新必修二 8.5空间直线、平面的平行(教案+练习)

新必修二  8.5空间直线、平面的平行(教案+练习)
新必修二  8.5空间直线、平面的平行(教案+练习)

8.5空间直线、平面的平行

【学习目标】

1.掌握直线与平面平行的判定定理;

2.掌握两平面平行的判定定理;

3.能熟练应用直线与平面、平面与平面平行的判定定理解决相关问题.

【要点梳理】

要点一、直线与直线平行

基本事实4:平行于同一条直线的两条直线互相平行。

符号表示为://a b ,////b c a c ?.

基本事实4说明平行具有传递性,在平面、空间都适用.

等角定理:如果一个角的两边和另一个角的两边分别对应平行,那么这两个角相等或互补.

要点二、直线和平面平行的判定

判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.

图形语言:

符号语言:a α?、b α?,//a b //a α?.

要点诠释:

(1)用该定理判断直线a 与平面α平行时,必须具备三个条件:

①直线a 在平面α外,即a α?;

②直线b 在平面α内,即b α?;

③直线a ,b 平行,即a ∥b .

这三个条件缺一不可,缺少其中任何一个,结论就不一定成立.

(2)定理的作用

将直线和平面平行的判定转化为直线与直线平行的判定,也就是说,要证明一条直线和一个平面平行,只要在平面内找一条直线与已知直线平行即可.

要点三、直线和平面平行的性质定理

定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.简记为:线面平行则线线平行.

符号语言:若//a α,a β?,b αβ=I ,则//a b .

图形语言:

要点诠释:

直线和平面平行的性质定理可简述为“若线面平行,则线线平行”.可以用符号表示:若a ∥α,

αβ?,,则a ∥b .这个性质定理可以看作直线与直线平行的判定定理,用该定理判断直线a 与b 平行

时,必须具备三个条件:

(1)直线a 和平面α平行,即a ∥α;

(2)平面α和β相交,即b αβ=I ;

(3)直线a 在平面β内,即a β?.

三个条件缺一不可,在应用这个定理时,要防止出现“一条直线平行于一个平面,就平行于这个平面内一切直线”的错误.

要点四、两平面平行的判定

判定定理:如果一个平面内有两条相交直线与另一个平面平行,则这两个平面平行.

图形语言:

符号语言:若a α?、b α?,,且//a β、//b β,则//αβ.

要点诠释:

(1)定理中平行于同一个平面的两条直线必须是相交的.

(2)定理充分体现了等价转化的思想,即把面面平行转化为线面平行,可概述为:线面平行?面面平行.

要点五、平面和平面平行的性质定理

定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.

符号语言:若//αβ,a αγ=I ,b βγ=I ,则//a b .

图形语言:

要点诠释:

(1)面面平行的性质定理也是线线平行的判定定理.

(2)已知两个平面平行,虽然一个平面内的任何直线都平行于另一个平面,但是这两个平面内的所有直线并不一定相互平行,它们可能是平行直线,也可能是异面直线,但不可能是相交直线(否则将导致这两个平面有公共点).

要点六、平行关系的综合转化

空间中的平行关系有线线平行、线面平行、面面平行.这三种关系不是孤立的,而是互相联系的.它们之间的转化关系如下:

证明平行关系的综合问题需灵活运用三种平行关系的定义、判定定理、性质定理.

有关线面、面面平行的判定与性质,可按下面的口诀去记忆:

空间之中两直线,平行相交和异面.

线线平行同方向,等角定理进空间.

判断线和面平行,面中找条平行线;

已知线和面平行,过线作面找交线.

要证面和面平行,面中找出两交线.

线面平行若成立,面面平行不用看.

已知面与面平行,线面平行是必然.

若与三面都相交,则得两条平行线.

【典型例题】

类型一、直线与直线平行

例1.如右图所示,在空间四边形ABCD (不共面的四边形称为空间四边形)中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点.

(1)求证:四边形EFGH 是平行四边形;

(2)如果AC=BD ,求证:四边形EFGH 是菱形.

例2.如右图所示,△ABC 和△'''A B C 的对应顶点的连线AA ',BB ',CC '交于同

一点D ,且2'''3

AO BO CO OA OB OC ===.(1)求证://''AB A B ,//''AC A C ,//''BC B C ; (2)求

'''ABC A B C S S ??的值.

【总结升华】“等角定理”是平面几何中等角定理的类比推广,但平面几何中的“如果一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补”推广到空间中就不成立.因此,我们必须慎重地类比推广平面几何中的相关结论.

在运用“等角定理”判定两个角是相等还是互补的途径有二:一是判定两个角的方向是否相同,若相同则必相等,若相反则必互补;二是判定这两个角是否均为锐角或均为钝角,若均是则相等,若不均是则互补.

举一反三:

【变式1】 已知E 、E 1分别是正方体ABCD-A 1B 1C 1D 1的棱AD 、A 1D 1的中点.

求证:∠BEC=∠B 1E 1C 1.

类型二、直线与平面平行的判定

例3.已知AB ,BC ,CD 是不在同一平面内的三条线段,E ,F ,G 分别是AB ,BC ,CD 的中点,求证:AC//平面EFG , BD//平面EFG .

【总结升华】由线面平行的判定定理判定直线与平面平行的顺序是:(1)在平面内寻找直线的平行线;(2)证明这两条直线平行;(3)由判定定理得出结论.

例4.已知有公共边AB 的两个全等的矩形ABCD 和ABEF 不在同一个平面内,P 、Q 分别为对角线AE 、BD 上的点,且AP=DQ ,如右图.求证:PQ ∥平面CBE .

【总结升华】证线面平行,需证线线平行,寻找平行线是解决此类问题的关键.

举一反三:

【变式1】在正方体1111ABCD A B C D 中,1O 是正方形1111A B C D 的中心,求证:1//AO 面1BC D .

【变式2】 已知P 是平行四边形ABCD 所在平面外一点,E 、F 分别为AB 、PD 的中点,求证:AF ∥平面PEC.

【总结升华】要证明直线和平面平行,只须在平面内找到一条直线和已知直线平行就可以了.注意适当添加辅助线,重视中位线在解题中的应用.

【变式3】如右图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.

(1)证明:EF∥平面PAD;

(2)求三棱锥E—ABC的体积V.

类型三:直线与平面平行的性质定理

例5.四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP 作平面交平面BDM于GH.求证:AP∥GH.

【总结升华】利用线面平行的性质定理解题的步骤:(1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平面相交的平面;(3)确定交线;(4)由定理得出结论.

例6.如图所示,已知异面直线AB、CD都平行于平面α,且AB、CD在α的两侧,若AC、BD与α分别交于

M、N两点,求证:AM BN MC ND

=.

【总结升华】利用线面平行的性质定理,可以把有的立体问题转化为平面内的平行问题,利用平行线截割定理,可以解决有关线段成比例或三角形的面积比等问题.

在应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线,有时为了得到交线还需作出辅助平面,本例通过连接AD作出平面ACD与平面ABD,得到交线MQ和NQ.

举一反三:

【变式1】已知直线a∥平面α,直线a∥平面β,平面α平面β=b,求证//

a b.

类型四、平面与平面平行的判定

例7.如右图,已知正方体ABC D —A 1B 1C 1D 1,求证:平面AB 1D 1∥平面BDC 1.

【总结升华】利用面面平行的判定定理判定两个平面平行的程序是:(1)在第一个平面内找出(或作出)两条平行于第二个平面的直线;(2)说明这两条直线是相交直线;(3)由判定定理得出结论.

例8.如右图,正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、

C 1

D 1的中点.求证:平面AMN ∥平面EFDB .

【总结升华】应用判定定理时,一定要注意“两条相交直线”这一关键性条件,问题最终转化为证明直线和直线的平行.

举一反三:

【变式1】点P 是△ABC 所在平面外一点,123,,G G G 分别是△PBC ,△APC ,△ABP 的重心,求证:面123//G G G 面ABC .

【变式2】 如右图所示,在三棱柱ABC —A 1B 1C 1中,点D ,E 分别是BC 与B 1C 1的中点.

求证:平面A 1EB ∥平面ADC 1.

【变式3】 已知在正方体''''ABCD A B C D -中 ,M ,N 分别是''A D ,''A B 的中点,在该正方体中作出过顶点且与平面AMN 平行的平面,并证明你的结论.

类型五:平面与平面平行的性质定理

例9.已知:平面α∥平面β∥平面γ,两条直线l ,m 分别与平面α,β,γ相交

于点A ,B ,C 和点D ,E ,F (如图).求证:AB DE BC EF =.

【总结升华】利用面面平行的性质定理判定两线平行的程序是:(1)先找两个平面,使这两个平面分别经过这两线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面内;(4)由定理得出结论.

举一反三:

【变式1】 已知面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA=8,SB=9,CD=34.(1)若点S 在平面α,β之间,则SC=________;(2)若点S 不在平面α,β之间,则SC=________. 例10.如图所示,平面α∥平面β,A ,C ∈α,D ∈β,点E ,F 分别在线段AB ,

CD 上,且

AE CF EB FD

=.求证:EF ∥β.

【总结升华】(1)面面平行的性质定理的应用问题,往往涉及面面平行的判定、线面平行的判定与性质的综合运用.解题时,要准确地找到解题的切入点,灵活地运用相关定理来解决问题.如在本例的第二种情况:面面平行→线线平行→平行四边形→线面平行→面面平行→线面平行.

(2)由面面平行的定义可知,一个面内任意一条直线与另一个平行平面都没有交点,因而有面面平行的一个重要性质:两个平行平面中的一个平面内任意一条直线必平行另一个平面,如本例(2)中由平面EFG

∥β得出EF∥β,便是这一性质的灵活运用.

举一反三:

【变式1】四棱锥P—ABCD中,底面ABCD是菱形,点E在PD上,且PE∶ED=2∶1,问在棱PC上能否找到一点F,使BF∥平面AEC?试说明你的看法.

类型六:线面平行的判定与性质的综合应用

例11.如图所示,已知平面α∥平面β,AB与CD是两条异面直线,且AB?α,CD?β.如

果E,F,G分别是AC,CB,BD的中点,求证:平面EFG∥α∥β.

【总结升华】(1)要善于对线线、线面平行的概念、判定和性质进行类比、探索、总结,特别要注意相互转化,使之统一.(2)要能够灵活地作出辅助线和辅助平面来解题,在作辅助线和辅助平面时,必须有理论依据,也就是要以某一定理为依据,切忌主观臆断,随意地作辅助线、辅助平面.

举一反三:

【变式1】如图所示,已知点P是Y ABCD所在平面外一点,M、N分别是AB、PC的中点,平面PBC∩平面APD=l.(1)求证:l∥BC;

(2)MN与平面PAD是否平行?试证明你的结论.

判定【巩固练习】 1.下列说法中正确的是( )

A .如果一个平面内有一条直线和另一个平面平行,那么这两个平面平行

B .如果一个平面内有无数条直线和另一个平面平行,那么这两个平面平行

C .如果一个平面内的任何一条直线都与另一个平面平行,那么这两个平面平行

D .如果两个平面平行于同一直线,则这两个平面平行

3.已知m ,n 是两条不重合的直线,α、β是两个不重合的平面,给出下列三个命题:

①////m m n n ββ?????;②//m n n m ββ

????与异面与相交;③//////m n m n αα????。

其中正确命题的个数是( )

A .0

B .1

C .2

D .3

4.在下列条件中,可判断平面α与β平行的是( )

A .α、β都平行于直线l

B .α内存在不共线的三点到β的距离相等

C .l 、m 是α内两条直线,且l ∥β,m ∥β

D .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β

5.下列四个正方体图形中,,A B 为正方体的两个顶点,M 、N 、P 分别是

为其所在棱的中点,能得出//AB MNP 平面的图形的序号是( )

A.①③

B.①④

C.②③

D.②④( )

6.已知平面α,β和直线,,a b c ,给出下列条件:

①//,//a c b c ;②//,//,//a b αβαβ;③,,//a b αβαβ??。其中可以使结论//a b 成立的条件有( )

A.①②

B. ②③

C. ①③

D. ①

7.过已知直线外一点与已知直线平行的直线有 条;过平面外一点与已知平面平行的直线有 条,与已知平面平行的平面有 个。

8.当//,//αβγβ,则α与γ的关系是 。

9.①若平面α内有一条直线平行于另一个平面β,则//αβ;②若平面α内有两条直线平行于另一个平面β,则//αβ;③若平面α内有无数条直线平行于另一个平面β,则//αβ;④若平面α内任意一条直线平行于另一个平面β,则//αβ;⑤若平面α内两条相交直线平行于另一个平面β,则//αβ。

以上命题正确的是________.

10.AB 、BC 、CD 是不在同一平面内的三条线段,经过它们中点的平面和AC 的位置关系是________,和BD 的位置关系是________。

三、解答题

11.如右图,P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点.求证:PC ∥平面BDQ .

12.如右图,P 为梯形ABCD 所在平面外一点,CD //2AB ,E 为PC 的中点。求

证:BE ∥平面PAD 。

13. 在正方体1111ABCD A B C D -中,P 为11A C 上任意一点。

(1)求证://DP 平面1AB C ;(2)求证:平面11AB D //平面1C BD .

14.两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM=FN ,过M 作MH ⊥AB 于H. 求证:MN ∥平面BCE .

性质【巩固练习】

1.如果直线a ∥平面α,则( )

A .平面α内有且只有一条直线与a 平行

B .平面α内有无数条直线与a 平行

C .平面α内不存在与a 平行的直线

D .平面α内的任意直线与a 都平行

2.由下列条件不一定得到平面α∥平面β的是( )

A .α内有两条相交直线分别平行于β

B .α内任何一条直线都平行于β

C .α内有无数条直线平行于β

D .α内的两条相交直线分别平行于β内的两条相交直线

3.若AB 、BC 、CD 是不在同一平面内的三条线段,则过它们中点的平面和直线AC 的位置关系是( )

A .平行

B .相交

C .AC 在此平面内

D .平行或相交

4.以下命题(其中,a b 表示直线,α表示平面)

①若//,a b b α?,则//a α;②若//,//a b αα,则//a b ;③若//a b ,//b α,则//a α;④若//a α,b α?,则//a b 。其中正确命题的个数是( )

A .0个

B .1个

C .2个

D .3个

5.如果点M 是两条异面直线外的一点,则过点M 且与a 、b 都平行的平面( )

A .只有一个

B .恰有两个

C .或没有,或只有一个

D .有无数个

6.已知m 、n 表示两条直线,α、β、γ表示平面,对此有下列命题:

①若m αβ=I ,且m ∥n ,则//γβ;②若m 、n 相交且都在α、β外,//m α,//m β,//n α,//n β,则//αβ;③若l αβ=I ,//m α,//m β,//n α,//n β,则m ∥n ;④若//m α,//n α,则m ∥n 。 其中真命题有( )

A .0个

B .1个

C .2个

D .3个

7.以下命题中正确的是( )

A .在一个平面内有两个点,到另一个平面的距离都是(0)d d >,则这两个平面平行。

B .在一个平面内有不共线的三个点,到另一个平面的距离都是(0)d d >,则这两个平面平行。

C .在一个平面内有无数个点,到另一个平面的距离都是(0)d d >,则这两个平面平行。

D .在一个平面内的任意一点,到另一个平面的距离都是(0)d d >,则这两个平面平行。

8.如图,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到

的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥

A 1D 1,则下列结论中不正确的是( )

A .EH ∥FG

B .四边形EFGH 是矩形

C .Ω是棱柱

D .Ω是棱台

9.已知直线m 、n 及平面α、β有下列关系:①m 、n β?;②n α?;③//m α;④

m ∥n ,现把其中一些关系看作条件,另一些看作结论,组成一个真命题________。

10.P 是Y ABCD 所在平面外一点,Q 是PA 的中点,则直线PC 和平面BDQ 的位置关系为________。

11.如下图,a ∥α,A 是α的另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 分别交α于E 、F 、G 。若BD=4,CF=4,AF=5,则EG=________。

12.如上图,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是对角线A 1D 、B 1D 1的中点,

则正方体6个面中与直线EF 平行的平面是________。

13.如图,直线PQ 分别和平行平面,αβ交于,A B 两点,,PD QF 分别和平面,αβ

交于,,,C D E F ,若9,12,16,72,AFC PA AB QB S ?====求BDE S ?.

14.如右图,直线AB 和CD 是异面直线,AB ∥α,CD ∥α,AC I α=M ,

BD I α=N ,求证:AM BN MC ND

=.

15.已知点P 是?ABC 所在平面外一点,A '、B '、C '分别是PBC ?、PCA ?、PAB ?的重心.求证:

(1)平面A B C '''∥平面ABC ;

(2)求'':A B AB .

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定 [学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题. 知识点一直线与平面平行的判定定理 语言叙述符号表示图形表示 平面外一条直线与此平面内的一条直线平 行,则该直线与此平面平行 ?? ? ?? a?α b?α a∥b ?a∥α 思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗? 答根据直线与平面平行的判定定理可知该结论错误. 知识点二平面与平面平行的判定定理 语言叙述符号表示图形表示 一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行 ?? ? ?? a?α,b?α a∩b=A a∥β,b∥β ?α∥β 思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内. 题型一直线与平面平行的判定定理的应用 例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、 DA的中点. 求证:(1)EH∥平面BCD; (2)BD∥平面EFGH. 证明(1)∵EH为△ABD的中位线, ∴EH∥BD.

∵EH?平面BCD,BD?平面BCD, ∴EH∥平面BCD. (2)∵BD∥EH,BD?平面EFGH, EH?平面EFGH, ∴BD∥平面EFGH. 跟踪训练1在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC. 证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两 点,连接PQ. 因为M,N分别是△ABD和△BCD的重心, 所以BM∶MP=BN∶NQ=2∶1. 所以MN∥PQ. 又因为MN?平面ADC,PQ?平面ADC, 所以MN∥平面ADC. 题型二面面平行判定定理的应用 例2如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1. 证明由棱柱性质知, B1C1∥BC,B1C1=BC, 又D,E分别为BC,B1C1的中点, 所以C1E綊DB,则四边形C1DBE为平行四边形, 因此EB∥C1D, 又C1D?平面ADC1, EB?平面ADC1, 所以EB∥平面ADC1. 连接DE,同理,EB綊BD,

高一必修2立体几何--平行与垂直关系强化练习(含答案)

高一数学 必修二 空间中平行与垂直关系 强化练习 1.空间中,垂直于同一直线的两条直线( ) A .平行 B .相交 C .异面 D .以上均有可能 2.已知互不相同的直线,,l m n 与平面,αβ,则下列叙述错误的是( ) A .若//,//m l n l ,则//m n B .若//,//m n αα,则//m n C .若βα?⊥m m ,,则αβ⊥ D .若,m βαβ⊥⊥,则//m α或m α? 3.下列说法正确的是( ) A.如果一条直线与一个平面内的无数条直线平行,则这条直线与这个平面平行 B.两个平面相交于唯一的公共点 C.如果一条直线与一个平面有两个不同的公共点,则它们必有无数个公共点 D.平面外的一条直线必与该平面内无数条直线平行 4.如图,ABCD ﹣A 1B 1C 1D 1为正方体, 下面结论错误的是() A . BD∥平面C B 1D 1 B . A C 1⊥B 1C C . AC 1⊥平面CB 1 D 1 D . 直线CC 1与平面CB 1D 1所成的角为45° 5. 如图,四棱锥ABCD V -中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角C AB V --的大小 ( ) A .?30 B .?45 C .?60 D .?120 6.下列四个结论: ⑴两条直线都和同一个平面平行,则这两条直线平行。 ⑵两条直线没有公共点,则这两条直线平行。 ⑶两条直线都和第三条直线垂直,则这两条直线平行。 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。 其中正确的个数为( ) A .0 B .1 C .2 D .3 7.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角A CD B --的余弦值为( ) A .12 B .13 C .33 D .23

高中数学必修2立体几何常考题型:直线与平面、平面与平面平行的性质正式版

直线与平面、平面与平面平行的性质 【知识梳理】 1.线面平行的性质定理 (1)文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. (2)图形语言: (3)符号语言: ? ????a ∥αa ?βα∩β=b ?a ∥b (4)作用:线面平行?线线平行. 2.面面平行的性质定理 (1)文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. (2)图形语言: (3)符号语言: ? ????α∥βα∩γ=a β∩γ=b ?a ∥b (4)作用:面面平行?线线平行. 【常考题型】 题型一、线面平行的性质及应用 【例1】 如图所示,已知三棱锥A —BCD 被一平面所截,截面为?EFGH ,求证:CD ∥平面EFGH .

[证明]∵EFGH为平行四边形,∴EF∥GH. 又GH?平面BCD,EF?平面BCD, ∴EF∥平面BCD. 而平面ACD∩平面BCD=CD,EF?平面ACD, ∴EF∥CD. 又EF?平面EFGH,CD?平面EFGH, ∴CD∥平面EFGH. 【类题通法】 运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.证题过程应认真领悟线线平行与线面平行的相互转化关系.【对点训练】 1.求证:如果一条线和两个相交平面都平行,那么这条直线和它们的交线平行. 已知:α∩β=l,a∥α,a∥β,求证:a∥l. 证明:如图,过a作平面γ交α于b. ∵a∥α,∴a∥b.过a作平面ε交平面β于c.∵a∥β, ∴a∥c,∴b∥c. 又b?β且c?β,∴b∥β. 又平面α过b交β于l,∴b∥l. ∵a∥b,∴a∥l. 题型二、面面平行的性质及应用 【例2】如图所示,两条异面直线BA,DC与两平行平面α,β分别

直线与平面平行的性质教案

直线与平面平行的性质 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.2.2 空间中的平行关系(3)——直线与平面平行的性质 自主学习 学习目标 1.理解直线与平面平行的性质定理的含义. 2.能应用文字语言、符号语言、图形语言准确地描述直线与平面平行的性质定理. 3.会证明直线与平面平行的性质定理. 4.能运用直线与平面平行的性质定理,证明一些空间线面平行关系的简单问题. 自学导引 直线与平面平行的性质定理: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和___________________________________________________________ _____________. (1)符号语言描述:________________. (2)性质定理的作用: 可以作为直线和直线平行的判定方法,也提供了一种作平行线的方法.

对点讲练 知识点一 利用性质定理证明线线平行 例1 如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 点评 线∥面――→转化线面平行的性质线∥线.在空间平行关系中,交替使用 线线平行、线面平行的判定与性质是解决此类问题的关键. 变式训练1 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH.

求证:CD∥平面EFGH. 知识点二线面平行性质定理与判定定理的综合应用 例2如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP 作平面交平面BDM于GH.求证:AP∥GH.

高一必修二《两条直线的平行与垂直》练习题

高一必修二《两条直线的平行与垂直》练习 题 【小编寄语】查字典数学网小编给大家整理了高一必修二《两条直线的平行与垂直》练习题,希望能给大家带来帮助! 当堂练习: 1.下列命题中正确的是( ) A.平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角相等 C.斜率相等的两直线一定平行 D.两直线平行则它们在y 轴上截距不相等 2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为 ,则m,n的值分别为( ) A.4和3 B.-4和3 C.-4和-3 D.4和-3 3.直线 :kx+y+2=0和 :x-2y-3=0, 若 ,则 在两坐标轴上的截距的和( ) A.-1 B.-2 C.2 D.6 4.两条直线mx+y-n=0和x+my+1=0互相平行的条件是( )

A. m=1 B.m= 1 C. D. 或 5.如果直线ax+(1-b)y+5=0和(1+a)x-y-b=0同时平行于直线x-2y+3=0,则a、b的值为( ) A.a= , b=0 B.a=2, b=0 C.a=- , b=0 D. a=- , b=2 6.若直线ax+2y+6=0与直线x+(a-1)y+(a2-1)=0平行但不重合,则a等于( ) A.-1或2 B.-1 C.2 D. 7.已知两点A(-2,0),B(0,4),则线段AB的垂直平分线方程是( ) A.2x+y=0 B.2x-y+4=0 C.x+2y-3=0 D.x-2y+5=0 8.原点在直线 上的射影是P(-2,1),则直线 的方程为( ) A.x+2y=0 B.x+2y-4=0 C.2x-y+5=0 D.2x+y+3=0 9.两条直线x+3y+m=0和3x-y+n=0的位置关系是( ) A.平行 B.垂直 C.相交但不垂直 D.与m,n的取值有关

高中数学必修二空间几何体知识点

空间集合体 一·空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:棱柱ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

必修二第2章 2.2.1直线与平面平行的判定

§2.2 直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 【课时目标】1.理解直线与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题. 1.直线与平面平行的定义:直线与平面______公共点. 2.直线与平面平行的判定定理: ______________一条直线与________________的一条直线平行,则该直线与此平面平行.用符号表示为____________________________. 一、选择题 1.以下说法(其中a,b表示直线,α表示平面) ①若a∥b,b?α,则a∥α; ②若a∥α,b∥α,则a∥b; ③若a∥b,b∥α,则a∥α;

④若a∥α,b?α,则a∥b. 其中正确说法的个数是() A.0B.1C.2D.3 2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交 C.b?αD.b∥α或b与α相交 3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交 C.平行或相交D.AB?α 4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是() A.平行B.相交 C.在内D.不能确定 5.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个 C.能作出无数个D.以上都有可能 6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有() A.4条B.6条C.8条D.12条 二、填空题 7.经过直线外一点有________个平面与已知直线平行. 8.如图,在长方体ABCD-A1B1C1D1的面中: (1)与直线AB平行的平面是________; (2)与直线AA1平行的平面是______; (3)与直线AD平行的平面是______. 9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______. 三、解答题 10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.

直线与平面平行经典题目

9.2 直线与平面平行 ●知识梳理 1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内. 2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行. 3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行. ●点击双基 1.设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是 A.α⊥β且m ⊥β B.α∩β=n 且m ∥n C.m ∥n 且n ∥α D.α∥β且m β 答案:D 2.设m 、n 是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是 ①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④ 解析:①②显然正确.③中m 与n 可能相交或异面.④考虑长方体的顶点,α与β可以相交. 答案:A 3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是 A.异面 B.相交 C.平行 D.不能确定 解析:设α∩β=l ,a ∥α,a ∥β, 过直线a 作与α、β都相交的平面γ, 记α∩γ=b ,β∩γ=c , 则a ∥b 且a ∥c , ∴b ∥c . 又b ?α,α∩β=l ,∴b ∥l .∴a ∥l . 答案:C 4.(06重庆卷)对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m 与l A.平行 B.相交 C.垂直 D.互为异面直线 解析:对于任意的直线l 与平面α,若l 在平面α内,则存在直线m ⊥l ;若l 不在平面α内, 且l ⊥α,则平面α内任意一条直线都垂直于l ,若l 不在平面α内,且l 于α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m 与l 垂直, 综上所述,选C. 5.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α?m ;④βα⊥;⑤βα//. (i )当满足条件 ③⑤ 时,有β//m ;(ii )当满足条件 ②⑤ 时,有β⊥m .

必修二空间几何体教师版

必修二 空间几何体 1、(2011、8)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧 视图可以为( D ) 2、(2012、7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B ) (A )6 (B )9 (C )12 (D )18 第1题 第2题 3、(2012、8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( B ) (A )6π (B )43π (C )46π (D )63π 4、(2013、11)某几何体的三视图如图所示,则该几何体的体积为( A ) A .16+8π B .8+8π C .16+16π D .8+16π 解析:该几何体为一个半圆柱与一个长方体组成的一个组合体. 半圆柱V = 1 2 π×22×4=8π,V 长方体=4×2×2=16. 所以所求体积为16+8π.故选A. 5、(2013、15)1已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 ______. 解析:如图,设球O 的半径为R , 则AH = 23R ,OH =3 R .又∵π·EH 2 =π,∴EH =1. ∵在Rt△OEH 中,R 2 =2 2+13R ?? ??? ,∴R 2 =98. ∴S 球=4πR 2 =9π2 . 6、(2014、8).如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( B )

A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 7、(2015、11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( B ) (A)1 (B) 2 (C) 4 (D) 8 [基础训练A组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 解:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台 2.棱长都是1的三棱锥的表面积为() A3B. 3C. 33D. 3 解:因为四个面是全等的正三角形,则 3 443 4 S S ==?= 表面积底面积 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是() A.25πB.50πC.125πD.都不对 解:长方体的对角线是球的直径,2222 52 34552,252,450 2 l R R S R ππ =++===== 4.正方体的内切球和外接球的半径之比为()A3B32C.23D33解:正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a 3 2323 2 a a a r r a r r r r ===== 内切球内切球外接球外接球内切球外接球 ,,:: 主视图左视图俯视图

《直线与平面平行》教学设计

16 直线与平面平行 教材分析 直线与平面平行是在研究了空间直线与直线平行的基础上进行的,它是直线与直线平行的拓广,也是为今后学习平面与平面平行作准备.在直线与平面的三种位置关系中,平行关系占有重要地位,是今后学习的必备知识.所以直线与平面平行的判定定理和性质定理是这节的重点,难点是如何解决好直线与直线平行、直线与平面平行相互联系的问题.突破难点的关键是直线与直线平行和直线与平面平行的相互转化. 教学目标 1. 了解空间直线和平面的位置关系,理解和掌握直线与平面平行的判定定理和性质定理,进一步熟悉反证法的实质及其证题步骤. 2. 通过探究线面平行的定义、判定、性质及其应用,进一步培养学生观察、发现问题的能力和空间想象能力. 3. 培养学生的逻辑思维和合情推理能力,进而使其养成实事求是的学习态度. 任务分析 这节的主要任务是直线与平面平行的判定定理、性质定理的发现与归纳,证明与应用.学习时,要引导学生观察实物模型,分析生活中的实例,进而发现、归纳出数学事实,并在此基础上分析和探索定理的论证过程,区分判定定理和性质定理的条件和结论,理解定理的实质和直线与平面平行的判定.在运用性质时,要引导学生完成对“过直线———作平面———得交线———直线与直线平行”这一过程的理解和掌握. 教学设计 一、问题情境 教室内吊在半空的日光灯管、斜靠在墙边的拖把把柄,都可以看作直线的一部分,这些直线与地平面有何位置关系? 二、建立模型 [问题一] 1. 空间中的直线与平面有几种位置关系? 学生讨论,得出结论:

直线与平面平行、直线与平面相交(学生可能说出直线与平面垂直的情况,教师可作解释)及直线在平面内. 2. 在上述三种位置中,直线与平面的公共点的个数各是多少? 学生讨论,得出相关定义: 若直线a与平面α没有公共点,则称直线与平面α平行,记作a∥α.若直线a与平面α有且只有一个公共点,则称直线a与平面α相交.当直线a与平面α平行或相交时均称直线a不在平面α内(或称直线a在平面α外).若直线a与平面α有两个公共点,依据公理1,知直线a上所有点都在平面α内,此时称直线a在平面α内. 3. 如何对直线与平面的位置关系的进行分类? 学生讨论,得出结论: 方法1:按直线与平面公共点的个数分: [探索] 直线与平面平行、相交的画法. 教师用直尺、纸板演示,引导学生说明画法. 1. 画直线在平面内时,要把表示直线的线段画在表示平面的平行四边形内部,如图 16-1.

高中数学必修二__空间几何体知识点汇总

空间几何体 一、空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。 侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:六棱柱表示为ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

高一数学必修2《直线、平面平行的判定及其性质》练习题

高一数学必修2《直线、平面平行的判定及其性质》练习题 第1题. 已知a αβ= ,m βγ= ,b γα= ,且m α//,求证:a b //. 答案:证明: m m m a a b a m b βγααβ=?? ?? ??????=??? 同理////////. 第2题. 已知:b αβ= ,a α//,a β//,则a 与b 的位置关系是( ) A.a b // B.a b ⊥ C.a ,b 相交但不垂直 D.a ,b 异面 答案:A. 第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 答案:证明:连结AF 并延长交BC 于M .连结PM , AD BC ∵//,BF MF FD FA =∴ ,又由已知PE BF EA FD =,PE MF EA FA =∴. 由平面几何知识可得EF //PM ,又EF PBC ?,PM ?平面PBC , ∴EF //平面PBC .

第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11AC 上的线段,求证: E F //平面AC . 答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF , EF . ∵长方体1AC 的各个面为矩形, 11A E ∴平行且等于AE ,11D F 平行且等于DF , 故四边形 11AEE A ,11DFF D 为平行四边形. 1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF , 四边形11EFF E 为平行四边形,11E F EF //. EF ?∵平面ABCD ,11E F ?平面ABCD , ∴11E F //平面ABCD . 第5题. 如图,在正方形ABCD 中, BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的

《直线与平面平行的判定》教案

直线与平面平行的判定 教学目标 1.知识目标 ⑴进一步熟悉掌握空间直线与平面的位置关系; ⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言; ⑶灵活运用直线与平面的判定定理,把“线面平行”转化为“线线平行”。 2.能力训练 ⑴掌握由“线线平行”证得“线面平行”的数学证明思想; ⑵进一步培养学生的观察能力、空间想象力与类比、转化能力,提高学生的逻辑推理能力。 3.德育渗透 ⑴培养学生的认真、仔细、严谨的学习态度; ⑵建立“实践——理论——再实践”的科学研究方法。 教学重点 直线与平面平行的判定定理 教学难点 直线与平面平行的判定定理的应用 教学方法 启发式、引导式、观察分析、理论联系实际 教具 模型、尺、多媒体设备 教学过程 (一) 内容回顾 师:在上节课我们介绍了直线与平面的位置关系,有几种?可将图形给以什么作为划分的标准? 直线与平面平行 直线与平面相交 直线在平面内 //a α a α ?{} a A α=I

(二)新课导入 1、如何判定直线与平面平行 师:请同学回忆,我们昨天就是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行? 生:借助定义,说明直线与平面没有公共点。 师:判断直线与平面有没有公共点,需要将直线与平面延展开瞧它们有没有交点,但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。我们来瞧瞧生活中的线面平行能给我们什么启发呢? 若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与 书本所在的平面具有怎样的位置关系? 师:您们能用自己的话概括出线面平行的判定定理不? 生:如果平面外一条直线与这个平面内的一条直线平行, 那么这条直线与这个平面平行。 2、分析判定定理的三种语言 师:定理的条件细分有几点? 生:线在平面外,线在平面内,线线平行 (师生互动共同整理出定理的图形语言、符号语言、文字语言) 图形语言 符号语言 文字语言 线线平行, 则线面平行。 (三)例题讲解 师:如果要证明线面平行,关键在哪里? 生:在平面内找到一条直线,证明线线平行。 例1 已知:如图空间四边形ABCD 中,E 、F 分别就是AB 、AD 的中点。求证:EF ∥平面BCD 。 证明:连结BD AE = EB ? EF ∥BD AF =FD EF ?平面BCD ?EF ∥平面BCD BD ?平面BCD 着重强调:①要证EF ∥平面BCD,关键就是在平面BCD 中找到与EF 平行的直线; ②注意证明的书写,先说明图形中增加的辅助点与线,证明步骤严谨。 例2 如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,证明BD 1∥平面AEC 。 观察 l b a αααα////a b a b a ??? ? ?? ??

高中数学必修二__空间几何体知识点

空间几何体 (川诚.樊培整理 ) 一· 空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那 么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共 边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱 柱。侧面:棱柱中除底面的各个面 . 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:棱柱 ABCDEF- A’ B’ C’ D’ E’ F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些 面所围成的多面体叫做棱锥 . (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形---- 的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征 :以矩形的一边所在直线为旋转轴 ,其余边旋转形成的面所围成的旋转体叫做圆 柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 ( 1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台 . 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

直线与平面平行的性质的教学设计

《直线与平面平行的性质》教学设计 一、教材分析: 直线与平面问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。 二、教学目标: 1、知识与技能 (1)掌握直线与平面平行的性质定理,明确由线面平行可以推出线线平行. (2)应用定理证明一些简单问题,培养学生的逻辑思维能力. 2、情感态度与价值观 (1)让学生亲身经历数学研究过程,体验创造激情,享受成功喜悦,感受数学魅力. (2)培养学生良好的思维习惯,渗透事物互相转化和理论联系实际的辩证唯物主义观点. 三、教学重、难点: 教学重点:通过直观感知、操作确认,概括直线和平面平行的性质定理. 教学难点:直线和平面平行的性质定理的证明和应用. 四、教学理念: 学生是学习和发展的主体,教师是教学活动的组织者和引导者。为了把发现创造的机会还给学生,把成功的体验让给学生,采用引导发现法,可激发学生学习的积极性和创造性,分享探索知识的乐趣,使数学教学变成再发现、再创造的过程。通过学生自主的学习过程,激发学生学习数学的自信心和积极性,提高学生分析问题、解决问题的能力,培养学生探索新知的精神。 五、设计思路: 本节直线与平面平行的性质与实际生活联系紧密。学习时,一方面引导学生从实际生活出发,把知识与周围的事物联系起来;另一方面,教师要引导学生经历从现实的生活空间中抽象出空间图形的过程,注重引导学生通过观察、操作、有条理的思考和推理等活动,引导学生借助图形直观,通过归纳、类比等合情推理来探索直线与平面平行的性质及其证明。 六.教学基本流程:

直线与平面平行的判定

直线与平面平行的判定 一、教学内容分析: 本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析: 任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助 实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定 理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的 过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养 成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力, 提高学生的数学逻辑思维能力。 四、教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。 五、教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入 提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并

必修二示范教案两条直线平行与垂直的判定

3.1.2 两条直线平行与垂直的判定 整体设计 教学分析 直线的平行和垂直是两条直线的重要位置关系,它们的判定,又都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明. 三维目标 1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力. 2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力. 重点难点 教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直. 教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件). 课时安排 1课时 教学过程 导入新课 思路1.设问(1)平面内不重合的两条直线的位置关系有哪几种?(2)两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?(3)“α=β”是“tanα=tanβ”的什么条件?根据倾斜角 和斜率的关系,能否利用斜率来判定两条直线平行呢? 思路2.上节课我们学习的是什么知识?想一想倾斜角具备什么条件时两条直线会平行、垂直呢?你认为能否用斜率来判断.这节课我们就来专门来研究这个问题. 推进新课 新知探究 提出问题 ①平面内不重合的两条直线的位置关系有几种? ②两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立? ③“α=β”是“tanα=tanβ”的什么条件? ④两条直线的斜率相等,这两条直线是否平行?反过来是否成立? ⑤l1∥l2时,k1与k2满足什么关系? ⑥l1⊥l2时,k1与k2满足什么关系? 活动:①教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例. ②数形结合容易得出结论. ③注意到倾斜角是90°的直线没有斜率,即tan90°不存在. ④注意到倾斜角是90°的直线没有斜率. ⑤必要性:如果l1∥l2,如图1所示,它们的倾斜角相等,即α1=α2,tanα1=tanα2,即k1=k2.

直线及平面平行的性质教学设计及教学反思

《直线与平面平行的性质》教学设计 南蔡村中学 一、学情分析: 1、知识上:学习过“空间直线与平面的位置关系”,“直线与平面平行的判定”等知识,为学习“直线与平面平行的性质”作了必要的知识准备。 2、思维上:研究过判定定理的推导过程,已经初步具备了一定的逻辑思维和推理论证能力。 3、能力上:积极引导学生学会观察,学会分析问题、探究问题、自主归纳总结得出规律与结论。 二、学习容分析 《点、直线、平面之间的位置关系》在必修2中安排在第一章《空间几何体》之后,将使学生在前一章整体观察、认识空间几何体的基础上,进一步认识空间中点、直线、平面之间的位置关系;初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。 “空间直线与平面平行的位置关系”是“空间直线平行关系”和“空间平面平行关系”的桥梁与纽带。即 “线线平行线面平行 三、教学目标 (一)知识目标: 1.理解直线与平面平行的性质定理。 2.能利用这个性质定理去解决一些简单问题。 (二)能力目标: 1.在探究直线与平面平行的性质定理的过程中让学生体会直线与平面平行中蕴含 着哪些特殊的直线与直线之间的位置关系,体会探索思路中蕴含的转化、类比、

从特殊到一般等思想方法。 2.通过与线面平行的判定定理作对比,让学生体会知识之间的相互联系以及知识点 的灵活应用。 3.结合已学知识,让学生自己总结出判定空间中直线与平面平行的方法。 四、教学重点、难点 重点:直线与平面平行的性质定理及其应用。 难点:发现线面平行性质,理解线面平行性质与判定定理的关系并把它们整合到数学知识体系中。 五、教学手段 计算机PPT,投影仪 六、课堂教学基本流程

高中数学必修二导学案14.两条直线的平行与垂直

.两条直线的平行与垂直 周峻民 学习目标 .熟练掌握两条直线平行与垂直的条件,能够根据直线的方程判断两条直线的位置关系,能根据两条直线平行或垂直的条件确定直线的某些要素. .通过两直线平行或垂直的条件的讨论,培养运用已有知识解决新问题的能力以及数形结合能力. 一、夯实基础 基础梳理 .两直线的位置关系 平面上两条直线的位置关系包括平行、相交、重合三种情况. .两直线平行 对于直线:,:, . 对于直线:,:(), . .两直线垂直 对于直线:,:,则. 对于直线:,:,则. 基础达标 .以为端点的线段的垂直平分线方程是(). .... .设,记:,:直线与直线平行.那么与的关系 为() .能推出,不能推出.能推出,不能推出 .能推出,也能推出.不能推出,也不能推出 .根据条件求的值; ()过点和的直线与直线平行,则的值为. ()直线与直线平行,则值为. .已知两条直线:,:,为何值时,与()平行;() 垂直 二、学习指引

自主探究 .两条直线的位置关系 对于直线:,:, ()与平行或重合由()可以得到; ()与相交. .有特殊位置关系的直线方程 己知直线:,研究下列问题: ()与平行的直线可设为. ()与垂直的直线可设为. ()过且与平行的直线为. ()过且与垂直的直线为. ()过原点且与平行的直线为. ()过原点且与垂直的直线为. .将下列问题等价转化直线的位置关系 ()三条直线可以围成三角形,等价于. ()三条直线不能围成三角形,等价于. 注意以上两个问题正好相反. .证明下列问题,并总结方法: ()点关于的对称点的坐标为, ()点关于的对称点的坐标为. 案例分析 .求过点且与直线平行的直线方程. 【解析】方法一:已知直线的斜率为,因为所求直线与已知直线平行,因此它的斜率也是根据点斜式,得到所求直线的方程是,即. 方法二:设与直线平行的直线的方程为(). 经过点,, 解之得,所求直线方程为. .求过点,且与直线垂直的直线的方程. 【解析】方法一:已知直线方程的斜率为,所以,所求直线方程为 即. 方法二:由于与直线垂直的直线的斜率互为负倒数,故可得其方程为,这是常常用到的解题技巧. 设与直线垂足的直线方程为.

必修二空间几何体教师版.doc

必修二 空间几何体 1、(2011、 8)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的 侧视图可以为( D ) 2、( 2012、7)如图,网格纸上小正方形的边长为 1 ,粗线画出的是某几何体的三视图,则此几何体的体积 为( B ) ( A )6 (B ) 9 ( C )12 ( D )18 第1题 第2题 3(、 2012 、8)平面α截球 O 的球面所得圆的半径为 1,球心 O 到平面α的距离为 2,则此球的体积为 ( B ) ( A ) 6π ( B ) 4 3π ( C ) 4 6π ( D )6 3π 4、(2013、 11)某几何体的三视图如图所示,则该几何体的体积为 ( A ) A .16+ 8π B . 8+ 8π C . 16+16π D . 8+ 16π 解析:该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱 = 1 2 V 长方体 =4×2×2=16. π×2×4= π, 2 8 16+8π故.选 A. 所以所求体积为 5、(2013、 15)1 已知 H 是球 O 的直径 AB 上一点, AH ∶ HB = 1∶2, AB ⊥平面 α, H 为垂足, α截球 O 所得截面的面积为 π,则球 O 的表面积 为 ______. O 的半径为 R , 解析:如图,设球 则 AH = 2R ,OH = R 3 3 .又∵ π·EH 2= π,∴ EH = 1. ∵在 Rt △OEH 中, R 2= R 2 +12 ,∴ R 2 = 9 . 3 8 ∴ S 球= 4πR 2 = 9π . 2 6、(2014 、 8).如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是 ( B ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

相关文档
最新文档