初中的几何最值问题解题策略-初中平面几何最值问题

初中的几何最值问题解题策略-初中平面几何最值问题
初中的几何最值问题解题策略-初中平面几何最值问题

初中的几何最值问题解题策略

几何中的最值问题,一直是个比较复杂的问题,多数同学在处理时思路不清晰的,下面我们从多年的解题经验中跟大家分享下我们的解题思路,碰到这种类型的问题应该如何解决。

总结各种最值问题,无外乎考查的知识点不过是三个,不管是初二,初三,还是总复习都是如此。我们主要从接下来的三个知识点入手,那么这种几何最值问题都会有一定思路,解题起来相对简单许多。

一、两点之间线段最短

二、三边关系求最值(最大或最小)

三、垂线段最短求最值

接下来,我们逐个去介绍,并进行相关的练习,在练习中体会解决问题的思路,有时三个知识点也是共同使用的,不是单个解决的,这里需要我们总结思路,举一反三,触类旁通。(后面的题型丰富,题目较新,适合练习,大家务必认真练练,必有所获的)

一、两点之间线段最短

这个知识点的运用中,通常的解题步骤是:1、先作对称2、用知识点3、算结果。在作对称的过程中,一般都是作定点关于对称轴的对称点,然后带入知识点,两点之间线段最短直接找到最小值时的点的位置。这样思路就打开了。

【例1】

2),C(2,0),如图,Rt△OAB的直角顶点A在x轴的正半轴上,∠AOB=30°,B(6,3

P为OB上一动点.

(1)若点A关于直线OB的对称点为E,求E的坐标;

(2)求出△PAC周长的最小值.

【变式1-1】

(2014?如皋市校级模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(1,0),点P为斜边OB上的一动点,求△PAC周长的最小值为_________________.

【变式1-2】

如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,其中点B的坐标为(4,3),点C和点P分别为直角边OA、斜边OB上的动点,求PA+PC的最小值.

【例2】

如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB上有一动点N,则△PMN的周长的最小值是.

【变式2-1】

(2015秋?江津区校级期中)如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8cm,点M 和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值是.

平面几何的定值和最值问题

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A 出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.

【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积) 解析由三角形面积S=1 2 absinC和正弦定理 sin c C =2R, ∴c=2RsinC. ∴abc S = 2 sin c C = 4sin sin R C C =4R是定值. 点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2如图,已知⊙O的半径为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是 多少?

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

专题25平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A D N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题) D

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

专题平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A B D C M N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

全国各地中考平面几何题目汇编

ABC ABC V :V 2017中考平面几何题目 (北京)28.在等腰直角ABC ?中,090ACB ∠=,P 是线段BC 上一动点 (与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.( CP =) (成都)20. 如图,在ABC ?中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线; (2)若A 为EH 的中点,求EF FD 的值; 23 EF FD = (3)若1EA EF ==,求圆O 的半 径.( 1,,EA EF OD OF r BD BE BF ====== )1,,1,1EA FD r BF r AF r ===+=- 111EA AF r BF FD r r -=?=+ ,r = (安徽)23.已知正方形ABCD ,点M 为边AB 的中点. (1)如图1,点G 为线段CM 上的一点,且90AGB ∠=?,延长AG ,BG 分别与边BC ,CD 交于点E ,F . ② 证:BE CF =; ②求证:2BE BC CE =?.(,CEG CGB CG FC BE ==V :V ) (2)如图2,在边BC 上取一点E ,满足2BE BC CE =?,连接AE 交CM 于点G ,

连接BG延长交CD于点F,求tan CBF ∠的值. ( 51 tan 2 CBF - ∠=) H (CH=BE,CH/AM=CG/GM=FC/MB,FC=CH=BE,设BC=1,BE=x,得 51 x 2 -=,) (福州)24.(12分)如图,矩形ABCD中,AD=8,AB=6,P,Q分为线段AC、BC上一点,且四边形PDRQ是矩形, (1)若PDC V为等腰三角形,求AP;(三种情况,PD=DC时,取PC的中垂线较好。) (2)若AP=2,求线段RC的长。(△PND∽△QMP→△PQR∽△ABC∽△PMC,→PRCQ共圆,∠PCR=90°,△KRC∽△PMC,三边符合3:4:5,算 出RC=3 2 4 ) N K M (白银)27.如图,AN是M e的直径,// NB x轴,AB交M e于点C. (1)若点()()0 0,6,0,2,30 A N ABN ∠=,求点B的坐标;(3,2) (2)若D为线段NB的中点,求证:直线CD是M e的切线. (天水) (BC=62) (广东)25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩

走进2018年中考数学专题复习几何最值问题解题策略

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】 最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题. 【知识归纳】 1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可. 2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可. 【题型解析】 题型1: 三角形中最值问题 例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0) 【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标. 【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示. 令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4); 令y=x+4中y=0,则x+4=0,解得:x=﹣6,

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值与最小值。在初中包含三个方面的问题: 1、函数:①二次函数有最大值与最小值;②一次函数中有取值范围时有最大值与最小值。 2、不等式: ①如x ≤7,最大值就是7;②如x ≥5,最小值就是5、 3、几何图形: ①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之与大于第三边,两边之差小于第三边。 一、最小值问题 例1、 如图4,已知正方形的边长就是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。 解: 作点D 关于AC 的对称点D / ,则点D / 与点B 重合,连BM,交AC 于N,连DN,则DN+MN 最短,且DN+MN=BM 。 ∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM= 682 2 =10, ∴DN+MN 的最小值就是10。 例2,已知,MN 就是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300 ,B 就 是弧AN 的中点,P 就是MN 上的一动点,则PA+PB 的最小值就是 解:作A 点关于MN 的对称点A / ,连A / B,交MN 于P,则PA+PB 最短。 连OB,OA / , ∵∠AMN=300,B 就是弧AN 的中点, ∴∠BOA / =300, 根据对称性可知 ∴∠NOA / =600 , ∴∠MOA / =900 , 在Rt △A / BO 中,OA / =OB=1, ∴A / B=2 即PA+PB=2 图1 L B' C B A 图4 N C D M P O N M A A / E A M O P N B

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 第1题第2题第3题第4题2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________.3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B1到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P1、P2分别在OA、OB上,求作点P1、P2,使△PP1P2的周长最小,连接OP,若OP=10cm,求△PP1P2的周长.

7.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________. 第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧⌒ AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .12 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x 2 +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

公开课:几何“最值问题”常见解题思路

《专题:几何“最值问题”常见解决思路》公开课 蓝溪中学林子旭2016.04.20 一、教学目标:让学生通过复习、练习、比较熟悉地掌握解决几何最值问题的通常思路和常见模型 二、教学重点:掌握解决最值问题的理论依据与常用模型,能根据不同特征转化成相应的模型是解决最值问题的关键. 三、主要理论依据及模型 1、两点之间线段最短; 2、直线外一点与直线上所有点的连线段中,垂线段最短; 3、三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 4、构造函数,利用函数的性质解决 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向1、2、3依据靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN 为直线l上的一条动线段,求 AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重 合,然后作其中一个定点关于 定直线l的对称点 作其中一个定点关于定直线 l的对称点 四、模型应用与练习: (一)线段和(PA+PB)最小: 1、正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一点,则PE+PB的最小值为. 2、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC 的最小值是; 3、如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR 周长的最小值是. 4、如图2,点A(a,1)、B(-1,b)都在双曲线y= 3 x -(x<0)上,点P、Q分别是x轴、y轴上 的动点,当四边形PABQ的周长取最小值时,PQ在直线的解析式是(). A、y=x B、y=x+1 C、y=x+2 D、y=x+3 图3 5、如图5,当四边形P ABN的周长最小时,a=. (二)线段差(PA-PB)最大 1、如图6,一次函数y=-2x+4的图象与x、y轴分别交于点A,B, D为AB的中点,C、A关于原点对称.P为OB上一动点,请直接写出︱ PC-PD︱的范围:___________________. A A C D O P x y 图6

经典几何中线段和差最值(含答案) (2)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . P A +P B 最小, 需转化, 使点在线异侧 B l

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点 P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边 上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B 在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O

几何综合及几何最值问题(含答案)

学生做题前请先回答以下问题 问题1:几何综合的思考流程是什么? 问题2:几何综合中常见结构、常用模型有哪些? 问题3:直角的思考角度有哪些? 边:____________________; 角:____________________; 面积:多个直角,把直角当作高,常考虑____________________; 固定模型和用法: ①直角+中点______________________; ②直角+特殊角____________________; ③直角+角平分线__________________; ④直角三角形斜边上的高___________; ⑤弦图结构; ⑥三等角模型; ⑦斜直角放正. 函数背景下考虑:______________________________; 圆背景下考虑:________________________________. 问题4:轴对称思考层次有哪些? 问题5:旋转思考层次有哪些? 问题6:圆的思考角度有哪些? 几何综合及几何最值问题 一、单选题(共10道,每道10分) 1.如图,在Rt△ABC中,∠ACB=90°,,沿△ABC的中线OC将△AOC折叠,使点A落在点D处.若CD⊥AB于点M,则tanA的值为( ) A. B.

C. D. 答案:A 解题思路: 试题难度:三颗星知识点:直角三角形两锐角互余 2.如图,BE,CF分别是△ABC两边上的高,M为BC的中点.若EF=6,BC=10,则△MEF的边ME上的高为( )

A. B. C.4 D. 答案:B 解题思路:

试题难度:三颗星知识点:等面积法 3.如图,在矩形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6,则矩形ABCD的面积为( ) A.24 B.36

二次函数中几何图形的最值问题

二次函数中几何图形的最值问题 教情分析: 二次函数中与几何图形的结合题变化多端,关于几何图形的最值问题只是这些变化中的一类,在教学中如何引导学生在复杂的变化中发现解题的路径,关键是训练学生在题目中寻找不变的已知元素,运用“两点间的线段最短”“垂线段最短”“二次函数的最值”“三角形中的三边关系”等知识点,来实现问题的转化与解决。 教学目标: 引导学生掌握处理二次函数中的最值问题,明确解决最值问题的思考方向。 思想方法: 由于这类问题有一定的综合性和探索性,解题中需要运用数形结合、转化和化归、动态思维、特殊与一般等数学思想。 教学过程: 问题:在平面直角坐标系中,抛物线y=ax2+2x+c的图象 A的坐标为(3,0),B的坐标为(0,3), (1)求直线AB和抛物线的解析式; (2)点E是线段AB上的动点,过E作x 交抛物线于点F,设点E的横坐标为t, 求线段EF的最大值,并求出此时点E 点F的坐标呢?

(3)在直线AB上方的抛物线上有一动点P使得 ?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由解题思路: (1)求出直线AB的解析式; (2)若直线AB上有一动点E的横坐标为t,那么它的纵坐标如何表示? (3)已知抛物线y=ax2+2x+c的图象与x轴交于点A和点C,与y轴交于点B,求此抛物线的解析式; (4)若在上题中的抛物线上有一动点P的横坐标为m,那么它的纵坐标如何表示? 已知抛物线y=-x2+2x+3经过A(3,0)、B(0,3)两点; (5)点E是线段AB上的动点,过E作x轴的垂线交抛物线于点F,设点E的横坐标为t,求线段EP的最大值,并求出此时点E的坐标;点P的坐标呢?(6)在直线AB上方的抛物线上有一动点P使得?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由. 小结: 练习:在直线AB上方(6)题中的抛物线上有一动点G,当G到直线AB的距离最大时,求G点的坐标及距离最大值

初中的几何最值问题解题策略-初中平面几何最值问题

初中的几何最值问题解题策略 几何中的最值问题,一直是个比较复杂的问题,多数同学在处理时思路不清晰的,下面我们从多年的解题经验中跟大家分享下我们的解题思路,碰到这种类型的问题应该如何解决。 总结各种最值问题,无外乎考查的知识点不过是三个,不管是初二,初三,还是总复习都是如此。我们主要从接下来的三个知识点入手,那么这种几何最值问题都会有一定思路,解题起来相对简单许多。 一、两点之间线段最短 二、三边关系求最值(最大或最小) 三、垂线段最短求最值 接下来,我们逐个去介绍,并进行相关的练习,在练习中体会解决问题的思路,有时三个知识点也是共同使用的,不是单个解决的,这里需要我们总结思路,举一反三,触类旁通。(后面的题型丰富,题目较新,适合练习,大家务必认真练练,必有所获的) 一、两点之间线段最短 这个知识点的运用中,通常的解题步骤是:1、先作对称2、用知识点3、算结果。在作对称的过程中,一般都是作定点关于对称轴的对称点,然后带入知识点,两点之间线段最短直接找到最小值时的点的位置。这样思路就打开了。 【例1】 2),C(2,0),如图,Rt△OAB的直角顶点A在x轴的正半轴上,∠AOB=30°,B(6,3 P为OB上一动点. (1)若点A关于直线OB的对称点为E,求E的坐标; (2)求出△PAC周长的最小值. 【变式1-1】

(2014?如皋市校级模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(1,0),点P为斜边OB上的一动点,求△PAC周长的最小值为_________________. 【变式1-2】 如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,其中点B的坐标为(4,3),点C和点P分别为直角边OA、斜边OB上的动点,求PA+PC的最小值. 【例2】 如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB上有一动点N,则△PMN的周长的最小值是. 【变式2-1】 (2015秋?江津区校级期中)如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8cm,点M 和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值是.

平面几何中的最值.doc

平面几何中的最值 江苏省泗阳县李口中学沈正中 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题。如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率。 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题, 称为最值问题。 最值问题的解决方法通常有两种: 一、应用几何性质: 1.三角形的三边关系:两边之和大于第三边,两边之差小于第 三边; 2.两点间线段最短; 3.连结直线外一点和直线上各点的所有线段中,垂线段最短; 4.定圆中的所有弦中,直径最长。 二、运用代数证法: 1.运用配方法求二次三项式的最值; 2.运用一元二次方程根的判别式。 下面介绍几例。 【题例1】①图1所示,A、B两点在直线/的同侧,在直线,上取一点P,使PA + PB最小。②图2 所示,A、B两点 在直线/的两侧, 在直线,上图 1 图 2

P ,A —P ,B ,VAB\ 所 以 即PA-PB 最大。 (A0 - BO)2 『AO 2 + BO 2 AB 22=— 取一点P ,使PA-PB 最大。 【解答】①图1中,在直线I 上任取一点P',再取点A 关于直 线/的对称点 A 、连 AP\ AT\ A ,B 、BP\ 则 AP ,= A ,P\ 在△A ,BP ,中,A'P'+BP'>A'B,当P'在A ,B 与直线,的交点处 P 点时,A"+BP ,=AB 即 A ,P+BP=A'B,此时 PA+PB 最小。 ②图2中,在直线Z 上任取一点P,再取点B 关于直线/的对 称点 B ,,连AB 、并延长交,于P,连AP ,、BP\ BT\ BP,则PB = P ,B, PB ,= PB,所以 AB 9 = PA-PBo P , A-P , B = P , A-P ,B\ 在左AB ,P ,中, 唯有P ,在p 点时,才有P ,A —P ,B , =AB\ 【题例2】如图3所示,已知直角 AAOB 中,直角顶点o 在单位圆心上,斜边 与单 位圆相切,延长AO, B0分别与单位圆交 于C, D.试求四边形ABCD 面积的最小值。 【解答】设。。与AB 相切于E,有 OE=1,从而 AO 2 + B02 AB = 0E ? AB = A0 ? 0B = ----------- ------ 2 即 ABN2。 当AO=BO 时,AB 有最小值2.从而 1 1 1 Sy =Z AC* BD = E (1 + OA)(1 + BO) ==(1+AO + BO + AO ? BO) 乙 乙 z 〉:(l + 2jAO ? BO +A0 . BO) = -(1 + ^A.O * BO)2 = y(l +JOE * AB)2 」 2 2 =!(1 + 庭)2〉!(1 + 构2=;(3 + 2龙)。 所以,当AO=OB 时,四边形ABCD 面积的最小值为;(3 + 2々口 【题例3】如图4所示,已知在正三角形ABC 内(包括边上)有两 圈 3

相关文档
最新文档