. A B C D D C B A F E P E D C B A D C B A M F E C B A F E D C B A F D C B F E D C B A D B C A F E

46. 如图, AB=12, CA⊥AB于A, DB⊥AB于B, 且AC=4m, P点从B向A运动, 每分钟走1m, Q 点从B向D运动, 每分钟走2m,P、Q两点同时出发, 运动几分钟后△CAP≌△PQB 试说明理由. 47、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E. (图1) (图2) (图3) (1)试说明: BD=DE+CE. (2) 若直线AE绕A点旋转到图(2)位置时(BDCE), 其余条件不变, 问BD与DE、CE的关系如何请直接写出结果, 不需说明.

全等三角形证明方法归纳经典-(1)

【第1部分 全等基础知识归纳、小结】 1、全等三角形的定义: 能够完全重合的两个三角形叫全等三角形。两个全等三角形中, 互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。 概念深入理解: (1)形状一样,大小也一样的两个三角形称为全等三角形。(外观长的像) (2)经过平移、旋转、翻折之后能够完全重合的两个三角形称为全等三角形。(位置变化) 2、全等三角形的表示方法:若△ABC 和△A′B′C′是全等的,记作“△ABC≌△A′B′C′”其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质: 全等是工具、手段,最终是为了得到边等或角等,从而解决某些问题。 (1)全等三角形的对应角相等、对应边相等。 (2)全等三角形的对应边上的高,中线,角平分线对应相等。 (3)全等三角形周长,面积相等。 4、寻找对应元素的方法 图 3 图 1 图2

(1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的;运动一般有3种:平移、对称、旋转; 5、全等三角形的判定:(深入理解) ①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS) ⑤斜边,直角边(HL) 注意:(容易出错) (1)在判定两个三角形全等时,至少有一边对应相等(边定全等); (2)不能证明两个三角形全等的是,㈠三个角对应相等,即AAA;㈡有两边和其中一角对应相等,即SSA。 全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。 6、常见辅助线写法:(照着辅助线说明要能做出图、养成严谨、严密的习惯) 如:⑴过点A作BC的平行线AF交DE于F

全等三角形证明题(含答案版)

1、如图,四边形ABCD是边长为2的正方形,点G是 BC延长线上一点,连结AG,点E、F分别在AG 上,连接BE、DF,∠1=∠2 ,∠3=∠4. (1)证明:△ABE≌△DAF; (2)若∠AGB=30°,求EF的长. 【解析】 (1)∵四边形ABCD是正方形, ∴AB=AD, 在△ABE和△DAF中,? ? ? ? ? ∠ = ∠ = ∠ = ∠ 3 4 1 2 DA AB , ∴△ABE≌△DAF. (2)∵四边形ABCD是正方形, ∴∠1+∠4=90o ∵∠3=∠4, ∴∠1+∠3=90o ∴∠AFD=90o 在正方形ABCD中,AD∥BC, ∴∠1=∠AGB=30o 在Rt△ADF中,∠AFD=90o AD=2 , ∴AF=3 , DF =1, 由(1)得△ABE≌△ADF, ∴AE=DF=1, ∴EF=AF-AE= 1 3- . 2、如图, , AB AC AD BC D AD AE AB DAE DE F =⊥=∠ 于点,,平分交于点 ,请你写出图中三对全等三角形,并选取其中一对加以 证明. 【解析】 (1) ADB ADC △≌△、 ABD ABE △≌△、AFD AFE △≌△、 BFD BFE △≌△、 ABE ACD △≌△(写出其中的三对即 可). (2)以 △ADB≌ADC为例证明. 证明: ,90 AD BC ADB ADC ⊥∴∠=∠= °. 在Rt ADB △和Rt ADC △中, ,, AB AC AD AD == ∴Rt ADB △≌Rt ADC △. 3、在△ABC中,AB=CB,∠ABC=90o,F为AB延长线上 一点,点E在BC上,且AE=CF. (1)求证:Rt△AB E≌Rt△CBF; (2)若∠CAE=30o,求∠ACF度数.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

全等三角形证明经典50题(含答案)

1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 4.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA 5.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线 交AP 于D .求证:AD +BC =AB . P E D C B A F A E D C B

6.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F , 若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立 请给予证明;若不成立请说明理由. 7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积 相等的三角形.(直接写出结果,不要求证明): 8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线 垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE . O E D C B A F E D C B A

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 A D B C

∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) B A C D F 2 1 E

全等三角形三种证明方法经典例题

全等三角形经典例题 典型例题: 知识点一:全等三角形判定1 例1:如图,在厶AFD和厶EBC中,点A , E, F, C在同一直线上,有下面四个论断:(1) AD = CB ; (2) AE = CF; ( 3) DF = BE ; (4) AD // BC。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。 思路分析: 1) 题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2) 解题思路:根据全等三角形判定 1 :三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1) (2) (3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。解答过程: 已知:如图,在△ AFD和厶EBC中,点 A , E, F, C在同一直线上,AD = CB , AE = CF, DF = BE。求证:AD // BC。 证明:?/ AE = CF ??? AE + EF = CF+ EF ??? AF = CE 在厶AFD和厶CEB中, AD CB 'AF CE DF BE ? △ AFD EBC (SSS) ?-Z A = Z C ? AD // BC 解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。 小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生 的逻辑思维能力,进一步规范了三角形全等证明题的书写。 知识点二:全等三角形判定2 例2:已知:如图,0P是AOC和BOD的平分线,OA OC, OB OD。 求证:(〔)△ OAB OCD ; (2) AB CD。

全等三角形证明经典100题

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD A D B C B A C D F 2 1 E C D B A

8. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E C D B A

12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C D C B A F E

全等三角形证明经典50题

1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 2.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 8.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 10.已知:∠1=∠2,CD=DE,EF//AB,求证: EF=AC A D B C B B A C D F 2 1 E C D B A A D B C

11.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 12.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。求证:BC=AB+DC。 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 14.已知:AB=CD,∠A=∠D,求证:∠B=∠C 15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

八年级全等三角形证明经典题

全等三角形证明经典题 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = 3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 5. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = A D B C C D B B A C D F 2 1 E A

6. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 7. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 8. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 一:如果abc=1,求证 11++a ab +11++b bc +11 ++c ac =1 二:已知a 1+b 1= )(29b a +,则a b +b a 等于多少? B B A C D F 2 1 E C D B A

9. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3)边边边定理(SSS):三边对应相等的两个三角形全等. (4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 专题1、常见辅助线的做法 典型例题 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种:

全等三角形证明100题

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 B C A D B C B A C D F 2 1 E

7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

11:如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA : 12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 13:已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

全等三角形证明经典题(含答案解析)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE < AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠ CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。∴ A D B C

∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又EF∥AB ∴∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG ∴EF =AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证: BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCE CE 平分∠BCD CE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF B A C D F 2 1 E A

全等三角形证明过程步骤练习

全等三角形训练 一、知识点填空 (1)能够 的两个图形叫做全等形,能够 的两个三角形叫做全等三角形. (2)把两个全等的三角形重合到一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 . (3)全等三角形的 边相等,全等三角形的 角相等. (4) 对应相等的两个三角形全等(边边边或 ). (5)两边和它们的 对应相等的两个三角形全等(边角边或 ). (6)两角和它们的 对应相等的两个三角形全等(角边角或 ). (7)两角和其中一角的 对应相等的两个三角形全等(角角边或 ). (8) 和一条 对应相等的两个直角三角形全等(斜边、直角边 或 ). (9)角的 上的点到角的两边的距离相等. 2.如图,图中有两对三角形全等,填空: (1)△CDO ≌ ,其中,CD 的对应边是 , DO 的对应边是 ,OC 的对应边是 ; (2)△ABC ≌ ,∠A 的对应角是 , ∠B 的对应角是 ,∠ACB 的对应角是 . 3. 如图,OA ⊥AC ,OB ⊥BC ,填空: (1)利用“角的平分线上的点到角的两边 的距离相等”,已知 = , 可得 = ; (2)利用“角的内部到角两边距离相等的点在角的平分线上”, 已知 = ,可得 = ; 4.如图,AB ⊥AC ,DC ⊥DB ,填空: (1)已知AB =DC ,利用 可以判定 △ABO ≌△DCO ; (2)已知AB =DC ,∠BAD =∠CDA ,利用 可以判△ABD ≌△DCA ; (3)已知AC =DB ,利用 可以判定△ABC ≌△DCB ; (4)已知AO =DO ,利用 可以判定△ABO ≌△DCO ; (5)已知AB =DC ,BD =CA ,利用 可以判定△ABD ≌△DCA. 二、推理填空,完成下面的证明过程: 5. 如图,OA =OC ,OB =OD. 求证:AB ∥DC. 证明:在△ABO 和△CDO 中, OA OC , AOB __________,OB OD ,?=? ∠=??=? ∴△ABO ≌△CDO ( ). ∴∠A = . A B C D E O A B C D O 12O A B C

全等三角形证明经典试题50道

全等三角形证明经典试题50道 1. (已知:如图,E,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF . 【答案】∵AD ∥CB ∴∠A=∠C 又∵AD=CB ,∠D=∠B ∴△ADF ≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF 2. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC 证明:在△ABC 与△DCB 中 (ABC DCB ACB DBC BC BC ∠=∠?? ∠=∠??=? 已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB ∴AB =DC 3. 如图,点D ,E 分别在AC ,AB 上.

(1) 已知,BD=CE,CD=BE,求证:AB=AC; (2) 分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的命题,命题2是命题.(选择“真”或“假”填入空格). 【答案】 (1) 连结BC,∵ BD=CE,CD=BE,BC=CB. ∴△DBC≌△ECB (SSS) ∴∠DBC =∠ECB ∴ AB=AC (2) 逆,假; 4. 如图,在□ABCD中,分别延长BA,DC到点E,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G。求证:△AEF≌△CHG. 【答案】证明:∵□ABCD ∴ AB=CD,∠BAD=∠BCD AB∥CD ∴∠EAF=∠HCG ∠E=∠H ∵ AE=AB,CH=CD ∴ AE=CH

全等三角形三种证明方法经典例题

全等三角形经典例题 典型例题: 知识点一:全等三角形判定1 例1:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,有下面四个论断:(1)AD =CB ;(2)AE =CF ;(3)DF =BE ;(4)AD ∥BC 。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。 思路分析: 1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。 ; 解答过程: 已知:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,AD =CB ,AE =CF ,DF =BE 。求证:AD ∥BC 。 证明:∵AE =CF ∴AE +EF =CF +EF ∴AF =CE 在△AFD 和△CEB 中, ∵ & ∴△AFD ≌△EBC (SSS ) ∴∠A =∠C ∴AD ∥BC 解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。 小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。 知识点二:全等三角形判定2 AD CB AF CE DF BE =??=? ?=?

例2:已知:如图,是和的平分线,。 * 求证:(1)△OAB ≌△OCD ;(2)。 思路分析: 1)题意分析:本题主要考查全等三角形判定2中的对应关系。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。 解答过程:证明:(1)∵OP 是和的平分线, ∴∠AOP =∠COP ,∠BOP =∠DOP ∴∠AOP -∠BOP =∠COP -∠DOP < ∴∠AOB =∠COD 在△OAB 和△OCD 中, ∵ ∴△OAB ≌△OCD (SAS ) (2)由(1)知△OAB ≌△OCD ∴AB =CD 解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。 . 例3:已知:如图,AB ∥CD ,AB =CD ,求证:AD ∥BC ,AD =BC 思路分析: 1)题意分析:本题主要考查全等三角形判定2的应用。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先将用于证明三角形全等的条件准备好。即如何由已知条件证明出两边和一角相等,以及如何用上AB ∥CD 这个条件。 解答过程: 连接BD ∵ AB ∥CD 、 OP AOC ∠BOD ∠OA OC OB OD ==,AB CD =AOC ∠BOD ∠OA OC AOB COD OB OD =?? ∠=∠??= ?

相关文档
最新文档