给水管网平差结果

给水管网平差结果
给水管网平差结果

给水管网平差

一、平差基本数据

1、平差类型:反算水源压力。

2、计算公式:

柯尔-勃洛克公式

I=λ*V^2/(2.0*g*D)

1.0/λ^0.5=-

2.0*lg[k/(

3.7*D)+2.5/(Re*λ^0.5)]

Re=V*D/ν

计算温度:10 ,ν=0.000001

3、局部损失系数:1.20

4、水源点水泵参数:

水源点水泵杨程单位(m),水源点水泵流量单位:(立方米/小时)

水源节点编号流量1 扬程1 流量2 扬程2 流量3 扬程3

二、节点参数

节点编号流量(L/s) 地面标高(m) 节点水压(m) 自由水头(m)

1 0.521 140.000 170.32

2 30.322

2 -115.740 140.000 171.497 31.497

3 6.54

4 140.000 170.342 30.342

4 5.746 140.000 171.120 31.120

5 1.389 140.000 169.777 29.777

6 10.743 140.000 170.06

7 30.067

7 11.814 140.000 169.717 29.717

8 1.505 140.000 169.160 29.160

9 6.544 140.000 169.522 29.522

10 1.853 140.000 169.072 29.072

11 8.165 140.000 169.243 29.243

12 10.192 140.000 169.242 29.242

13 2.345 140.000 168.000 28.000

14 0.579 136.000 168.985 32.985

15 8.893 136.000 169.011 33.011

16 6.023 136.000 169.013 33.013

17 11.962 136.000 168.897 32.897

18 1.476 136.000 168.554 32.554

19 12.498 136.000 168.893 32.893

20 1.389 136.000 168.602 32.602

21 2.316 136.000 167.692 31.692

22 3.243 136.000 165.822 29.822

三、管道参数

管道编号管径(mm) 管长(m) 流量(L/s) 流速(m/s) 千米损失(m) 管道损失(m)

1-3 100 90.0 0.521 0.092 0.218 0.020

2-4 315 46.1 115.740 1.637 8.172 0.377

3-7 315 540.0 40.102 0.567 1.157 0.625 3-4 315 500.0 47.167 0.667 1.556 0.778 4-6 315 400.0 62.827 0.889 2.633 1.053 5-6 100 240.0 1.389 0.245 1.209 0.290 6-7 225 725.0 11.452 0.288 0.482 0.350 6-9 315 490.0 39.242 0.555 1.112 0.545 7-12 315 455.0 37.888 0.536 1.043 0.475 8-9 100 260.0 1.505 0.265 1.394 0.362 9-11 315 380.0 31.193 0.441 0.733 0.278 10-7 100 320.0 1.853 0.327 2.016 0.645 11-12 225 460.0 0.492 0.012 0.002 0.001 11-15 315 570.0 22.536 0.319 0.407 0.232 12-13 100 405.0 2.345 0.413 3.068 1.242 12-16 315 440.0 25.843 0.366 0.521 0.229 14-15 100 100.0 0.579 0.102 0.262 0.026 15-16 225 200.0 1.174 0.030 0.009 0.002 15-19 315 665.0 14.237 0.201 0.179 0.119 16-17 315 400.0 18.647 0.264 0.290 0.116 17-22 100 560.0 3.243 0.572 5.491 3.075 18-17 100 255.0 1.476 0.260 1.346 0.343 19-21 100 400.0 2.316 0.408 3.000 1.200 19-17 315 850.0 1.966 0.028 0.006 0.005 20-19 100 240.0 1.389 0.245 1.209 0.290 四、管网平差结果特征参数

水源点2: 节点流量(L/s):-115.740 节点压力(m):171.50

最大管径(mm):315.00 最小管径(mm):100.00

最大流速(m/s):1.637 最小流速(m/s):0.012

水压最低点22, 压力(m):165.82 自由水头最低13, 自由水头(m):28.00

第六章给水管网设计

(一)教学要求

1、了解相关的基本概念;

2、熟练掌握给水管网的设计计算方法和步骤;

(二)教学内容

1、沿线流量和节点流量计算

2、管段流量分配

3、初拟管径

4、平差计算

5、泵站扬程与水塔高度设计;

6、管网校核;

(三)重点:沿线流量和节点流量计算,环状管网设计计算的理论、步骤及平差方法和管网校核。

第1节管段设计流量计算

确定各管段的设计流量的目的,在于依此来选定管径,进行管网水力计算。但要确定各管段的计算流量,需首先确定各管段的沿线流量和节点流量。

一、管网图形的简化

(一)简化目的及原则

在管网计算中,城市管网的现状核算及旧管网的扩建计算最为常见。由于给水管线遍布在街道下,不仅管线很多而且管径差别很大,若计算全部管线,实际上既无必要,也不大可能。因此,除了新设计的管网,因定线和计算仅限于干管网的情况外,对城镇管网的现状核算以及管网的扩建或改建往往需要将实际的管网加以简化,保留主要的干管,略去一些次要的、水力条件影响较小的管线,使简化后的管网基本上能反映实际用水情况,大大减轻计算工作量。通常管网越简化,计算工作量越小。但过分简化的管网,计算结果难免与实际用水情况的差别增大。所以,管网图形简化是保证计算结果接近于实际情况的前提下,对管线进行的简化。

(二)简化方法

在进行管网简化时,应先对实际管网的管线情况进行充分了解和分析,然后采用分解、合并、省略等方法进行简化。

1.分解

只有一条管线连接的两个管网,可以把连接管线断开,分解成为两个独立的管网;有两条管线连接的分支管网,若其位于管网的末端且连接管线的流向和流量可以确定时,也可以进行分解;管网分解后即可分别计算。

2.合并

管径较小、相互平行且靠近的管线可考虑合并。如管线交叉点很近时,可以将其合并为同一交叉点。相近交叉点合并后可以减少管线数目,使系统简化。在给水管网中,为了施工方便和减小水流阻力,管线交叉处往往用两个三通代替四通(实际工程中很少使用四通),不必将两个三同认为是两个交叉点,仍应简化为四通交叉点。

3.省略

管线省略时,首先略去水力条件影响较小的管线,即省略管网中管径相对较小的管线。管线省略后的计算结果是偏于安全的,但是由于流量集中,管径增大,并不经济。

二、沿线流量

城市给水管网的干管和分配管上,承接了许多用户,沿线配水情况比较复杂,既有工厂、机关、学校、医院、宾馆等大用户,其用水流量称为集中流量,又有数量很多、但用水量较小的居民用水、浇洒道路或绿化用水等沿线流量,以致不但沿线所接用户很多,而且用水量变化也很大。干管的配水情况如图6-3所示。

分配管

A

图6-3 干管配水情况

从图中可以看出,干管除供沿线两旁为数较多的居民生活用水q 1′、q 2′、 q 3′等外,还要供给分配管流量q 1、q 2 、q 3等,还有可能给少数大用水户供应集中流量Q 1、 Q 2、 Q 3等。由于用水点多,用水量经常变化,所以按实际情况进行管网计算是非常繁杂的,而且在实际工程中也无必要。所以,为了计算方便,常采用简化法——比流量法,即假定小用水户的流量均匀分布在全部干管上。比流量法有长度比流量和面积比流量两种。

(一)长度比流量

所谓长度比流量法是假定沿线流量q 1′、q 2′……均匀分布在全部配水干管上,则管线单位长度上的配水流量称为长度比流量,记为q s [L/ (s ·m) ]。

q s 可按下式计算:

L

Q Q

q i

s ∑∑=

__

(6-2)

式中 Q ______ 管网总用水量,L/s ;

∑Q i ______ 工业企业及其他大用户的集中流量之和,L/s 。

∑L

______

管网配水干管总计算长度,m ;单侧配水的管段(如沿河岸等地段敷设的只有一侧配水的管线)按实际长度的一半计入;双侧配水的管段,计算长度等于实际长度;两侧不配水的

管线长度不计(即不计穿越广场、公园等无建筑物地区的管线长度)。

比流量的大小随用水量的变化而变化。因此,控制管网水力情况的不同供水条件下的比流量(如在最高用水时、消防时、最大转输时的比流量)

是不同的,须分别计算。另外,若城市内各区人口密度相差较大时,也应

根据各区的用水量和干管长度,分别计算其比流量。

长度比流量按用水量全部均匀分布在干管上的假定来求比流量,忽视了沿管线供

水人数和用水量的差别,存在一定的缺陷。因此计算出来的配水量可能和实际配水量有一定差异。为接近实际配水情况,也可按面积比流量法计算。

(二)面积比流量

假定沿线流量q 1′、q 2′ ……均匀分布在整个供水面积上,则单位面积上的配水流量称为面积比流量,记作q A [L/ (s ·m 2)],按下式计算:

A

Q Q

q i

A ∑∑=

__

(6-3)

式中 ∑A ______ 给水区域内沿线配水的供水面积总和,m 2;

其余符号意义同前。

干管每一管段所负担的供水面积可按分角线或对角线的方法进行划分,如图6-4所示。在街区长边上的管段,其单侧供水面积为梯形;在街区短边上的管段,其单侧供水面积为三角形。

图6-4 供水面积划分

(a )对角线法; (b )分角线法

用面积比流量法计算虽然比较准确,但计算过程较麻烦。当供水区域的干管分布比较均匀、干管距离大致相同的管网,用长度比流量法计算较为简便。

由比流量q s 、 q A 可计算出各管段的沿线配水流量即沿线流量,记作q y ,则任一管段的沿线流量q y (L/s) 可按下式计算:

i s y L q q ?= (6-4)

或 i A y A q q ?= (6-5)

式中 L

_____

该管段的计算长度,m ; A i _____该管段所负担的供水面积, m 2。

三、节点流量

管网中任一管段的流量,包括两部分:一部分是沿本管段均匀泄出供给各用户的沿线流量q y ,流量大小沿程直线减小,到管段末端等于零;另一部分是通过本管段流到下游管段的流量,沿程不发生变化,称为转输流量q zs 。从管段起端A 到末端B 管段内流量由q zs +q y 变为q zs ,流量是变化的。对于流量变化的管段,难以确定管径和水头损失。因此,需对其进一步简化。简化的方法是化渐变流为均匀流,既以变化的沿线流量折算为管段两端节点流出的流量,即节点流量。全管段引用一个不变的流量,称为折算流量,记为q if ,使它产生的水头损失与实际上沿线变化的流量产生的水头损失完全相同,从而得出管线折算流量的计算公式为:

y zs if q q q α+= (6-6)

式中 α____折减系数,通常统一采用0.5,即将管段沿线流量平分到管段两端的节点上。

图6-5 管段输配水情况 因此管网任一节点的节点流量为:

y i q q ∑=5.0 (6-7)

即管网中任一节点的节点流量q i 等于与该节点相连各管段的沿线流量总和的一半。

当整个给水区域内管网的比流量q cb 或q mb 相同时,由式(6-4)、(6-5)可得节点流量计算式(6-7)的另一种表达形式:

i s i L q q ∑=5.0 (6-8) 或 i A i A q q ∑=5.0 (6-9) 式中 ΣL i ——与该节点相连各管段的计算长度之和,m ;

ΣA i ——与该节点相连各管段所负担的配水面积之和,m 2。

城市管网中,工企业等大用户所需流量,可直接作为接入大用户节点的节点流量。工业企业内的生产用水管网,水量大的车间用水量也可直接作为节点流量。

这样,管网图上各节点的流量包括由沿线流量折算的节点流量和大用户的集中流量。大用户的集中流量可以在管网图上单独注明,也可与节点流量加在一起,在相应节点上注出总流量。一般在管网计算图的各节点旁引出细实线箭头,并在箭头的前端注明该节点总流量的大小。

在计算完节点设计流量后,应验证流量平衡,即:

Q= ∑Q i +∑q i (6-10) 式中 Q ——管网总用水量,L/s ;

Q i ——各节点的集中流量,L/s ;

q i ——各节点的节点流量 ,L/s 。

如果有较大误差,则应检查计算过程中的错误,如误差较小,可能是计算精确度误差(小数尾数四舍五入造成),可以直接调整某些项集中流量和节点流量,使流量达到平衡。

[例题6-1] 某城镇最高时总用水量为284.7 L/s ,其中集中供应工业用水量为189.2 L/s 。干管各管段编号及长度如图6-6所示,管段4-5、1-2及2-3为单侧配水,其余为两侧配水。试求:(1)干管的比流量;(2)各管段的沿线流量;(3)各节点流量。

6

居住区

820

1

工厂 2 绿地 3 图6-6 节点流量计算(单位:m )

[解] 按长度比流量法计算。

1.配水干管计算长度:因二泵站~4为输水管,不参与配水,其计算长度为零,4~5、1~

2、2~3管段为单侧配水,其计算长度按实际长度的一半计入,其余均为双侧配水管段,均按实际长度计入,则:

m m m m L 4350

382075637565.0=?++??=∑ 2.配水干管比流量:

m s L m

s

L s L q s ./0219.04350/2.189/7.284_

==

3.沿线流量: 管段1-2的沿线流量为:

s L m m s L L q q s /3.87565.0./0219

.02121=??==-- 各管段的沿线流量计算见表6-1。

各 管 段 的 沿 线 流 量 计 算 表6-1

4. 节点流量计算: 如节点5的节点流量为:

s

L s L s L s L q q q q q l /6.21)/0.18/6.16/3.8(5.0)

(5.05.02565545=++=++==---∑

各节点的节点流量计算见表6-2。

各 管 段 节 点 流 量 计 算 表6-2

将节点流量和集中流量标注于相应节点上,如图6-7。

图6-7 节点流量图(单位:L/s)

四、管段流量

管网各管段的沿线流量简化成各节点流量后,可求出各节点流量,并把大用水户的集中流量也加于相应的节点上,则所有节点流量的总和,便是由二级泵站送来的总流量,(即总供水量)。按照质量守恒原理,每一节点必须满足节点流量平衡条件:流入任一节点的流量必须等于流出该节点的流量,即流进等于流出。

若规定流入节点的流量为负,流出节点为正,则上述平衡条件可表示为:

=

+

ij

i

q

q(6-11)式中q i______ 节点i的节点流量,L/s;

q ij______ 连接在节点i上的各管段流量,L/s。

依据式(6-11),用二级泵站送来的总流量沿各节点进行流量分配,所得出的各管段所通过的流量,就是各管段的计算流量。

在单水源枝状管网中,各管段的计算流量容易确定。从配水源(泵站或水塔等)供水到各节点只能沿一条管路通道,即管网中每一管段的水流方向和计算流量都是确定的。每一管段的计算流量等于该管段后面(顺水流方向)所有节点流量和大用户集中用水量之和。因此,对于枝状管网,若任一管段发生事故,该管段以后地区就会断水。

如图6-8所示的一枝状管网,部分管段的计算流量为:

5

5

~

4

q

q=;

10

10

~

8

q

q=;

10

9

8

5

4

4

3

q

q

q

q

q

q+

+

+

+

=

-

6

6

q10

5

图6-8 枝状管网管段流量计算

对于环状管网,各管段的计算流量不是唯一确定的。配水干管相互连接环通,环路中每一用户所需水量可以沿两条或两条以上的管路供给,各环内每条配水管段的水流方向和流量值都是不确定的。

如图6-9中的1节点,图中流入节点1的流量只有Q q =1~0(泵站供水流量),流出节点1的流量有q 1、q 1~2、q 1~5和q 1~7,由公式(6-11)得:

07~15~12~11=++++-q q q q Q

或 7~15~12~11q q q q Q ++=-

4

6

q 9

7 8 9

图6-9 环状管网流量分配

对于节点1来说,流入管网的总流量Q 和节点流量q 1是已知的,但各管段的流量q 1~2、q 1~5、q 1~7可以有不同的分配方法,也就是有不同的管段流量。为了确定各管段的计算流量,需人为地假定各管段的流量分配值称为流量预分配,以此确定经济管径。在环状管网流量预分配时,不仅要考虑经济性(即一定年限内管网的工程总造价和管理费用最小),而且还要考虑可靠性问题(指能够不间断地向用户供水,并保证应有的水量、水压和水质),做到经济性和可靠性并重。但经济性和可靠性是一对矛盾,一般只能在满足可靠性的前提下,力争得到最经济的管径。在综合考虑经济性和可靠性后,可按如下步骤进行环状管网流量分配: 1.首先在管网平面布置图上,确定出控制点的位置,并根据配水源、控制点、大用户及调节构筑物的位置确定管网的主要流向。

2.参照管网主要流向拟定各管段的水流方向,使水流沿最近路线输水到大用户和边远

地区,以节约输水电耗和管网基建投资。

3.根据管网中各管线的地位和功能来分配流量。尽量使平行的主要干管分配相近的流量,以免个别主要干管损坏时,其余管线负荷过重,使管网流量减少过多;干管与干管之间的连接管,主要是沟通平行干管之间的流量,有时起输水作用,有时只是就近供水到用户,平时流量一般不大,只有在干管损坏时,才转输较大流量。因此,连接管中可分配较少的流量。

4.分配流量时应满足节点流量平衡条件,即在每个节点上满足0=∑+ij i q q 。 对于多水源管网,会出现由两个或两个以上水源同时供水的节点,这样的节点叫供水分界点;各供水分界点的连线即为供水分界线;各水源供水流量应等于该水源供水范围内的全部节点流量加上分界线上由该水源供给的那部分节点流量之和。因此,流量分配时,应首先按每一水源的供水量确定大致的供水范围,初步划定供水分界线,然后从各水源开始,向供水分界方向逐节点进行流量分配。

环状管网流量分配后得出的是各管段的计算流量,由此流量即可确定管径,计算水头损失,但环状管网各管段计算流量的最后数值必须由平差计算结果来定出。

第二节 管 径 计算

确定管网中每一管段的直径是输水和配水系统设计计算的主要课题之一。管段的直径应按分配后的流量确定。

在设计中,各管段的管径按下式计算:

πν

q

D 4=

(6-12)

式中 q ______管段流量,m 3/s ;

υ______管内流速,m/s 。

由上式可知,管径不但和管段流量有关,而且还与流速有关。因此,确定管径时必须先选定流速。

为了防止管网因水锤现象而损坏,在技术上最大设计流速限定在2.5~3.0m/s 范围内;在输送浑浊的原水时,为了避免水中悬浮物质在水管内沉积,最低流速通常应大于0.60m/s ,由此可见,在技术上允许的流速范围是较大的。因此,还需在上述流速范围内,根据当地的经济条件,考虑管网的造价和经营管理费用,来选定合适的流速。

从公式可以看出,流量一定时,管径与流速的平方根成反比。如果流速选用的大一些,管径就会减小,相应的管网造价便可降低,但水头损失明显增加,所需的水泵扬程将增大,从而使经营管理费(主要指电费)增大,同时流速过大,管内压力高,因水锤现象引起的破坏作用也随之增大。相反,若流速选用小一些,因管径增大,管网造价会增加。但因水头损失减小,可节约电费,使经营管理费降低。因此,管网造价和经营管理费(主要指电费)这两项经济因素是决定流速的关键。求一定年限t (称为投资偿还期)内,管网造价和经营管理费用之和为最小的流速,称为经济流速),以此来确定的管径,称为经济管径。

若管网造价为C ,每年的经营管理费用为M ,包括电费M 1和折旧、大修费M 2,因M 2

和管网造价有关,故可按管网造价的百分数计,表示为p %C ,那么在投资偿还期t 年内,,总费用为:

t C P M C tM C W t )100

(1+

+=+= (6-13)

式中 p ——管网的折旧和大修率,以管网造价的百分比计。

式(6-13)除以投资偿还期t ,则得年折算费用W :;

1)100

1(M C p

t M t C

W ++=+=

(6-14)

总费用W 曲线的最低点表示管网造价和经营管理费用之和为最小时的流速称为经济流

速υe 。

e 图6-10 流速和费用的关系

各城市的经济流速值应按当地条件,如水管材料和价格、施工条件、电费等来确定,不能直接套用其他城市的数据。另外,管网中各管段的经济流速也不一样,须随管网图形、该管段在管网中的位置、该管段流量和管网总流量的比例等决定。因为计算复杂,有时简便地应用“界限流量表”确定经济管径。

界 限 流 量 表 表6-3

由于实际管网的复杂性,加上情况在不断的变化,例如流量在不断增加,管网逐步扩展,诸多经济指标如水管价格、电费等也随时变化,要从理论上计算管网造价和年管理费用相当复杂且有一定难度。在条件不具备时,设计中也可采用由各地统计资料计算出的平均经济流速来确定管径,得出的是近似经济管径,见表6-4。

平 均 经 济 流 速 表6-4

在使用各地区提供的经济流速或按平均经济流速确定管网管径时,需考虑以下原则: 1)一般大管径可取较大的经济流速,小管径可取较小的经济流速; 2)首先定出管网所采用的最小管径(由消防流量确定),按υe 确定的管径小于最小管径时,一律采用最小管径;

3)连接管属于管网的构造管,应注重安全可靠性,其管径应由管网构造来确定,即按

与它连接的次要干管管径相当或小一号确定;

4)由管径和管道比阻α之间的关系可知,当管径较小时,管径缩小或放大一号,水头损失会大幅度增减,而所需管材变化不多;相反,当管径较大时,管径缩小或放大一号,水头损失增减不很明显,而所需管材变化较大。因此,在确定管网管径时,一般对于管网起端的大口径管道可按略高于平均经济流速来确定管径,对于管网末端较小口径的管道,可按略低于平均经济流速确定管径,特别是对确定水泵扬程影响较大的管段,适当降低流速,使管径放大一号,比较经济;

5)管线造价(含管材价格、施工费用等)较高而电价相对较低时,取较大的经济流速,反之取较小的经济流速。

以上是指水泵供水时的经济管径确定方法,在求经济管径时,考虑了抽水所需的电费。重力供水时,由于水源水位高于给水区所需水压,两者的标高差H 可使水在管内重力流动。此时,各管段的经济管径应按输水管和管网通过设计流量时,供水起点至控制点的水头损失总和等于或略小于可利用的水头来确定。

第三节 环状管网计算的理论

1.环状管网计算时,必须满足下列基本水力条件

(1)连续性方程(又称节点流量平衡条件) 即对任一节点来说,流入该节点的流量必须等于流出该节点的流量。

若规定流出节点的流量为正,流入节点的流量为负,则任一节点的流量代数和等于零。即:

0=∑+ij i q q

(2)能量方程(又称闭合环路内水头损失平衡条件) 即环状管网任一闭合环路内,水流为顺时针方向的各管段水头损失之和应等于水流为逆时针方向的各管段水头损失之和。若规定顺时针方向的各管段水头损失为正,逆时针方向为负,则在任一闭合环路内各管段水头损失的代数和等于零,即:

0=∑ij h (6-17)

如图6-13,由并联管路的基本公式可知,节点1至节点4之间均有下列关系成立:

414~3~14~2~1H H h h -==

式中 4~2~1h ______ 管线1~2~4的水头损失;

4

~3~1h

_______

管线1~3~4的水头损失;

H 1、H 4 _______分别为节点1和节点4的水压标高值或测压管水头值(每一节点只有一个数值)。

1 h 1-

2 2

2

4

图6-13 单环管网

另由串联管路的基本公式,得:

4~22~14~2~1h h h += 4~33~14~3~1h h h +=

所以有:4~33~14~22~1h h h h +=+ 或 04~33~14~22~1=--+h h h h 2.环状管网计算的基本方法和原理

环状管网计算时,节点流量、管段长度、管径和阻力系数等均已知,需要求解的是管网各管段的流量和水头损失(或节点水压)。求解时可采用解环方程组、解节点方程组和解管段方程组等3种方法。 (1)解环方程组法 (2)解节点方程组法 (3)解管段方程组法 三、环状管网平差方法 1.哈代-克罗斯法

最早和应用广泛的管网分析方法有哈代-克罗斯法和洛巴切夫,即每环中各管段的流量用q ?修正的方法。现以图6-14为例加以说明,各参数的符号仍规定:顺时针方向为正,逆时针方向为负。

图6-14 两环管网的流量调整

环状管网初步分配流量后,管段流量)

0(ij q 为已知,并满足节点流量平衡条件,由)

0(ij q 选出管径,计算出各管段的水头损失ij h 和各环的水头损失代数和ij h ∑,一般0≠?=∑h h ij ,不满足水头损失平衡条件,须引入校正流量q ?以减小闭合差。校正流量可按下式估算确定:

=?q -

ij

ij k q S h ∑?2= -

?

?ij ij

ij k q q S h 2

2= -

ij

ij k q h h ∑

?2 (6-21)

式中 k q ?______ 环路k 的校正流量,L/s ;

k

h ?______

环路k 的闭合差,等于该环内各管段水头损失的代数和,m ;

ij

ij q s ∑______

环路k 内各管段的摩阻ij ij l s α=与相应管段流量ij q 的绝对值乘积之总

和。

ij

ij q h ∑______

环路k 的各管段的水头损失ij h 与相应管段流量ij q 之比的绝对值乘积之总

和。

应该注意,上式中k q ?和k h ?符号相反,即闭合差k h ?为正,校正流量k q ?就为负,反之则为正;闭合差k h ?的大小及符号,反映了与⊿h=0时的管段流量和水头损失的偏离程度和偏离方向。显然,闭合差k h ?的绝对值越大,为使闭合差0=?k h 所需的校正流量k q ?的绝对值也越大。各环校正流量k q ?用弧形箭头标注在相应的环内,如图 6-14所示,然后在相应环路的各管段中引入校正流量k q ?,即可得到各管段第一次修正后的流量)

1(ij q ,即:

)

0()0()0()1(n s ij ij q q q q ?+?+= (6-22)

式中)0(ij

q ______

本环路内初步分配的各管段流量,L/s ; )0(s

q ?______

本环路内初次校正的流量,L/s ; )0(n

q ?______

邻环路初次校正的流量,L/s 。

如图6-14 中环Ⅰ和环Ⅱ:

环Ⅰ:)

0()0(21)1(21I q q q ?+=-- )0()0(54)1(54I q q q ?-=-- )0()0()0(52)1(52II

I q q q q ?-?+=--

由于初步分配流量时,已经符合节点流量平衡条件,即满足了连续性方程,所以每次调整流量时能自动满足此条件。

采用哈代-克罗斯法进行管网平差的步骤:

(1)根据城镇的供水情况,拟定环状网各管段的水流方向,按每一节点满足连续性方程的条件,并考虑供水可靠性要求分配流量,得初步分配的管段流量)

1(ij q 。

(2)由)

1(ij q 计算各管段的水头损失)

0(ij h 。

(3)假定各环内水流顺时针方向管段中的水头损失为正,逆时针方向管段中的水头损失为负,计算该环内各管段的水头损失代数和)

0(ij h ∑,如0)

0(≠∑ij h ,其差值即为第一次闭合

差)0(k h ?。

如)0(k h ?>0,说明顺时针方向各管段中初步分配的流量多了些,逆时针方向管段中分配的流量少了些,反之,如)0(k h ?<0,说明顺时针方向各管段中初步分配的流量少了些,逆时针方向管段中分配的流量多了些。

(4)计算每环内各管段的ij

ij q h ∑

,按式(6-16)求出校正流量。如闭合差为正,校正

流量为负;反之,则校正流量为负。

(5)设图上的校正流量k q ?符号以顺时针方向为正,逆时针方向为负,凡是流向和校正流量k q ?方向相同的管段,加上校正流量,否则减去校正流量,据此调整各管段的流量,得第一次校正的管段流量。对于两环的公共管段,应按相邻两环的校正流量符号,考虑邻环校正流量的影响。

按此流量再计算,如闭合差尚未达到允许的精度,再从第2步按每次调整后的流量反复计算,直到每环的闭合差达到要求为止。

第四节、管网水力计算

一、枝状管网水力计算

枝状管网中的计算比较简单,因为水从供水起点到任一节点的水流路线只有一个,每一管段也只有唯一确定的计算流量。因此,在枝状管网计算中,应首先计算对供水经济性影响最大的干管,即管网起点到控制点的管线,然后再计算支管。

当管网起点水压未知时,应先计算干管,按经济流速和流量选定管径,并求得水头损失;再计算支管,此时支管起点及终点水压均为已知,支管计算应按充分利用起端的现有水压条件选定管径,经济流速不起主导作用,但需考虑技术上对流速的要求,若支管负担消防任务,其管径还应满足消防要求。

当管网起点水压已知时,仍先计算干管,再计算支管,但注意此时干管和支管的计算方法均与管网起点水压未知时的支管相同。

枝状管网水力计算步骤:

(1)按城镇管网布置图,绘制计算草图,对节点和管段顺序编号,并标明管段长度和节点地形标高。

(2)按最高日最高时用水量计算节点流量,并在节点旁引出箭头,注明节点流量。大用户的集中流量也标注在相应节点上。

(3)在管网计算草图上,从距二级泵站最远的管网末梢的节点开始,按照任一管段中的流量等于其下游所有节点流量之和的关系,逐个向二级泵站推算每个管段的流量。

(4)确定管网的最不利点(控制点),选定泵房到控制点的管线为干线。有时控制点不明显,可初选几个点作为管网的控制点。

(5)根据管段流量和经济流速求出干线上各管段的管径和水头损失。

(6)按控制点要求的最小服务水头和从水泵到控制点管线的总水头损失,求出水塔高度和水泵扬程。(若初选了几个点作为控制点,则使二级泵站所需扬程最大的管路为干线,相应的点为控制点)。

(7)支管管径参照支管的水力坡度选定,即按充分利用起点水压的条件来确定。

(8)根据管网各节点的压力和地形标高,绘制等水压线和自由水压线图。

【例题6-2】某城镇有居民6万人,用水量定额为120 L/(cap. d),用水普及率为83%,时变化系数为1.6,要求达到的最小服务水头为20m。管网布置见图6-11。用水量较大的一工厂和一公共建筑集中流量分别为25.0 L/s和17.4 L/s,分别有管段3~4和7~8供给,其两侧无其他用户。城镇地形平坦,高差极小。节点4、5、8、9处的地面标高分别为56.0、56.1、55.7、56.0m。水塔处地面标高为57.4m,其他点的地形标高见表6-5,管材选用给水铸铁管。试完成枝状给水管网的设计计算,并求水塔高度和水泵扬程。

8 图6-11 枝状管网计算(流量单位:L/s )

节 点 地 形 标 高 表6-5

【解】 1.计算节点流量 1)最高日最高时流量:

s L s L s L d cap L cap Q /07.153/4.17/0.253600

246

.1%83./1206000=++????=

2)比流量:

)/(04224.02620/4.17/0.25/07.153m s L m

s

L s L s L q s ?=--=

1) 沿线流量(见表6-6):

沿 线 流 量 计算 表 表6-6

2) 节点流量(见表6-7)

节 点 流 量 计 算 表 表6-7

2.选择控制点,确定干管和支管

由于各节点要求的自由水压相同,根据地形和用水量情况,控制点选为节点9,干管定为1~2~6~9,其余为支管。

3.编制干管和支管水力计算表格,见表6-8、6-9

4.将节点编号、地形标高、管段编号和管段长度等已知条件分别填于表6-8、6-9中的第(1)、(2)、(3)、(4)项。

干 管 水 力 计 算 表 表6-8

5.确定各管段的计算流量

按0=∑+ij i q q 的条件,从管线终点(包括和支管)开始,同时向供水起点方向逐个节点推算,即可得到各管段的计算流量: 由9节点得67.1299~6==q q L/s 由6节点得:

L/s 08.68L/s 4.17L/s 39.7L/s 67.12L/s 62.308~779~666~2=+++=+++=q q q q q 同理,可得其余各管段计算流量,计算结果分别列于表6-8、6-9中第(5)项。 6.干管水力计算

(1)由各管段的计算流量,查铸铁管水力计算表,参照经济流速,确定各管段的管径和相应的1000i 及流速。

管段6~9的计算流量12.67 L/s ,由铸铁管水力计算表查得:当管径为125 mm 、150 mm 、200 mm 时,相应的流速分别1.04 m/s 、0.72 m/s 、0.40 m/s 。前已指出,当管径D <400 mm 时,平均经济流速为0.6~0.9 m/s ,所以管段6~9的管径应确定为150 mm ,相应的1000i =7.20,υ=0.73 m/s 。同理,可确定其余管段的管径和相应的1000i 和流速,其结果见表

6-8中第(6)、(7)、(8)项。

(2)根据h=i.L 计算出各管段的水头损失,即表6-8中第(9)项等于[

)4(1000

)7(?]

,则m m h 32.46001000

20.79~6=?=

同理,可计算出其余各管段的水头损失,计算结果见表6-8中第(9)项。 (3)计算干管各节点的水压标高和自由水压。

因管段起端水压标高H i 和终端水压标高H j 于该管段的水头损失h ij 存在下列关系:

ij j

i h H

H += (6- 15 )

节点水压标高H i 、自由水压H 0i 与该处地形标高Z i 存在下列关系:

i i i Z H H -=0 (6-16)

由于控制点9节点要求的水压标高为已知:

m m m H Z H 0.76200.560999=+=+=

因此,在本例中要从节点9开始,按式(6-12)和(5-13)逐个向供水起点推算: 节点4 m m m h H H 32.8032.40.769696=+=+=-

m m m Z H H 02.243.5632.806660=-=-=-

同理,可得出干管上各节点的水压标高和自由水压。计算结果见表6-8中第(10)、(11)

项。

7.支管水力计算

由于干管上各节点的水压已经确定,(见表6-8),即支管起点的水压已定,因此支管各管段的经济管径选定必须满足:从干管节点到该支管的控制点(常为支管的终点)的水头损失之和应等于或小于干管上此节点的水压标高与支管控制点所需的水压标高之差。即按平均水力坡度确定管径。但当支管由两个或两个以上管段串联而成时,各管段水头损失之和可有多种组合能满足上述要求。现以支管6~7~8为例说明:首先计算支管6~7~8的平均允许水力坡度,即:

允许4.4700350)

0.207.55(32.8010001000_

=++?

=m

m m m m i

由s L q /79.247~6= ,查铸铁管水力计算表,参照允许4.41000=i ,得mm D 20076=- ,相应的实际88.51000=i ,则: m m h 06.2350100088

.57~6=?=

按式(6-13)、(6-14)计算7点得水压标高和自由水压:

m m m h H H 26.7806.280327667=-=-=-

m m m Z H H 06.222.5626.787707=-=-=

由节点7的水压标高即可计算管段7-8的平均允许1000i 为:

允许66.3700)

0.207.55(26.7810001000_

=+?

=m

m m m i

由s L q /4.178~7= ,查铸铁管水力计算表,参照允许66.31000=i ,得mm D 2008~7= ,相应的实际99.21000=i ,则:

m m h 09.27001000

99.28~7=?=

同理,可计算出节点8的水压标高和自由水压:

m m m h H H 17.7609.226.788~778=-=-= m m m Z H H 47.207.5517.768808=-=-= 按上述方法可计算出所有支管管段,计算结果见表6-9,图6-12。

泵房 Q(L/s)-D(mm) 700 -2.09 8

L(m)-h(m)

图6-12 枝状管网计算

测绘程序设计—实验八 水准网平差程序设计报告

《测绘程序设计(https://www.360docs.net/doc/526068549.html,)》 上机实验报告 (Visual C++.Net) 班级:测绘0901班 学号:0405090204 姓名:代娅琴 2012年4月29日

实验八平差程序设计基础 一、实验目的 ?巩固过程的定义与调用 ?巩固类的创建与使用 ?巩固间接平差模型及平差计算 ?掌握平差程序设计的基本技巧与步骤 二、实验内容 水准网平差程序设计。设计一个水准网平差的程序,要求数据从文件中读取,计算部分与界面无关。 1.水准网间接平差模型: 2.计算示例:

近似高程计算:

3.水准网平差计算一般步骤 (1)读取观测数据和已知数据; (2)计算未知点高程近似值; (3)列高差观测值误差方程; (4)根据水准路线长度计算高差观测值的权; (5)组成法方程; (6)解法方程,求得未知点高程改正数及平差后高程值; (7)求高差观测值残差及平差后高差观测值; (8)精度评定; (9)输出平差结果。 4.水准网高程近似值计算算法 5.输入数据格式示例

实验代码: #pragma once class LevelControlPoint { public: LevelControlPoint(void); ~LevelControlPoint(void); public: CString strName;//点名 CString strID;//点号 float H; bool flag;//标记是否已经计算出近似高程值,若计算出则为,否则为}; class CDhObs { public: CDhObs(void); ~CDhObs(void); public: LevelControlPoint* cpBackObj;//后视点 LevelControlPoint* cpFrontObj;//前视点 double ObsValue;//高差值 double Dist;//测站的距离 }; #include"StdAfx.h" #include"LevelControlPoint.h" LevelControlPoint::LevelControlPoint(void) {

水准网平差(VB代码)

(误差理论与测量平差础) 课程设计报告 系(部):土木工程系 实习单位:山东交通学院 班级:测绘084 学生姓名:田忠星学号080712420 带队教师:夏小裕﹑周宝兴 时间:10 年12 月13日到10 年12 月19日 山东交通学院

目录: 1.摘要P3 2.概述P3 3.水准网间接平差程序设计思路P3—P4 4. 平差程序流程图P4—P6 5. 程序源代码及说明P7—P23 6. 计算结果P23—P26 7. 总结P26—P27

一:摘要 在测量工作中,为了能及时发现错误和提高测量成果的精度,常作多余观测,这就产生了平差问题。在一个平差问题中,当所选的独立参数X?的个数等于必要观测数t时,可将每个观测值表达成这t个参数的函数,组成观测方程,这种以观测方程为函数模型的平差方法,就是间接平差。 二:概述: 该课程设计的主要目是对水准网进行间接平差,在输入数据后依次计算高程近似值﹑误差方程和平差计算。 三:水准网间接平差程序设计思路 1.根据平差问题的性质,选择t个独立量(既未知点的高程)作为参数X? 2. 将每一个观测量的平差值(既观测的高程差值)分别表达成 3.由误差方程系数B和自由项组成法方程,法方程个数等于参数的个数t ; 4. 解算法方程,求出参数X?,计算参数(高程)的平差值 X?=X0 +x?; 5.由误差方程计算V,求出观测量(高差)平差值6.评定精度 单位权中误差 V L L+ = ∧ V L L+ = ∧

平差值函数的中误差 四:平差程序流程图 1. 已知数据的输入 需要输入的数据包括水准网中已知点数﹑未知点数以及这些点的点号,已知高程和高差观测值﹑距离观测值。程序采用文件方式进行输入,约定文件输入的格式如下: 第一行:已知点数﹑未知点数﹑观测值个数 第二行:点号(已知点在前,未知点在后) 第三行:已知高程(顺序与上一行的点号对应) 第四行:高差观测值,按“起点点号,终点点号。高差观测值,距离观测值”的顺序输入。 本节中使用的算例的数据格式如下 2,3,7 1,2,3,4,5 5.016,6.016 1,3,1.359,1.1 1,4,2.009,1.7 2,3,0.363,2.3 ,?20s u n PV V r PV V T T +-==σ. ???0????σσQ =

给水管网平差程序LOOP使用说明

给水管网平差程序LOOP使用说明 LOOP是一个功能十分强大的管网水力平差计算程序,可以计算大、中、小型环状和枝状管网,计算速度非常快,曾进行过我国许多城镇的管网设计水力计算。该程序原为英文操作,经华东交通大学沃特科技有限公司(https://www.360docs.net/doc/526068549.html,)方永忠教授(yzhfang@https://www.360docs.net/doc/526068549.html,)汉化,提供给国内同行使用,操作简便。有疑问请通过Email进行咨询。 1、程序使用环境 硬件要求:任何PC微机配打印机 软件平台:DOS、WINDOWS 2、数据准备(初用者请先跳过本条) 在使用平差程序前,请准备好计算所需原始数据,包括总体数据、管段数据、节点数据、参考节点数据。 总体数据: 工程名称——对管网工程的方案说明,不影响计算结果 管段总数——最大值250 节点总数——最大值200 高峰因子——即节点流量的缩放系数,一般为1,见"详注1" 最大水力坡度——即管段单位长度水头损失最大允许值,不影响计算结果,只是在计算结果中提出警告,一般取5~8,单位:千分之一(‰) 最大流量修正值——本程序采用的是节点平差算法,此为平差的最大允许误差,值越小则计算精度越高,一般可采用0.01或更小,单位:升/秒 管段数据包括: 管段编号——正整数,1~250 起始节点编号——正整数,1~200 终到节点编号——正整数,1~200 管段长度——正整数,单位:米 管段直径——正整数,单位:毫米 管内壁粗糙系数——海曾?威廉公式中的C系数 节点数据包括: 节点编号——正整数,1~200 节点流量给定方式(FIX)——通常为0表示不节点流量不固定,1表示节点流量固定,见"详注1" 节点流量——流入节点流量为正值,流出节点流量为负值(与我国规定相反),单位:升/秒,见"详注2" 、"详注3" 节点地面高程——节点海拔标高,单位:米 参考节点(即水头已知、流量未知的节点,见"详注3")数据: 节点编号——正整数,1~200 节点水头——已知的节点水头海拔标高,单位:米 详注1: 为了便于多工况水力平差计算,本程序采用两种方式给定节点流量,即固定式和不固定式,固定式:在节点数据中直接给出节点流量,非固定式:节点数据中给出的节点流量先与高峰因子相乘

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 建筑物层数 1 2 3 4 5 6 7 8 自由水头Hz (m ) 10 12 16 20 24 28 32 36 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

水准网按条件平差算例

在图 表9-1 试求: (1)1P 、2P 及3P 点高程之最或然值; (2)1P 、2P 点间平差后高差的中误差。 解:(1)列条件方程式,不符值以“mm ”为单位。 已知3,7==t n ,故437=-=r ,其条件方程式为 ??? ? ???=--+=-+--=-+--=++-01030707742643765521v v v v v v v v v v v v (2)列函数式: 555v h x F +== 故 15=f 0764321======f f f f f f (3)组成法方程式。 1)令每公里观测高差的权为1,按1/i i s p =,将条件方程系数及其与权倒数之乘积填于表9-2中。 2)由表9-2数字计算法方程系数,并组成法方程式:

????????????----------5221251021411013????????????d c b a k k k k +????? ???????---1377=0 表9-2 条件方程系数表 (4)法方程式的解算。 1)解算法方程式在表9-3中进行。 2)[]pvv 计算之检核。 [][]wk pvv -= []467.35=-wk 由表9-3中解得[]47.35-=pvv ,两者完全一致,证明表中解算无误。 (5)计算观测值改正数及平差值见表9-4。 (6)计算321,,P P P 点高程最或然值。 359.3611=+=x H H A P m 012.3722=+=x H H A P m

表9-4 改正数与平差值计算表 (7)精度评定。 1)单位权(每公里观测高差)中误差 2)21,P P 点间平差后高差中误差 mm 0.34 47.35±=±=μmm P m F F 2.252.00.31 ±=±=±=μ

给水管网设计计算书

给水管网课程设计计算书 一、用水量计算 1. 居民区生活用水量计算 按街道建筑层次及卫生设备情况,根据规范采用最高日每人每日综合生活用水,计算出居民区的每人每日用水量,并应用下列公式计算出居民区的最高时流量Q 1 Q 1=k h1 4 .8611i i N q ×f 1 K h1—时变化系数 q 1i —最高日每人每日综合生活用水定额,L/(cap ·d) N 1i —设计年限内城市各用水区的计划用水人口数,cap f 1—用水普及率 街坊面积如下表 街区编号 面积(hm 2) 街区编号 面积(hm 2) 街区编号 面积(hm 2) 1 1.3763 9 1.04015 17 0.96255 2 0.8402 10 0.61865 18 0.52515 3 1.1438 11 0.43365 19 0.46245 4 1.0580 12 0.65865 20 0.1751 5 0.9138 13 0.57015 21 0.91865 6 0.8143 14 0.7460 22 0.71265 7 1.000 15 0.7149 23 0.78130 8 0.2261 16 0.4901 ∑ 17.183 q 1= 200 L/(cap.d) N 1=362人/公顷×17.183公顷=6154人 K h1=1.48 f 1=80% 2.工业企业用水量2Q 工厂作为集中流量,根据所提供的最高日平均流量及工作班次,变化系数,确定单位最大秒流量。 用水单位 生产(m 3/d) 生活(m 3/d) 班次 时变化 系数 最高日(m 3/d) 最高时(m 3/h) 最高时 秒流量 (L/s) 化肥厂 400 25 2 1.8 425 47.81 13.28 磷肥厂 350 25 2 1.4 375 32.81 9.11 化工厂 400 30 3 1.5 430 26.88 7.47

水准网间接平差程序设计(C++)

//////////////////////////////////////////////////// // visual C++6.0 编译通过 // //////////////////////////////////////////////////// /////////////////////////////////////////////////// // 参考资料 // // 部分网络资料 // // 宋力杰《测量平差程序设计》 // //连壁《基于matlab的控制网平差程序设计》 // /////////////////////////////////////////////////// #include #include #include #include #include using namespace std; //////////////////////////////////////////////////////////////////////////class class SZWPC { private: int gcz_zs; //高差总数 int szd_zs; //总点数 int yz_szd_zs; //已知点数 double m_pvv; //[pvv] int *qsd_dh; //高差起点号 int *zd_dh; //高差终点号 char **dm; //点名地址数组 double *gcz; //观测值数组 double *szd_gc; //高程值数组 double *P; //观测值的权 double *ATPA,*ATPL; //法方程系数矩阵与自由项 double *dX; //高程改正数、平差值 double *V; //残差 double m_mu; //单位权中误差 public: SZWPC(); ~SZWPC(); int ij(int i,int j);//对称矩阵下标计算函数 bool inverse(double a[],int n);//对称正定矩阵求逆(仅存下三角元素)(参考他人)

测绘程序设计实验八水准网平差程序设计报告完整版

测绘程序设计实验八水准网平差程序设计报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《测绘程序设计》上机实验报告 (Visual C++.Net) 班级:测绘0901班 学号: 04 姓名:代娅琴 2012年4月29日

实验八平差程序设计基础 一、实验目的 巩固过程的定义与调用 巩固类的创建与使用 巩固间接平差模型及平差计算 掌握平差程序设计的基本技巧与步骤 二、实验内容 水准网平差程序设计。设计一个水准网平差的程序,要求数据从文件中读取,计算部分与界面无关。 1.水准网间接平差模型: 2.计算示例:

近似高程计算: 3.水准网平差计算一般步骤 (1)读取观测数据和已知数据; (2)计算未知点高程近似值; (3)列高差观测值误差方程; (4)根据水准路线长度计算高差观测值的权; (5)组成法方程; (6)解法方程,求得未知点高程改正数及平差后高程值; (7)求高差观测值残差及平差后高差观测值; (8)精度评定; (9)输出平差结果。 4.水准网高程近似值计算算法

5.输入数据格式示例 实验代码: #pragma once class LevelControlPoint { public: LevelControlPoint(void); ~LevelControlPoint(void);

public: CString strName;trName=pstrData[0]; m_pKnownPoint[i].strID=pstrData[0]; m_pKnownPoint[i].H=_tstof(pstrData[1]); m_pKnownPoint[i].flag=1;trName=pstrData[i]; m_pUnknownPoint[i].strID=pstrData[i]; m_pUnknownPoint[i].H=0;lag=0;pBackObj=SearchPointUsingID(pstrData[0]);pFrontObj=Sea rchPointUsingID(pstrData[1]);ObsValue=_tstof(pstrData[2]);ist=_tstof(pstrData[3]);trID==ID) {return &m_pKnownPoint[i];} } return NULL; } trID==ID) {return &m_pUnknownPoint[i];} } return NULL; } LevelControlPoint* AdjustLevel::SearchPointUsingID(CString ID) { LevelControlPoint* cp; cp=SearchKnownPointUsingID(ID); if(cp==NULL) cp=SearchUnknownPointUsingID(ID); return cp; } void AdjustLevel::ApproHeignt(void)lag!=1) { pFrontObj->strID==m_pUnknownPoint[i].strID) && m_pDhObs[j].cpBackObj->flag==1 ) { =m_pDhObs[i].cpBackObj->H - m_pDhObs[i].ObsValue;*/ m_pUnknownPoint[i].H=m_pDhObs[j].cpBackObj->H + m_pDhObs[j].HObsValue; m_pUnknownPoint[i].flag=1; break; } } if(m_pUnknownPoint[i].flag!=1)pBackObj- >strID==m_pUnknownPoint[i].strID) && m_pDhObs[j].cpFrontObj->flag==1 ) { =m_pDhObs[j].cpFrontObj->H-m_pDhObs[j].HObsValue;

解节点方程管网平差程序的开发与应用

解节点方程管网平差程序的开发与应用 摘要:给水管网力计算是以解管段方程、解环方程和解节点方程为基础,对连续性方程、能量方程和压降方程应用近似优化处理方法和数值计算方法进行计算,旨在求解管段流量或节点水压,为管网设计,改扩建及运行管理提供依据。 关键词:节点方程管网平差开发与应用 1引言 给水管网力计算是以解管段方程、解环方程和解节点方程为基础,对连续性方程、能量方程和压降方程应用近似优化处理方法和数值计算方法进行计算,旨在求解管段流量或节点水压,为管网设计,改扩建及运行管理提供依据。 随着供水事业的发展,给水管网的规模不断增大,管段数和环数不断增多。众所周知,传统的解环方程法是在手算基础上发展而成的,计算前需要初分管段流量。对于大型复杂管网,初分流量相当繁琐,人工工作量较大,且初分值不合理会导致迭代算法不收敛。 为此,本文基于解节点方程的算法原理及管网数据结构的特征,研究了正定稀疏矩隈的变带宽紧缩贮存技术,运用FORTRAN语言编制了程序,并结合实例进行了应用和验算。 2解节点方程的有理与方法 2.1节点方程 根据管段压降方程,Hi-Hj=Sijq2ij,将管段流量用水压表示, qij=sign(Hi-Hj)(│Hi-Hj│÷Sij)1/2,代入连续性方程,即得出节点方程, Q+∑sign(Hi-Hj)(│Hi-Hj│÷Sij)1/2=0 式中Qi—i节点的耗水量或水源供水量(即节点流量); HiHj——i,j节点的水压; Sij——i,j管段的摩阻。 若管网节点数为M,则独立的节点方程数为M-1。 2.2节点方程的线性化 节点方程是以节点压力未知量的非线性方程组,令Cij=1/(Sij│qij│),qij的初值可用程序中所示的经验公式确定,则节点方程可化为,Q+∑Cij(Hi-Hj)=0,这是一个线性方程组,可用迭代法或牛顿法求解,程序中采用的迭代法。 2.3线性方程系数矩阵的存贮 根据管网图形拓扑结构可知,以上线性方程的系数矩阵为对称正定稀疏矩阵,矩阵元素中大部分为0,节点数越多,稀疏性越明显。对于M个节点的管网,矩阵元素共(M-1)2个,按一般矩阵存贮需要(M-1)2个存贮单元。对称矩阵只需要存贮一半元素(上三角或下三角矩阵)即可。对于稀疏矩阵,依照一定次序用一维数组紧缩存贮每行的第一个非零元素到对角线上的元素,再用指标数组存放各对角线元素在一维数组中的位置序号,这种变带宽紧缩方式可以进一步有效地节省存贮单元。 2.4节点方程的计算步骤 ⑴读取数据,按照经验公式计算初分流量,初定管径,计算摩阻;⑵计算初始系数矩阵参数;⑶解线性方程组,求节点点压,利用压差计算管段流量,高速管径及摩阻返回;⑶重新生成系数矩阵;⑷迭代至前后两次管段流量之差在允许精度范围内;⑸进一步计算节点自由水压,管段流速,水头损失等;⑹输出计算结果。 3解节点方程程序的应用 解节点方程的FORTRAN源程序及说明从略。 应用程序前,需绘制计算简图,按要求将节点、管段编号,将基础数据输入文件input.dat 中,结果文件output.dat中。节点编号原则:已知压力节点编号;未知坟力节点编号尽可能与相邻节点编号差值小,以利于紧缩存贮。

给水管网平差结果

给水管网平差 一、平差基本数据 1、平差类型:反算水源压力。 2、计算公式: 柯尔-勃洛克公式 I=λ*V^2/(2.0*g*D) 1.0/λ^0.5=- 2.0*lg[k/( 3.7*D)+2.5/(Re*λ^0.5)] Re=V*D/ν 计算温度:10 ,ν=0.000001 3、局部损失系数:1.20 4、水源点水泵参数: 水源点水泵杨程单位(m),水源点水泵流量单位:(立方米/小时) 水源节点编号流量1 扬程1 流量2 扬程2 流量3 扬程3 二、节点参数 节点编号流量(L/s) 地面标高(m) 节点水压(m) 自由水头(m) 1 0.521 140.000 170.32 2 30.322 2 -115.740 140.000 171.497 31.497 3 6.54 4 140.000 170.342 30.342 4 5.746 140.000 171.120 31.120 5 1.389 140.000 169.777 29.777 6 10.743 140.000 170.06 7 30.067 7 11.814 140.000 169.717 29.717 8 1.505 140.000 169.160 29.160 9 6.544 140.000 169.522 29.522 10 1.853 140.000 169.072 29.072 11 8.165 140.000 169.243 29.243 12 10.192 140.000 169.242 29.242 13 2.345 140.000 168.000 28.000 14 0.579 136.000 168.985 32.985 15 8.893 136.000 169.011 33.011 16 6.023 136.000 169.013 33.013 17 11.962 136.000 168.897 32.897 18 1.476 136.000 168.554 32.554 19 12.498 136.000 168.893 32.893 20 1.389 136.000 168.602 32.602 21 2.316 136.000 167.692 31.692 22 3.243 136.000 165.822 29.822 三、管道参数 管道编号管径(mm) 管长(m) 流量(L/s) 流速(m/s) 千米损失(m) 管道损失(m) 1-3 100 90.0 0.521 0.092 0.218 0.020 2-4 315 46.1 115.740 1.637 8.172 0.377

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

水准网的条件平差

目录 目录 (1) 观测误差 (2) 摘要: (2) 关键词: (2) 引言 (3) 1水准测量 (4) 1.1水准测量的原理 (4) 1.2水准网 (5) 2条件平差 (6) 2.1衡量精度的指标 (6) 2.2条件平差的原理 (8) 3水准网的平差 (14) 3.1必要观测与多余观测 (14) 3.2条件方程 (14) 3.3条件平差法方程式 (14) 3.4条件平差的精度评定 (15) 3.5水准网的条件平差 (18) 致谢 (20) 参考文献 (21)

观测误差 —由观测者、外界环境引起的偶然误差 学生: xxx 指导教师:xxx 摘要: 对一系列带有偶然误差的观测值,采用合理的的方法消除它们间的不符值,得出未知量的最可靠值;以及评定测量成果的精度。 关键词: 偶然误差;观测值;精度

引言 测量工作中,要确定地面点的空间位置,就必须进行高程测量,确定地面点的高程。几何水准测量是高程测量中最基本、最精密的一种方法。通过测量仪器,工具等任何手段获得的以数字形式表示的空间信息,即观测量。然而,测量是一个有变化的过程,受仪器、观测值、外界环境因素的影响,观测的结果与客观上存在的一个能反映其真正大小的数值,即真值(理论值),有一定的差异。可以说在测量中产生误差是不可避免的。所以,观测值不能准确得到,在测量上称这种差异为观测误差。根据其对观测结果影响的性质,可将误差分为系统误差和偶然误差两种。前者可以通过在观测过程中采取一定的措施和在观测结果中加入改正数,消除或减弱它的影响,使其达到忽略不计的程度。但是,观测结果中,不可避免地包含了后者,它是不可消除的,但可以选择较好的观测条件或采用适当的数据处理方法减弱它。现在我们要讨论的就是采用适当的数据处理方法来减弱其对水准测量中的影响。

给水管网管网平差程序

#include #include #define A 100 main() { int B[A],E[A],IO[A],JO[A],ok=0,i,k,P,LOOP; float xs,L[A],D[A],q[A],Dq[A],h[A],Dh[A],sq[A],s1[A],s[A],w[A],v[A]; FILE *fp; char F[10]; printf(" Please input DA TA file name... "); scanf("%s",F); fp=fopen(F,"r"); fscanf(fp,"%d%d%f",&P,&LOOP,&xs); for(k=1;k<=P;k++) fscanf(fp,"%d%d%f%f%f%d%d", &B[k],&E[k],&L[k],&D[k],&q[k],&IO[k],&JO[k]); fclose(fp); for(k=0;k<=LOOP;k++) Dq[k]=0; for(k=1;k<=P;k++) { if(D[k]<290) D[k]=D[k]-1; D[k]=D[k]/1000; s1[k]=.001736e-6/pow(D[k],5.3)*L[k]; q[k]=xs*(IO[k]<0)?-q[k]:q[k]; w[k]=3.141592654/4*D[k]*D[k]; } a1:ok++; printf(" OK=%d\n",ok); if(ok>0) goto a2; for(k=1;k<=P;k++) { q[k]=q[k]+Dq[abs(IO[k])]-Dq[JO[k]]; v[k]=fabs(q[k])/1000/w[k]; s[k]=(v[k]>=1.2)? s1[k]:s1[k]*.852*pow(1+.867/v[k],.3); h[k]=s[k]*q[k]*fabs(q[k]);} for(i=1;i<=LOOP;i++) { Dh[i]=0; sq[i]=0; for(k=1;k<=P;k++) { if(abs(IO[k])==i) {Dh[i]=Dh[i]+h[k]; sq[i]=sq[i]+s[k]*fabs(q[k]);} if(JO[k]==i) {Dh[i]=Dh[i]-h[k]; sq[i]=sq[i]+s[k]*fabs(q[k]);} } Dq[i]=-Dh[i]/2/sq[i]; } for(i=1;i<=LOOP;i++) if(fabs(Dh[i])>.001) goto a1; a2: printf(" Please input result file name ... "); scanf("%s",F); fp=fopen(F,"w"); fprintf(fp," Pipe=%d Loop=%d OK=%d\n",P,LOOP,ok); fprintf(fp,"----------------------------------------------------------\n");

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

水准网平差c++代码

水准网平差 结果 #include #include #include #include #define max 50 class CMatrix { public: CMatrix(){row=0; column=0;}; // 默认构造函数 CMatrix(int i, int j){row=i;column=j;} // 构造函数一 CMatrix(const CMatrix& m); // 复制构造函数 ~CMatrix(void){/*cout<<"谢谢使用,矩阵所占空间以释放!"<

测绘程序设计—实验八 水准网平差程序设计报告

《测绘程序设计》 上机实验报告 (Visual C++.Net) 班级:测绘0901班 学号: 04 姓名:代娅琴 2012年4月29日 实验八平差程序设计基础 一、实验目的 巩固过程的定义与调用 巩固类的创建与使用 巩固间接平差模型及平差计算 掌握平差程序设计的基本技巧与步骤 二、实验内容 水准网平差程序设计。设计一个水准网平差的程序,要求数据从文件中读取,计算部分与界面无关。 1.水准网间接平差模型: 2.计算示例: 近似高程计算: 3.水准网平差计算一般步骤 (1)读取观测数据和已知数据; (2)计算未知点高程近似值; (3)列高差观测值误差方程; (4)根据水准路线长度计算高差观测值的权;

(5)组成法方程; (6)解法方程,求得未知点高程改正数及平差后高程值; (7)求高差观测值残差及平差后高差观测值; (8)精度评定; (9)输出平差结果。 4.水准网高程近似值计算算法 5.输入数据格式示例 实验代码: #pragma once class LevelControlPoint { public: LevelControlPoint(void); ~LevelControlPoint(void); public: CString strName;trName=pstrData[0]; m_pKnownPoint[i].strID=pstrData[0]; m_pKnownPoint[i].H=_tstof(pstrData[1]); m_pKnownPoint[i].flag=1;trName=pstrData[i]; m_pUnknownPoint[i].strID=pstrData[i]; m_pUnknownPoint[i].H=0;lag=0;pBackObj=SearchPointUsingID(pstrData[0]);pFrontObj=SearchPointUsingI D(pstrData[1]);ObsValue=_tstof(pstrData[2]);ist=_tstof(pstrData[3]);trID==ID) {return &m_pKnownPoint[i];} } return NULL; } trID==ID) {return &m_pUnknownPoint[i];} } return NULL; } LevelControlPoint* AdjustLevel::SearchPointUsingID(CString ID) { LevelControlPoint* cp; cp=SearchKnownPointUsingID(ID); if(cp==NULL) cp=SearchUnknownPointUsingID(ID); return cp; } void AdjustLevel::ApproHeignt(void)lag!=1) { pFrontObj->strID==m_pUnknownPoint[i].strID) && m_pDhObs[j].cpBackObj->flag==1 ) { =m_pDhObs[i].cpBackObj->H - m_pDhObs[i].ObsValue;*/ m_pUnknownPoint[i].H=m_pDhObs[j].cpBackObj->H + m_pDhObs[j].HObsValue; m_pUnknownPoint[i].flag=1;

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

相关文档
最新文档