全国初中数学竞赛辅导(八年级)教学案全集第22讲 面积问题与面积方法

全国初中数学竞赛辅导(八年级)教学案全集第22讲 面积问题与面积方法
全国初中数学竞赛辅导(八年级)教学案全集第22讲 面积问题与面积方法

全国初中数学竞赛辅导(八年级)教学案全集

第二十二讲面积问题与面积方法

几何学的产生,源于人们测量土地面积的需要.面积不仅是几何学研究的一个重要内容,而且也是用来研究几何学的一个有力工具.

下面,我们把常用的一些面积公式和定理列举如下.

(1)三角形的面积

(i)三角形的面积公式

b+c)是半周长,r是△ABC的内切圆半径.

(ii)等底等高的两个三角形面积相等.

(iii)两个等底三角形的面积之比等于高之比;两个等高三角形的面积之比等于底边之比;两个三角形面积之比等于底、高乘积之比.

(iv)相似三角形的面积之比等于相似比的平方.

(2)梯形的面积

梯形的面积等于上、下底之和与高的乘积的一半.

(3)扇形面积

其中r为半径,l为弧长,θ为弧l所对的圆心角的度数,α是弧度数.

1.有关图形面积的计算和证明

解 因为CD ⊥AB ,AC=CB ,且△ABD 内接于半圆,由此可得

所以,阴影部分AEFBDA 的面积是

例2 已知凸四边形ABCD 的对角线AC ,BD 相交于点O ,且△ABC ,△ACD ,△ABD 的面积分别为S 1=5,S 2=10,S 3=6.求△ABO 的面积(图2-128). 解 首先,我们证明△ABC 与△ACD 的面积比等于BO 与DO 的比.过B ,D 分别作AC 的垂线,垂足为E ,F .于是Rt △BEO

由题设

=S,则

设S△

AOB

所以

例3 如图2-129,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积.

分析如果能把未知的两个小三角形的面积求出,那么△ABC的面积即可得知.根据例1,这两个面积是不难求出的.

解设未知的两个小三角形的面积为x和y,则

①÷②得

再由②得x=56.因此

S△

ABC

=84+70+56+35+40+30=315.

例4 如图2-130,通过△ABC内部一点Q引平行于三角形三边的直线,

这些直线分三角形为六个部分,已知三个平形四边形部分的面积为S

1,S

2

S

3

,求△ABC的面积.

解 为方便起见,设

S △QDG=S ′1,S △QIE=S ′2,S △QFH=S ′3,则

所以

同理可得

从①,②,③中可以解得

所以

例5 在一个面积为1的正方形中构造一个如图2-131所示的正方形:将单位正方形的每一条边n 等分,然后将每个顶点和它相对的顶点最接近

的分点连接起来.如果小正方形(图中阴影部分)的面积恰

解如图2-131,过F作BC的平行线交BG于H,则∠GHF=∠CED,∠FGH=∠DCE=90°,故

n2-n-90=0,

所以n=10.

2.利用面积解题

有的平面几何问题,虽然没有直接涉及到面积,然而若灵活地运用面积知识去解答,往往会出奇制胜,事半功倍.

例6 在△ABC内部或边界上任取一点P,记P到三边a,b,c的距离依次为x,y,z.求证:ax+by+cz是一个常数.

证如图2-132,连结PA, PB,PC,把△ABC分成三个小三角形,则

S△

ABC =S△

PAB

+S△

PCB

+S△

PCA

所以 ax+by+cz=2S△

ABC

即ax+by+cz为常数.

说明若△ABC为等边三角形,则

此即正三角形内一点到三边的距离和为常数,此常数是正三角形的高.

例7如图2-133,设P是△ABC内任一点,AD,BE,CF是过点P且分别交边BC,CA,AB于D,E,F.求证:

证首先,同例2类似,容易证明

说明本例的结论很重要,在处理三角形内三条线交于一点的问题时,常常可以用这一结论去解决.

例8如图2-134,已知D,E,F分别是锐角三角形ABC的三边BC,CA,AB上的点,且AD,BE,CF相交于点P,AP=BP=CP=6,设PD=x,PE=y,PF=z,若xy+yz+zx=28,求xyz的值.

解由上题知

去分母整理得

3(xy+yz+zx)+36(x+y+z)+324

=xyz+6(xy+yz+zx)+36(x+y+z)+216,

所以 xyz=108-3(xy+yz+zx)=24.

练习二十二

1.填空:

________.

(2)一个三角形的三边长都是整数,周长为8,则这个三角形的面积是________.

(3)四边形ABCD 中,∠A=30°,∠B=∠D=90°,AB=AD ,AC=1,则四边形ABCD 的面积是______.

(4)梯形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于O .若S △ABO =p 2,S △CDO =q 2,则S ABCD =____.

ABC

=40.若BE ,CD 相交于F ,则S △DEF =______.

2.E ,F 分别在矩形ABCD 的边BC 和CD 上,若△CEF ,△ABE ,△ADF 的面积分别是3,4,5,求△AEF 的面积.

3.已知点P ,Q ,R 分别在△ABC 的边AB ,BC ,CA 上,且BP=PQ=QR=RC=1,求△ABC 的面积的最大值.

4.在凸五边形ABCDE 中,S △ABC =S △BCD =S △CDE =S △DEA =S △EAB =1,CE 与AD 相交于F ,求S △CFD .

5.在直角三角形ABC 中,∠A=90°,AD ,AE 分别是高和角平分线,且△ABE ,△AED 的面积分别为S 1=30,S 2=6,求△ADC 的面积S . 6.设P 是△ABC 内一点,AD ,BE ,CF 过点P 并且交边BC ,CA ,AB 于点D ,E ,F .求证:

7.已知△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,AM 为BC 边上的中线,与DE 相交于N ,求证:DN=NE .

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲) 目录 本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容 本次培训具体计划如下以供参考 第一讲实数一 第二讲实数二 第三讲平面直角坐标系函数 第四讲一次函数一 第五讲一次函数二 第六讲全等三角形 第七讲直角三角形与勾股定理 第八讲株洲市初二数学竞赛模拟卷未装订在内另发 第九讲竞赛中整数性质的运用 第十讲不定方程与应用 第十一讲因式分解的方法

第十二讲因式分解的应用 第十三讲考试未装订在内另发 第十四讲试卷讲评 第1讲实数一 知识梳理 一非负数正数和零统称为非负数 1几种常见的非负数 1实数的绝对值是非负数即a≥0 在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则 绝对值的性质 ①绝对值最小的实数是0 ②若a与b互为相反数则a=ba=ba=b ③对任意实数a则a≥a a≥-a ④a·b=ab b≠0 ⑤a-b≤a±b≤a+b 2实数的偶次幂是非负数 如果a为任意实数则≥0n为自然数当n=1≥0 3算术平方根是非负数即≥0其中a≥0 算术平方根的性质 a≥0 = 2非负数的性质 1有限个非负数的和积商除数不为零是非负数

2若干个非负数的和等于零则每个加数都为零 3若非负数不大于零则此非负数必为零 3对于形如的式子被开方数必须为非负数 4推广到的化简 5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方 例题精讲 ◆专题一利用非负数的性质解题 例1已知实数xyz满足求x+y+z的平方根 巩固 1已知则的值为______________ 2若 的值 拓展 设abc是实数若求abc的值 ◆专题二对于的应用 例2已知xy是实数且 例3 已知适合关系式求的值 巩固 1已知b=且的算术平方根是的立方根是试求的平方根和立方根 2已知则

初中数学竞赛专题:几何不等式与极值问题

初中数学竞赛专题:几何不等式与极值问题 17.1.1★ 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值. 解析 考虑这个凸行边形的n 个外角,有4n -个角90?≥,故有()490360n -??,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. P C D B A 解析 易知AB AC PB PC +>+, 又2222AB AC BD CD -=- 22PB PC =-, 故有AB AC PB PC -<-. 评注 读者不妨考虑AD 是角平分线与中线的情况. 17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值. C B O D A 解析 易知 ABO BCO ADO DCO S S BO S DO S == △△△△,故36ABO CDO ADO BCO S S S S ?=?=△△△△. 从而12ABO CDO S S +△△≥, 且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 17.1.4★ 已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+;

(2)求()()2 2BC h AB AC ++-. 解析 () ()2 2 BC h AB AC +-+ 222222BC h BC h AB AC AB AC =++?---?, 由条件,知242ABC BC h S AB AC ?==?△,且222AB AC BC +=, 于是()()2 2 236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 17.1.5★ 设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面 积的最小值. B F C E D A 解析设 BF x =,()4DE y x ==-,则()()()1 1 7101077022ABF ADE ECF S S S x y x y xy ++=++--=+????△△△。 由()2 144 xy x y +=≤。故 ()1 70704332 AEF S -?+=△≥. 当2BF ED ==时达到最小值. 17.1.6★ 设P 是定角A ∠内一定点,过P 作动直线交两边于M 、N ,求证:AMN △面积最小时,P 为MN 的中点. 解析 如图,连结AP ,设MAP α∠=,NAP β∠=,θαβ=+,由 AMP ANP MAN S S S +=△△△,得 sin sin sin AM AP AN AP AM AN αβθ??+??=?。 又 左式2AP ≥,

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

八年级数学竞赛讲座三角形的有关概念

八年级数学竞赛讲座 三角形的有关概念 一、知识结构: 1、三角形的定义; 2、三角形的角平分线、中线、高; 3、三角形的三边之间的关系; 4、三角形的内角和定理及其推论; 5、同一个三角形中边与角之间的关系; 6、三角形的分类; 二、典型例题: 1、△ABC 三边长分别为a,b,c,且)(2 c b a bc a -=-,则这个三角形一定是( ) A.三边不相等的三角形 B.等边三角形 C.等腰三角形 D.任意三角形 2、△ABC 三边长分别为a,b,c,且,2 2 2 ca bc ab c b a ++=++则这个三角形一定是( ) A.不等边三角形 B.等边三角形 C.等腰三角形 D.任意三角形 3、已知等腰三角形的一边等于4,一边等于9,则它的周长是( ) A 、17 B 、22 C 、12或22 D 、20 4、下面四个命题中不正确的是( ) A .在△ABC 中,设三个内角中最小的角为α,则0°<α≤60° B .在△AB C 中,三个内角α:β:γ=1:2:3,则这个三角形是直角三角形; C .在△ABC 中,β为三个内角中最大的角,则60°<β<180° D .在△ABC 的内角中,锐角的个数最多; 5、等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长; 6、如图:AF 、AD 分别是△ABC 的高和角平分线, 且∠B=36°,∠C=76°,求∠DAF 的度数; 7、△ABC 中,AB=5,AC=3,则BC 边上的中线AD 的长l 的取值范围是多少? 8、已知斜三角形ABC 中,∠A=55°,三条高所在直线交点为H ,求∠BHC 的度数; A B D F C

初二数学竞赛辅导资料 勾股定理

初二数学竞赛辅导资料勾股定理 内容提要 1.勾股定理及逆定理:△ABC中∠C=Rt∠a2+b2=c2 2.勾股定理及逆定理的应用 1 作已知线段a的,,……倍 2 计算图形的长度,面积,并用计算方法解几何题 3 证明线段的平方关系等. 3.勾股数的定义:如果三个正整数a,b,c满足等式a2+b2=c2,那么这三个正整数a,b,c 叫做一组勾股数. 4.勾股数的推算公式 4 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m和n(m>n,那么m2-n2,2mn,m2+n2是一组勾股数. 5 如果k是大于1的奇数,那么k,,是一组勾股数. 6 如果k是大于2的偶数,那么k,,是一组勾股数. 7 如果a,b,c是勾股数,那么na,nb,nc (n是正整数也是勾股数. 5.熟悉勾股数可提高计算速度,顺利地判定直角三角形.简单的勾股数有:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41. 例题

例1.已知线段a a a 2a 3a a 求作线段 a a 分析一:a==2a ∴a是以2a和a为两条直角边的直角三角形的斜边. 分析二:a= ∴a是以3a为斜边,以2a为直角边的直角三角形的另一条直角边.作图(略) 例2.四边形ABCD中∠DAB=60,∠B=∠D=Rt∠,BC=1,CD=2 求对角线AC的长 解:延长BC和AD相交于E,则∠E=30 ∴CE=2CD=4, 在Rt△ABE中 设AB为x,则AE=2x 根据勾股定理x2+52=(2x2, x2=

在Rt△ABC中,AC===例3.已知△ABC中,AB=AC,∠B=2∠A 求证:AB2-BC2=AB×BC 证明:作∠B的平分线交AC于D, 则∠A=∠ABD, ∠BDC=2∠A=∠C ∴AD=BD=BC 作BM⊥AC于M,则CM=DM AB2-BC2=(BM2+AM2)-(BM2+CM2) =AM2-CM2=(AM+CM)(AM-CM) =AC×AD=AB×BC 例4.如图已知△ABC中,AD⊥BC,AB+CD=AC+BD 求证:AB=AC 证明:设AB,AC,BD,CD分别为b,c,m,n 则c+n=b+m, c-b=m-n ∵AD⊥BC,根据勾股定理,得 AD2=c2-m2=b2-n2 ∴c2-b2=m2-n2, (c+b(c-b=(m+n(m-n

数学竞赛专题讲座---面积问题与面积方法-初中三年级数学试题练习、期中期末试卷-初中数学试卷

数学竞赛专题讲座---面积问题与面积方法-初中三年级数学试题练习、期中期末试卷、测验 题、复习资料-初中数学试卷-试卷下载 面积问题与面积方法 姓名: 例1 已知△ABC中三边长分别为a,b,c,对应边上的高分别为ha=4,hb=5,hc=3.求a△b△c. 例2 如图1-51,ABCD的面积为64平方厘米(cm2),E,F分别为AB,AD的中点,求△CEF的面积. 例4 用面积方法证明:三角形两边中点连线平行于第三边. 例5 如图1-54.在△ABC中,E是AB的中点,D是AC上的一点,且AD△DC=2△3,BD与CE交于F,S△ABC=40,求SAEFD. 例6 如图1-55所示.E,F分别是ABCD的边AD,AB上的点,且BE=DF,BE与DF交于O.求证:C点到BE的距离等于它到DF的距离.

练习: 1.如图1-56所示.在△ABC中,EF△BC,且AE△EB=m,求证:AF△FC=m. 2.如图1-57所示.在梯形ABCD中,AB△CD.若△DCE的面积是△DCB的面积的四分之一,问:△DCE的面积是△ABD的面积的几分之几? 3.如图1-58所示.已知P为△ABC内一点,AP,BP,CP分别与对边交于D,E,F,把△ABC 分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积. 4.如图1-59所示.P为△ABC内任意一点,三边a,b,c的高分别为ha,hb,hc,且P到a,b,c的距离分别为ta,tb,tc. 5.如图1-60所示.在梯形ABCD中,两腰BA,CD的延长线相交于O,OE△DB,OF△AC且分别交直线BC于E,F.求证:BE=CF.

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

八年级数学竞赛讲座四边形

八年级数学竞赛讲座四 边形 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-

八年级数学竞赛讲座 四边形(2) 一、 知识要点: 1、梯形的定义、判定; 2、等腰梯形的定义、性质、判定; 3、三角形、梯形的中位线定理; 二、 例题: 1、用长为1,4,4,5的线段为边作梯形,求其中面积最小的那个梯形的两条对角线的长度之和; 2、已知:如图,等腰梯形ABCD 中,AB ∥DC ,且AB >CD ,两对角线AC 、BD 相互垂直,若BC=213,AB+CD=34,求AB ,CD 的长; 3、如图:在梯形ABCD 中,AD ∥BC ,∠BAC=90°,AB=AC ,BD=BC ,AC 与BD 相交于点E ,求∠DCE 的度数; 4、已知:如图,在四边形ABCD 中,AB=CD ,E 、F 分别 是BC 、AD 的中点,BA 、CD 的延长线分别与EF 的延长线交于点M 、N 求证:∠AMF=∠CNE 5、已知:如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是 两底AD 、BC 的中点,且EF=2 1(BC -AD ), 求证:∠B+∠C=90°;

6、已知:如图,在△ABC 中,∠ACB=90°,D 为BC 的中点, G 为AD 的中点,CG 的延长线交AB 于点E ,EF ∥AC 交AD 于 点F ,求证:BE=2CF ; 7、已知:如图,M 是AB 的中点,C 是AB 上任意一点,N 、P 分别是DC 、DB 的中点,Q 是MN 的中点,PQ 的延长线交AC 于点E , 求证:E 是AC 的中点; 8、如图:四边形ABCD 中,∠BAD=∠BCD ,∠ABC ≠∠ADC , ∠ABC ,∠BCD ,∠CDA ,∠DAB 的平分线两两相交于E 、F 、G 、H , 求证:四边形EFGH 为等腰梯形; 9、已知:梯形ABCD 中,AD ∥BC ,AD <BC ,E 为AB 的中点,DE ⊥CE ,求证:AD+BC=DC ; 10、已知,如图,梯形ABCD 中,AD ∥BC ,E 为CD 中点, EF ⊥AB 于F , 求证:AB EF S ABCD ?=梯形 11、在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,将BC 按逆时针方向绕点B 旋转90°,得到线段BE ,连接AE 、CE ,(如图(1))。 ①若AB=2厘米,DC=3厘米,求证:1=?ABE S 平方厘米; A D F E B C

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

新课标八年级数学竞赛讲座:第七讲 二次根式的运算

第七讲 二次根式的运算 式子a (a ≥0)叫二次根式,二次根式的运算是以下列运算法则为基础. (1)c b a c b c a )(±=± (≥0); (2)ab b a =? (0,0≥≥b a ); (3) b a b a = (0,0>≥b a ); (4)22)(a a =(≥a 0). 同类二次根式,有理化是二次根式中重要概念,它们贯穿于二次根式运算的始终,因为二次根式的加减实质就是合并同类二次根式,二次根式除法、混合运算常用到有理化概念. 二次根式的运算是在有理式(整式、分式)运算的基础上发展起来的,常常用到有理式运算的方法与技巧,如换元、字母化、拆项相消、分解相约等. 例题求解 【例1】 已知2542 4 52 22+-----= x x x x y ,则22y x += . (重庆市竞赛题) 思路点拨 因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手. 注: 二次根式有如下重要性质: (1)0≥a ,说明了a 与a 、n a 2一样都是非负数; (2) a a =2)( (≥a 0),解二次根式问题的途径——通过平方,去掉根号有理化; (3) a a =2)(,揭示了与绝对值的内在一致性. 著名数学教育家玻利亚曾说,“回到定义中去”,当我们面对条件较少的问题时,记住玻利亚的忠告,充分运用概念解题. 【例2】 化简2 2 ) 1(111++ + n n ,所得的结果为( ) A .1111++ + n n B .1111++-n n C .1111+-+n n D .1 1 11+--n n (武汉市选拔赛试题) 思路点拔 待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式. 注 特殊与一般是能相互转化的,而一般化是数学创造的基本形式,数学的根本目的就是要揭示更为普遍、更为深刻的事实和规律.

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

八年级数学竞赛讲座由中点想到什么附答案

第十八讲由中点想到什么 线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是: 1.中线倍长; 2.作直角三角形斜边中线; 3.构造中位线; 4.构造中心对称全等三角形等. 熟悉以下基本图形,基本结论: 例题求解 【例1】如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为.(“希望杯”邀请赛试题) 思路点拨取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件. 注证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有: (1)利用直角三角斜边中线定理; (2)运用中位线定理; (3)倍长(或折半)法. 【例2】如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( ) A.AB=MN B.AB>MN C.AB

思路点拨 中点M 、N 不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连结CE 、CD ,求证:C D=2EC . (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l ,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥ CE ,垂足分别为F 、G ,连结FG ,延长AF 、AG ,与直线BC 相交,易证FG= 21(AB+BC+AC). 若(1)BD 、CF 分别是△ABC 的内角平分线(如图2); (2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (2003年黑龙江省中考题) 思路点拨 图1中FG 与△ABC 三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG 与△ABC 三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

初中数学竞赛专题培训(22):面积问题与面积方法 (1)

初中数学竞赛专题培训第二十二讲面积问题与面积方法 几何学的产生,源于人们测量土地面积的需要.面积不仅是几何学研究的一个重要内容,而且也是用来研究几何学的一个有力工具. 下面,我们把常用的一些面积公式和定理列举如下. (1)三角形的面积 (i)三角形的面积公式 b+c)是半周长,r是△ABC的内切圆半径. (ii)等底等高的两个三角形面积相等. (iii)两个等底三角形的面积之比等于高之比;两个等高三角形的面积之比等于底边之比;两个三角形面积之比等于底、高乘积之比. (iv)相似三角形的面积之比等于相似比的平方. (2)梯形的面积 梯形的面积等于上、下底之和与高的乘积的一半. (3)扇形面积 其中r为半径,l为弧长,θ为弧l所对的圆心角的度数,α是弧度数. 1.有关图形面积的计算和证明 解因为CD⊥AB,AC=CB,且△ABD内接于半圆,由此可得 所以,阴影部分AEFBDA的面积是 例2已知凸四边形ABCD的对角线AC,BD相交于点O,且△ABC,△ACD,△ABD的面积分别为S1=5,S2=10,S3=6.求△ABO 的面积(图2-128). 解首先,我们证明△ABC与△ACD的面积比等于BO与DO的比.过B,D分别作AC的垂线,垂足为E,F.于是Rt△ BEO 由题设

设S△AOB=S,则 所以 例3 如图2-129,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积. 分析如果能把未知的两个小三角形的面积求出,那么△ABC 的面积即可得知.根据例1,这两个面积是不难求出的. 解设未知的两个小三角形的面积为x和y,则 即 又 即 ①÷②得 再由②得x=56.因此 S△ABC=84+70+56+35+40+30=315. 例4 如图2-130,通过△ABC内部一点Q引平行于三角形三边的直线,这些直线分三角形为六个部分,已知三个平形四边形部分的面积为S1,S2,S3,求△ABC的面积. 解为方便起见,设 S△QDG=S′1,S△QIE=S′2,S△QFH=S′3,则 所以 同理可得 从①,②,③中可以解得 所以

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

八年级数学竞赛讲座数形互助附答案

第三十讲 数形互助 数和形是数学研究的基本对象,是数学产生和发展的两块基石,在数学发展的过程中,数和形常常结合在一起,在方法上互相渗透,在内容上互相联系. 以数助形,即恰当地引参或设元,把一些几何量如角度的大小、线段的长度等用字母或代数式表示,利用图形的性质,寻找几何图形元素之间的关系,通过解方程、等式变形、等式运算等代数方法解证几何题. 用形辅数,即把一个代数问题转化为一个图形,问题中的条件与结论直观地、整体地表示出来,借助图形的直观性辅助解题,在代数的学习中,我们广泛地使用了用形辅数的方法,如用数轴赋予抽象的代数概念以直观的形象、乘法公式的几何表示、解应用题时常借助直线图、图表帮助分析等. 例题求解 【例1】 若a 、b 均为正数,且22b a +,242b a +,224b a +是一个三角形的三 条边的长,那么这个三角形的面积等于 . ( “希望杯”邀请赛试题) 思路点拨 直接用三角形面积公式求面积较为复杂,利用22n m +的几何意义(表示直角边分别为m ,n 的直角三角形斜边长),构造图形求面积. 注 古埃及,在长期土地测量、划分界限的过程中形成了最初的几何学.“Geometry(几何)”一词在希腊文中意为“测量”,我国宋元时期巳将某些几何问题代数化,把图形之间的几何关系,表示成代数式之间的代数关系. 17世纪笛卡尔的解析几何引进坐标,用“数”研究“形”,为18、19世纪数学的空前发展作了准备. 【例2】 如图,在△ABD 中,C 为AD 上一点,AB=CD=1,∠ABC=90°,∠CBD=30°,则AC=( ) A .1 B .32 C .2 D .3 (武汉市选拔赛试题) 思路点拨 过D 作DE ⊥AB 交AB 延长线于E ,设AC=x ,BE=y ,运用平行线分线段成比例、直角三角形边角关系、勾股定理等知识建立方程组,通过解方程组求AC 的值. 【例3】 如图,E 、F 分别是边长为4的正方形ABCD 的边BC 、CD 上的点,CE=1,CF=3 4,直线FC 交AB 的延长线于G ,过线段FG 上的动点H 作HM ⊥AG ,HN ⊥AD ,垂足分别为M ,N ,设HM=x ,矩形AMHN 的面 积为y . (1)用x 的代数式表示y ;

初中数学竞赛复杂图形的比例与面积

复杂图形的比例与面积 基础知识: 1.三角形面积由两个因素决定:底和高 两个三角形,底相等,面积比等于高的比; 两个三角形,高相等,面积比等于底的比。 2.在四边形ABCD中,对角线AC、BD交于点O, (1); (2); (3)。 3.如图,在梯形ABCD中,存在以下关系: (1)左、右部分的面积相等,即S3=S4; (2)S1︰S2︰S3︰S4= 4.燕尾定理: 在三角形中,AD,,相交于同一点,那么. 例1.图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF的

长是BF长的3倍.那么三角形AEF的面积是多少平方厘米? [答疑编号505721470101] 【答案】22.5 【解答】△ABD, ABC等高,所以面积的比为底的比, 有,所以180=90(平方厘米). 同理有(平方厘米), ×30=22.5(平方厘米). 即三角形AEF的面积是22.5平方厘米. 例2.如图1,5个正方形拼在一起,图中三角形ABC部分的面积是60,则正方形的边长是. [答疑编号505721470102] 【答案】10 【解答】比较有相同底边的两个三角形ABC和BCD,它们的高的比是3:2,因此 三角形BCD 的面积是.于是三角形ACD的面积是60+40=100. 注意ACD的底边是小正方形边长的2倍,而高就是小正方形的边长,所以它的面积与一个小正方形的面积是相等的,应该都是100,所以小正方形的边长 就是10(因为10×10=100).

例3.如图2,在15个小正方形拼成的长方形中,三角形ABC的面积是120(其中C是大长方形的对角线与B所在竖线的交点).那么小正方形的边长是. [答疑编号505721470103] 【答案】10 【解答】如下图,三角形ABC与三角形BCD的底边都是BC,而高的比是3∶2, 所以三角形BCD 的面积是,那么三角形ABD的面积就是 120+80=200。 三角形ABD的面积是大三角形ADG的面积减去三角形ABE、长方形BEGF、 三角形BDF的面积,也就是等于个小正方形的面积,因 此每个小正方形的面积是200÷2=100,那么边长为10。 例4.如图,四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么4个小三角形中最大的一个三角形的面积是多少公顷? [答疑编号505721470104] 【答案】21 【解答】 ,所以,三角形ABO的面积是18公顷,三角形BOC的面积是21公顷.所以,最大的三角形的面积为21公顷.

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

相关文档
最新文档