(平面几何最值问题的几种求解方法)

(平面几何最值问题的几种求解方法)
(平面几何最值问题的几种求解方法)

1 平面几何最值问题的几种求解方法

曹永启 (深圳清华实验学校 518126)

平面几何最值问题在近几年数学竞赛中频频出现。第十六届希望杯数学全国邀请赛初二2试最后一题就是一例。此类问题求解方法多,涉及知识面广,这对于初涉平面几何的初中学生来说,处处受限,难度较大。本文旨在通过实例介绍几种初中生能接受的求解方法。 一,平移法

平移法一般是寻求特殊位置的几何图形,结合图形的平移来解决问题。其基本依据有:两点之间线段最短,(三角形两边之和大于第三边,两边之差小于第三边)。直角三角形中斜边大于直角边,(从直线外一点到直线的所有线段中垂线段最短等)。

例1,(一个古老的问题)假设河岸为两条平行线,在河岸两侧有A 村和B 村,要在河上架一座垂直河岸的桥,使A 村到B 村路程最短,如何确定架桥的位置?

解:设河岸为L 1、 L 2,则L 1∥L 2,两岸

距离为d ,过A 点作AA ′⊥L 1,且AA ′=d,

连结BA ′交L 2于D ,过D 作CD ⊥L 2交L 1于C ,则CD 即为架桥的位置。(如图1)

由作法可知,四边形AA ′DC 是平行四边形,(AA ′∥DC 且AA ′=DC )

所以AC= A ′D.即AC+BD= A ′B ,而A ′、B 两点以A ′B 最短,故AC+CD+BD 为最短。

例2,在XOY 的边OX 、OY 上分别取一点A 、B ,使OA+OB 为定长L ,试证:当OA=OB 时AB 的长最短。(如图2)

分析:设OA=OB ,OA+OB=L (定长)为了证明AB 的长最短,可在OX 和OY 上分别另取一点A ′、B ′,使O A ′+OB ′=L ,连A ′B ′,则问题变为证明AB <A ′B ′。

证明:把A ′B ′平移到AC ,则A ′B ′CA 为平行四边形

∵OA+OB=O A ′+OB ′ ∴A A ′=BB ′而A A ′=CB ′∴BB ′=CB ′ ∠B ′BC=∠B ′CB

∴∠ B ′BC=XOY Y CB ∠=∠2

121' ∴∠B ′BC+∠OBA=90˙

∴∠ABC=90˙ ∴AB <AC=A ′B ′(直角三角形斜边

大于直角边)

二,反射法

反射法主要可解决以下两个类型问题。 1,已知A 、B 在直线L 两侧,

① 如何在L 上找一点P ,使PA+PB 最短。(如图3)

②如何在L 上找一点P ,使PA-PB 最大。(如图4)

L 1

2

X O

Y B B'

平面几何的定值和最值问题

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A 出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.

【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积) 解析由三角形面积S=1 2 absinC和正弦定理 sin c C =2R, ∴c=2RsinC. ∴abc S = 2 sin c C = 4sin sin R C C =4R是定值. 点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2如图,已知⊙O的半径为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是 多少?

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________. 3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,

则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P、P分别在OA、OB上,求作点P、P,使△PPP的周长最小,连接OP,若OP=10cm,求△PPP的周长. 7.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.

第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接 BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧(⌒)AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .1 2 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交 于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

专题25平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A D N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题) D

高中平面几何常用定理总结

高中平面几何常用定理 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 (高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 6. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 7. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 8. 余弦定理:C ab b a c cos 2222-+=. 9. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 10. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

专题平面几何的最值问题

专题25 平面几何的最值问题 阅读与思考 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有: 1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证. 2.几何定理(公理)法:应用几何中的不等量性质、定理. 3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等. 例题与求解 【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题) 解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值. 【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题) A B D C M N 解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小. 【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)

用旋转法………作辅助线证明平面几何题.

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC 中;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求∠BPC 的度数。证明:把ABP 绕点B 顺时钍方向旋转90?,得?CBD ,则ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90? 所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。 则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

全国各地中考平面几何题目汇编

ABC ABC V :V 2017中考平面几何题目 (北京)28.在等腰直角ABC ?中,090ACB ∠=,P 是线段BC 上一动点 (与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.( CP =) (成都)20. 如图,在ABC ?中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线; (2)若A 为EH 的中点,求EF FD 的值; 23 EF FD = (3)若1EA EF ==,求圆O 的半 径.( 1,,EA EF OD OF r BD BE BF ====== )1,,1,1EA FD r BF r AF r ===+=- 111EA AF r BF FD r r -=?=+ ,r = (安徽)23.已知正方形ABCD ,点M 为边AB 的中点. (1)如图1,点G 为线段CM 上的一点,且90AGB ∠=?,延长AG ,BG 分别与边BC ,CD 交于点E ,F . ② 证:BE CF =; ②求证:2BE BC CE =?.(,CEG CGB CG FC BE ==V :V ) (2)如图2,在边BC 上取一点E ,满足2BE BC CE =?,连接AE 交CM 于点G ,

连接BG延长交CD于点F,求tan CBF ∠的值. ( 51 tan 2 CBF - ∠=) H (CH=BE,CH/AM=CG/GM=FC/MB,FC=CH=BE,设BC=1,BE=x,得 51 x 2 -=,) (福州)24.(12分)如图,矩形ABCD中,AD=8,AB=6,P,Q分为线段AC、BC上一点,且四边形PDRQ是矩形, (1)若PDC V为等腰三角形,求AP;(三种情况,PD=DC时,取PC的中垂线较好。) (2)若AP=2,求线段RC的长。(△PND∽△QMP→△PQR∽△ABC∽△PMC,→PRCQ共圆,∠PCR=90°,△KRC∽△PMC,三边符合3:4:5,算 出RC=3 2 4 ) N K M (白银)27.如图,AN是M e的直径,// NB x轴,AB交M e于点C. (1)若点()()0 0,6,0,2,30 A N ABN ∠=,求点B的坐标;(3,2) (2)若D为线段NB的中点,求证:直线CD是M e的切线. (天水) (BC=62) (广东)25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩

中考数学复习--几何最值及路径长 精讲及测试题

初三数学几何最值及路径长 一、知识点睛 1.解决几何最值问题的通常思路 ①分析定点、动点,寻找不变特征; ②若属于常见模型、结构,调用模型、结构解决问题; 若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢. 理论依据: 两点之间,线段最短(已知两个定点) 垂线段最短(已知一个定点、一条定直线) 三角形三边关系(已知两边长固定或其和、差固定) 过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦 常用模型、结构示例: ①奶站模型 l l 求P A+PB的最小值,求|P A-PB|的最大值, 使点在线异侧使点在线同侧 ②天桥模型 l 固定长度线段MN在直线l上滑动,求AM+MN+BN的最小值,需平移BN(或AM),转化为奶站模型解决 ③折叠求最值结构 A M A' N B C 求BA′的最小值,转化为求BA′+A′N+NC的最小值(利用A′N+NC为定值)2.解决路径长问题的思路 ①分析定点、动点,寻找不变特征; ②猜测、验证,确定运动路径;猜测常通过“起点、终点、特殊点”,结合不变特征验 证. ③设计方案,求出路径长. 二、精讲精练 1.如图,在平面直角坐标系中,Rt△OAB的直角顶点 A在x轴的正半轴上,顶点B的坐标为(3,点C的坐标为( 1 2 ,0),点P为斜边OB上一动点,则PA+PC的最小值为____. Q P E D C B A 第1题图第2题图 2.如图,在矩形ABCD中,AB=4,BC=8,E为CD边的中点.若P,Q为BC边上的两 动点,且PQ=2,则当BP=_______时,四边形APQE的周长最小. 3.如图,在三角形纸片ABC中,已知∠ABC=90°,AC=5,BC=4.过点A作直线l平行于 BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN.当点P在直线l上移动时,折痕的端点M,N也随之移动,若限定端点M,N分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值之差为__________. l P C N B M A 第3题图第4题图 4.如图,在△ABC中,∠BAC=120°,AB=AC=4,M,N两点分别是边AB,AC上的动点, 将△AMN沿MN翻折,A点的对应点为A',连接BA',则BA'的最小值是___________.5.如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在ON上运 A M A' N B C 第1页第2页

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值与最小值。在初中包含三个方面的问题: 1、函数:①二次函数有最大值与最小值;②一次函数中有取值范围时有最大值与最小值。 2、不等式: ①如x ≤7,最大值就是7;②如x ≥5,最小值就是5、 3、几何图形: ①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之与大于第三边,两边之差小于第三边。 一、最小值问题 例1、 如图4,已知正方形的边长就是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。 解: 作点D 关于AC 的对称点D / ,则点D / 与点B 重合,连BM,交AC 于N,连DN,则DN+MN 最短,且DN+MN=BM 。 ∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM= 682 2 =10, ∴DN+MN 的最小值就是10。 例2,已知,MN 就是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300 ,B 就 是弧AN 的中点,P 就是MN 上的一动点,则PA+PB 的最小值就是 解:作A 点关于MN 的对称点A / ,连A / B,交MN 于P,则PA+PB 最短。 连OB,OA / , ∵∠AMN=300,B 就是弧AN 的中点, ∴∠BOA / =300, 根据对称性可知 ∴∠NOA / =600 , ∴∠MOA / =900 , 在Rt △A / BO 中,OA / =OB=1, ∴A / B=2 即PA+PB=2 图1 L B' C B A 图4 N C D M P O N M A A / E A M O P N B

八年级的培优初中几何中的最短路径与最值问题.doc

初二几何中的最短路径与最值问题 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线段最短.) L B A 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小. A O N M 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) B 河 流 练习1:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? C B O A 练习2:如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。 草 地 河 流 B D C D

例:如图所示,是一个圆柱体,底面周长为10,高为6,一只蚂蚁要从外壁的A处到内壁的B处吃一食物,求蚂蚁所走的最短程. B A 例:有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为() A.5cm B.cm C.4cm D.3cm B A 例:如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为() A.4.8 B.C.5 D. 例:有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的. 例:如图,在一个长AB为10米,宽为AD为5米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块是底面边长为1米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米. 例:如图,在正方形ABCD中,点E为BC上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。(顺带探索PE+PC的最大值、PE PC 的最大值与最小值。) E P D

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

几何最值及路径长(讲义及答案)

几何最值及路径长(讲义) ?课前预习 1.如图,A,B 为定点,P 为直线l 上一动点,若点P 恰好使 AP+BP 最短,请画出点P 的位 置.提示: ①分析定点(A,B),动点(P 在直线l 上动),不变特征 ②以l 为对称轴利用轴对称进行转化 ③由“两点之间,线段最短”确定位置 2.如图,A,B 为定点,MN 为直线l 上一可以移动的线段,且 MN 长度固定,若点M 恰好使AM+MN+BN 最短,请画出点 M 的位置. 提示: ①分析定点(A,B),动点(M,N 在l 上动,且MN 长度固 定),不变特征 ②先平移BN,使平移后的点N 与M 重合,将其转化为问题 1 ③以l 为对称轴,利用轴对称进行转化 ④由“两点之间,线段最短”确定位置 3.如图,∠AOB=60°,点P 在∠AOB 的平分线上,OP=10 cm, 点E,F 分别是∠AOB 两边OA,OB 上的动点,当△PEF 的 周长最小时,点P 到EF 的距离是. 提示: ①分析定点(P),动点(E 在OA 上动,F 在OB 上动),不 变特征 ②分别以OA,OB 为对称轴,将P 对称过去,得到P1,P2 ③连接P1P2,由“两点之间,线段最短”确定位置,进而求 解P 到EF 的距离.

1

?知识点睛 1.几何最值问题的处理思路 ①分析定点、动点,寻找不变特征; ②若属于常见模型、结构,调用模型、结构解决问题; 若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题. 转化原则: 尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标. 基本定理: 两点之间,线段最短(已知两个定点) 垂线段最短(已知一个定点、一条定直线) 三角形三边关系(已知两边长固定或其和、差固定) 过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦 常用模型、结构示例: ①轴对称最值模型 求PA+PB 的最小值,求|PA-PB|的最大值, 使点在线异侧使点在线同侧 固定长度线段MN 在直线l 上滑动,求AM+MN+BN 的最小值,需平移BN(或AM),转化为AM+MB′解决.

二次函数中几何图形的最值问题

二次函数中几何图形的最值问题 教情分析: 二次函数中与几何图形的结合题变化多端,关于几何图形的最值问题只是这些变化中的一类,在教学中如何引导学生在复杂的变化中发现解题的路径,关键是训练学生在题目中寻找不变的已知元素,运用“两点间的线段最短”“垂线段最短”“二次函数的最值”“三角形中的三边关系”等知识点,来实现问题的转化与解决。 教学目标: 引导学生掌握处理二次函数中的最值问题,明确解决最值问题的思考方向。 思想方法: 由于这类问题有一定的综合性和探索性,解题中需要运用数形结合、转化和化归、动态思维、特殊与一般等数学思想。 教学过程: 问题:在平面直角坐标系中,抛物线y=ax2+2x+c的图象 A的坐标为(3,0),B的坐标为(0,3), (1)求直线AB和抛物线的解析式; (2)点E是线段AB上的动点,过E作x 交抛物线于点F,设点E的横坐标为t, 求线段EF的最大值,并求出此时点E 点F的坐标呢?

(3)在直线AB上方的抛物线上有一动点P使得 ?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由解题思路: (1)求出直线AB的解析式; (2)若直线AB上有一动点E的横坐标为t,那么它的纵坐标如何表示? (3)已知抛物线y=ax2+2x+c的图象与x轴交于点A和点C,与y轴交于点B,求此抛物线的解析式; (4)若在上题中的抛物线上有一动点P的横坐标为m,那么它的纵坐标如何表示? 已知抛物线y=-x2+2x+3经过A(3,0)、B(0,3)两点; (5)点E是线段AB上的动点,过E作x轴的垂线交抛物线于点F,设点E的横坐标为t,求线段EP的最大值,并求出此时点E的坐标;点P的坐标呢?(6)在直线AB上方的抛物线上有一动点P使得?ABP的面积最大?若存在求出点P的坐标及最大面积;若不存在请说明理由. 小结: 练习:在直线AB上方(6)题中的抛物线上有一动点G,当G到直线AB的距离最大时,求G点的坐标及距离最大值

相关文档
最新文档