锚杆设计要求

锚杆设计要求
锚杆设计要求

锚杆设计要求

锚杆概述:

土锚杆根据滑动面分为锚固段和非锚固段。其承载能力受拉杆强度、拉杆与锚固体之间的握裹力、锚固体和孔壁之间的摩阻力等因素的影响。

土层锚杆是一种承拉杆件它的一端和挡、挡土墙或工程构筑物联结,另一端锚固在土层中,用以维持构筑物及所支护的土层的稳定。土层锚杆能简化基础结构,使结构轻巧、受力合理,并有少占场地、缩短工期、降低造价等优点。可以用作深挖基坑坑壁的临时支护,也可以作为构筑物的永久性基础。在房屋基坑的挡土结构上使用,可以有效地阻止周围土层坍塌、和沉降。在基坑坑壁无法采用横向支护情况下,土层锚杆技术更为有效。

土层锚杆一般由锚头、自由段和锚固段三部分组成,其中锚固段用或砂浆将杆体(预应力筋)与土体粘结在一起形成锚杆的锚固体。

根据土体类型、工程特性与使用要求,土层锚杆锚固体结构可设计为圆柱型、端部扩大头型或连续球体型三类。

锚固于砂质土、硬层并要求较高承载力的锚杆,宜采用端部扩大头型锚固体;锚固于淤泥、淤泥质土层并要求较高承载力的锚杆,宜采用连续球体型锚固体。

土层锚杆的布置应遵守以下规定:

一、锚杆上下排间距不宜小于2.5m;锚杆水平方向间距不宜小于2.0m。

二、锚杆锚固体上覆土层厚度不应小于4.0m,锚杆锚固段长度不应小于4.0m。

适用的规范:

抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范 GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范 GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范 GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。

锚杆需要验算的内容:

1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度;

3)锚杆钢筋与锚固砂浆间的锚固长度;

4)土体或者岩体的强度验算;

锚杆的布置方式与优缺点:

1) 集中点状布置,一般布置在柱下;优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。2) 集中线状布置,一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。

3) 面状均匀布置,在地下室底板下均匀布置;优点:适用于所有土体和岩体;地下室底板梁板配筋较小。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;

第六章 岩石锚杆基础

第六章岩石锚杆基础 岩石锚杆基础应根据《建筑地基基础设计规范》(GB 50007—2002)第8.6.1条至第8.6.3条的要求和规定进行设计。 岩石锚杆基础可用于直接建造在基岩上的柱基以及承受拉力或水平力较大的建筑物基础。锚杆基座应与基岩连成整体,并应符合下列要求: 1.锚杆孔直径,宜取三倍锚杆直径,但不应小于一倍锚杆直径加50mm。锚杆基础的构造要求,可按图6-1采用。 2.锚杆插入上部结构的长度,必须符合钢筋锚固长度的要求。 3.锚杆宜采用热轧带肋钢筋,水泥砂浆(或细石混凝土)强度等级不宜低于M30(或C30),灌浆前应将锚杆孔清理干净。 锚杆基础中单根锚杆所承受的拔力设计值,应按下列公式验算: 式中Nti——单根锚杆所承受的拔力设计值; Rt——单根锚杆的抗拔力特征值。 对甲级建筑物,单根锚杆抗拔力应通过现场试验确定。对于其他建筑物,可按下列公式计算: R,≤0,8πdlf(6—3) 式中f—一砂浆与岩石间的粘结强度特征值(MPa),水泥砂浆可取M30,f值可按表6—1选用; l——锚杆的有效锚固长度; k1——锚杆孔的直径。

[例6-1] 已知某工程有800mmx800mm的偏心受压柱,柱基坐落在较软地基上,该柱承受风载等作用产生的拔力168kN,试设计锚杆基础所需的锚杆根数。锚杆直径d,锚杆孔径 第209页 k1,锚杆有效锚固长度l,锚杆间的距离C1,并绘出锚杆基础的平、剖面图。 [解] 选定锚杆直径d=20mm(HPB335),Rt=0.87πd,lf=0。8x 3.141 6x70x800X0.3=42 223N=42.22kN 查表6—3得:Rt=42.22kN。 锚杆根数n=168-42.22-3.98根,取4根 根据锚杆直径d=20mm,查表6-2得:锚杆孔径d1=70mm 锚杆有效锚固长度l=800nan,锚杆间的距离C1=420mm,锚杆与柱预留连接长度l1=700mm。.

岩石锚杆基础施工方案模板

岩石锚杆基础施工 方案 目录 一、编制依据 (2)

二、工程概况 (4) 三、工程设计技术要求 (5) 四、岩石锚杆基础施工 (8) 1、工艺流程 (8) 2、施工准备 (10) 3、锚杆基础施工 (13) 五、人员组织 (23) 六、材料与设备 (23) 七、工艺质量要求及标准 (24) 八、安全及环保措施 (26) 九、应急救援措施 (37) 十、进度安排 (40) 十一、标准工艺应用 (41)

一、编制依据 1、榆横?潍坊1000千伏特高压交流输变电工程线路工程(06标)锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规范》( JGJ79- ) ; 3、《锚杆喷射混凝土支护技术规范》( GBJ50086- ) ; 4、《岩土锚杆( 索) 技术规程》( CECS22- ) ; 5、《混凝土结构工程施工质量验收规范》( GB50204- ) ( ) ; 6、《混凝土强度检验评定标准》( GBT50107- ) ; 7、《电力建设安全工作规程第2部分: 电力线路》( DL5009.2- ) ; 8、《1000kV架空输电线路施工及验收规范》(Q/GDW1153-); 9 、《1000kV 架空输电线路施工质量检验及评定规 程》 ( Q/GDW1163- ) ; 10、《国家电网公司施工项目部标准化管理手册》( ) ; 11、《国家电网公司输变电工程标准工艺管理办法》国网( 基建/3) 186- ; 12、《国家电网公司基建安全管理规定》国网( 基建/2) 173- ; 13 、《国家电网公司基建技术管理规定》国网( 基建/2) 174- ; 14、《国家电网公司基建质量管理规定》国网( 基建/2) 112- ; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网( 基建/3) 176- ; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248-

岩石锚杆基础施工方案模板

岩石锚杆基础施工 方案

目录 一、编制依据 (2) 二、工程概况 (4) 三、工程设计技术要求 (5) 四、岩石锚杆基础施工 (8) 1、工艺流程 (8) 2、施工准备 (10) 3、锚杆基础施工 (13) 五、人员组织 (23) 六、材料与设备 (23) 七、工艺质量要求及标准 (24) 八、安全及环保措施 (26) 九、应急救援措施 (37) 十、进度安排 (40) 十一、标准工艺应用 (41)

一、编制依据 1、榆横~潍坊1000千伏特高压交流输变电工程线路工程( 06标) 锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规范》( JGJ79- ) ; 3、《锚杆喷射混凝土支护技术规范》( GBJ50086- ) ; 4、《岩土锚杆( 索) 技术规程》( CECS22- ) ; 5、《混凝土结构工程施工质量验收规范》( GB50204- ) ( ) ; 6、《混凝土强度检验评定标准》( GBT50107- ) ; 7、《电力建设安全工作规程第2部分: 电力线路》( DL5009.2- ) ; 8、《1000kV架空输电线路施工及验收规范》( Q/GDW1153- ) ; 9、《1000kV架空输电线路施工质量检验及评定规程》( Q/GDW1163- ) ; 10、《国家电网公司施工项目部标准化管理手册》( ) ; 11、《国家电网公司输变电工程标准工艺管理办法》国网( 基建/3) 186- ; 12、《国家电网公司基建安全管理规定》国网( 基建/2) 173- ; 13、《国家电网公司基建技术管理规定》国网( 基建/2) 174- ; 14、《国家电网公司基建质量管理规定》国网( 基建/2) 112- ; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网( 基建/3) 176- ; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248- ); 17、《国家电网公司输变电工程标准工艺( 四) ——典型施工工

锚杆设计要求

锚杆设计要求 锚杆概述: 土锚杆根据滑动面分为锚固段和非锚固段。其承载能力受拉杆强度、拉杆与锚固体之间的握裹力、锚固体和孔壁之间的摩阻力等因素的影响。 土层锚杆是一种承拉杆件它的一端和挡土桩、挡土墙或工程构筑物联结,另一端锚固在土层中,用以维持构筑物及所支护的土层的稳定。土层锚杆能简化基础结构,使结构轻巧、受力合理,并有少占场地、缩短工期、降低造价等优点。可以用作深挖基坑坑壁的临时支护,也可以作为工程构筑物的永久性基础。在房屋基坑的挡土结构上使用,可以有效地阻止周围土层坍塌、位移和沉降。在基坑坑壁无法采用横向支护情况下,土层锚杆技术更为有效。 土层锚杆一般由锚头、自由段和锚固段三部分组成,其中锚固段用水泥浆或水泥砂浆将杆体(预应力筋)与土体粘结在一起形成锚杆的锚固体。 根据土体类型、工程特性与使用要求,土层锚杆锚固体结构可设计为圆柱型、端部扩大头型或连续球体型三类。锚固于砂质土、硬粘土层并要求较高承载力的锚杆,宜采用端部扩大头型锚固体;锚固于淤泥、淤泥质土层并要求较高承载力的锚杆,宜采用连续球体型锚固体。 土层锚杆的布置应遵守以下规定:

一、锚杆上下排间距不宜小于2.5m;锚杆水平方向间距不宜小于2.0m。 二、锚杆锚固体上覆土层厚度不应小于4.0m,锚杆锚固段长度不应小于4.0m。 适用的规范: 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范 GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范 GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范 GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 锚杆需要验算的内容: 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 锚杆的布置方式与优缺点:

岩石锚杆基础工程施工设计方案

目录 一、编制依据 (1) 二、工程概况 (2) 三、工程设计技术要求 (4) 四、岩石锚杆基础施工 (7) 1、工艺流程 (7) 2、施工准备 (9) 3、锚杆基础施工 (11) 五、人员组织 (21) 六、材料与设备 (21) 七、工艺质量要求及标准 (22) 八、安全及环保措施 (23) 九、应急救援措施 (33) 十、进度安排 (36) 十一、标准工艺应用 (38)

一、编制依据 1、榆横~潍坊1000千伏特高压交流输变电工程线路工程(06标)锚杆基础施工图、施工图会审纪要及设计交底有关要求; 2、《建筑地基处理技术规》(JGJ79-2012); 3、《锚杆喷射混凝土支护技术规》(GBJ50086-2001); 4、《岩土锚杆(索)技术规程》(CECS22-2005); 5、《混凝土结构工程施工质量验收规》(GB50204-2002)(2011年版); 6、《混凝土强度检验评定标准》(GBT50107-2010); 7、《电力建设安全工作规程第2部分:电力线路》(DL5009.2-2013); 8、《1000kV架空输电线路施工及验收规》(Q/GDW1153-2012); 9、《1000kV架空输电线路施工质量检验及评定规程》(Q/GDW1163-2012); 10、《国家电网公司施工项目部标准化管理手册》(2014年版); 11、《国家电网公司输变电工程标准工艺管理办法》国网(基建/3)186-2015; 12、《国家电网公司基建安全管理规定》国网(基建/2)173-2015; 13、《国家电网公司基建技术管理规定》国网(基建/2)174-2015; 14、《国家电网公司基建质量管理规定》国网(基建/2)112-2015; 15、《国家电网公司输变电工程施工安全风险识别评估及预控措施管理办法》国网(基建/3)176-2015; 16、《输变电工程建设标准强制性条文实施管理规程》(Q/GDW248-2008); 17、《国家电网公司输变电工程标准工艺(四)——典型施工工法》。 二、工程概况 榆横~潍坊1000千伏特高压交流输变电工程线路工程(6标)起于吕梁市中阳县暖泉镇中庄村附近,止于孝义市七里坡附近,起止杆塔号为:3L070~3L149(不含),3R071~

锚杆设计方案

一、试验依据 《建筑地基基础设计规范》(GB50007-2002) 二、试验目的 确定锚固体与花岗岩强风化下亚带、中风化带、微风化带以及破碎带等四种地层间的粘结强度特征值。 三、试验锚杆基本参数 根据试验目的与要求,本次试验在上述四种地层中分别布设3支试验锚杆,共12支试验锚杆。钻孔直径为φ150mm,根据岩层的不同,锚杆入岩深度为1.2~2.5米,每根锚杆配筋为4根直径为32mm的HRB400钢筋,锚杆间距均为 由于目前锚杆工程施工大多采用纯水泥浆注浆,因此建议本次试验使用纯水泥浆注浆,水泥采用普通硅酸盐水泥,水泥浆强度为M30,其质量应符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175的规定。 锚杆锚固段长度La如附图3所示,全长注浆,此长度全部锚固于详图中所示相应岩层中。 图1 锚孔与锚筋大样

图2 架立筋大样(a-a) 图3 锚杆锚固段 四、试验方法 1、安装试验设备时,应自下而上安装。钢板应放于锚杆两边,与地面平整接触,将两台油压千斤顶放于两块钢板上。然后将夹具套于锚杆上,并固定于锚杆上。 2、基准点不应安装在反力装置影响范围内。 3、基准点应安装在牢固,且不易被人碰撞的位置。 4、主要试验仪器设备及安装示意图如下图: 五、试验标准 1、加载方式:试验采用分级加载方式,每级按设计单位预估锚固体与岩体间抗剪极限承载力的1/8加载。 2、观测方法及稳定标准:每级荷载施加完毕后,应立即测读位移量。以后每间隔5min测读一次。连续4次测读出的锚杆拔升值均小于0.01mm时,认为在该级荷载下的位移己达到稳定状态,可继续施加下一级上拔荷载。

3、终止加载条件:当出现下列情况之一时,即可终止试验: 1)锚杆拔升量持续增长,且在1小时时间范围内未出现稳定的迹象; 2)新增加的上拔力无法施加,或者施加后无法使上拔力保持稳定; 3)锚杆的钢筋已被拔断,或者锚杆锚筋被拔出。 4、符合上述终止条件的前一级拔升荷载即为该锚杆的极限抗拔力。 六、试验成果整理 1、整理各试点在各级荷载作用下的位移数据表,绘制成果曲线等。 2、确定各试点锚杆极限抗拔力。 3、确定锚固体与花岗岩强风化下亚带、中风化带、微风化带以及破碎带等四种地层间的粘结强度特征值。 七、试验工期 锚杆施工完毕后水泥浆养护不应小于20天,或者预留同条件养护试块强度不低于设计强度的70%后,再进行基本试验。 八、施工注意事项 1、锚杆钻孔不得扰动周围地层,锚杆施工处上部扰动岩层应清除后再钻进施工。 2、钻孔轴线的偏斜率不应大于锚杆长度的2%。 3、向钻孔内安装锚杆前,应将孔内岩粉和土屑清洗干净。 4、其他未尽事宜按现行规范、规程及规定进行。

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

关于抗浮锚杆的设计

精心整理 关于抗浮锚杆的设计 一、抗浮锚杆的构造要求: (1)、《全国民用建筑工程设计技术措施》2009(简称《技术措施》)。第80页,7.3.1-5中,锚杆的长度不应小于4m,且不宜大于10m.。 (2)锚杆的间距除必须满足锚杆的受力要求外,尚需大于1.5m。 (3)《岩土锚杆(索)技术规程》第5.3.1条对注浆材料有要求。 A B GB175 C 标准》 D E 1 Ru------- Rt-------- Nt-------- Kt-------- K--------- 2 (1) 根据抗浮水位及锚杆的间距,计算单根锚杆的所承担的轴向拉力设计值Nt A、地下室底板的水头为h,则水的浮力为f=10*h。 B、底板的自重为G C、抗浮锚杆承受的荷载q f D、根据《建筑荷载规范》,地下水浮力属可变荷载,底板自重(含地面做法)属永久荷载,则荷 载效应组合的设计值应根据其最不利荷载组合确定。

即抗浮锚杆承受的荷载q f由下式计算: q f=γQ*f-γG*G---------q f为设计值, 其中γQ----1.4γG----0.9 单根锚杆的轴向拉力设计值Nt计算 Nt=q f*a*b--------a、b为锚杆的间距 附加说明: , (2) Ru=ξ1* 其中ξ1 λ1------- q sin- (3) 结论 单根锚杆的所承担的轴向拉力设计值1.05*Nt≤Rt-------Rt为特征值 (4)、锚杆内钢筋计算 A、根据《岩土锚杆(索)技术规程》第22页,第7.4.1条锚杆的钢筋的安全系数K=1.6 详见表第7.3.2。---------锚杆体抗拉安全系数 A S≥K t*N t/f yk-------(1) 其中K t--------锚杆杆体的抗拉安全系数

抗浮锚杆概述

抗浮锚杆概述 .抗浮锚杆,也叫抗浮桩,是建筑工程地下结构抗浮措施的一种。抗浮锚杆不同于一般的基础桩,有其自身的独特性能,与一般基础桩的最大区别在于:基础桩通常为抗压桩,桩体承受建筑荷载压力,受力自桩顶向桩底传递,桩体受力大小随着建筑荷载的变化而变化;而抗浮桩则为抗拔桩体承受拉力,普通抗浮桩受力也是自桩顶向桩底传递,桩体受力大小随着地下水位的变化而变化,但两者受力机制恰好相反。 抗浮锚杆是指抵抗建筑物向上位移的各种桩型的总称,抗浮锚杆不同于一般的基础桩, 有其自身的独特性能,抗浮桩为抗拔桩。 适用规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范》GB50007---2002中“岩石锚杆基础”部分以及《建筑边坡工程技术规范》GB50330-2002有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范》GB 50330-2002,对于岩土的分类较细,能查到一些必要的参数。 验算内容 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 注意事项 1) 集中点状布置,抗浮锚杆与岩石锚杆基础结合为优,需注意柱底弯矩对锚杆拉力的影响,特别是柱底弯矩较大的时候; 2) 参考《建筑边坡工程技术规范GB 50330-2002》,应选用永久性锚杆部分内容; 3) 岩石情况(坚硬岩、较硬岩、较软岩、软岩、极软岩)应准确区分,可参考《建筑边坡工程技术规范GB 50330-2002》表7.2.3-1注4; 4) 锚杆抗拔承载力特征值应通过现场试验确定,可参考《建筑边坡工程技术规范》GB 50330-2002附录C; 5) 抗浮设计水位的确定应合理可靠,一般应由地质勘测单位提供,比较可靠和有说服力,应设置水位观测井,对于超出抗浮设计水位的情况应有应对措施;

岩石锚杆基础的施工说明

岩石锚杆基础施工说明 岩石锚杆基础可充分利用地形,减少基面开挖,有利环保。锚杆基础在汗海-沽源-平安城500kV线路工程的大量采用,无疑是对塞外脆弱的植被起到了保护作用,但也给设计、施工、监理提出了新的课题,为了搞好岩石锚杆基础的施工,并为今后的安全运行奠定良好的基础,我设计院针对岩石锚杆基础制定了岩石锚杆基础施工说明。 1 概述 1.1 基础施工应严格按照《110-500kV架空送电线路施工及验收规范》(GB50233-2005)和《混凝土结构工程施工质量验收规范》(GB50204-2002)执行。 1.2 本说明适用的范围是岩石锚杆基础施工。 1.3 本说明主要针对的是岩石锚杆基础施工中的各个主要环节。 包括锚杆基础施工前准备工作、基面清理、钻孔、清孔、锚杆插入、承台支模、混凝土浇注、拆模、养护、成品保护等工序。 1.4 岩石锚杆基础施工工作流程见“岩石锚杆基础施工流程图”。 2 施工前准备 2.1 熟悉图纸及设计文件、学习相关规程规范。 2.2 核实现场定位时的塔位桩,确认无误后,再根据现场地形地貌及设计提供的降基面高度校核高低腿配置,如有不符,应立即通知设计单位。 2.3 核对地脚螺栓尺寸、小根开是否和塔图一致。

岩石锚杆基础施工流程图 3 施工基面清理 3.1按“基础施工说明”(见各标段基础施工图)的要求清理施工基面,若有与上部铁塔结构相碰的山体应局部清理,施工单位不能随

意加大开方面,严禁破坏施工基面以下岩体的整体性。 3.2 施工基面开挖前应预留出场地,对钻孔、注浆及冲洗注浆设备和管路排出的污水进行适当处理,以防止污染环境。 3.3 施工基面清理完毕后,检查基面标高。 4基础放线和钻机定位 基面开挖完成后,应用白灰划出基础位置,并用定位桩标志出钻孔的位置。控制桩应采取保护措施,防止受到破坏。基础定位的精度宜根据锚杆施工规范控制。 应当使用适当的钻机型号和钻孔方法,钻具的重量和刚度要匹配,以防影响钻孔速度和排碴,充分发挥钻具的效率,以获得高精度钻孔。 5 钻孔和清孔 锚杆基础的钻孔应满足设计图纸要求的孔径、长度,采用适宜的钻孔方法确保精度,要使其后续的锚杆插入和注浆作业能顺利进行。 钻孔过程中要对岩土地层情况进行验证,如果实际地层与设计地层有较大差异时,应及时报告设计人员,以便采取措施进行加固或者变更钻孔位置。 不同的岩土层宜采用合适的钻具和钻孔方法,以保证锚杆在插入的注浆过程中孔壁不致塌陷,钻孔直径应符合设计要求,不致对孔壁产生过大的挠动。 钻孔用水宜采用清水,泥浆或其它悬浊液会减弱锚杆的锚固力,应避免使用。当钻孔用水对地基有不良影响时,宜采用无水钻孔法。

岩石锚杆基础技术标准

岩石锚杆基础技术标准 一.施工设备准备 1、施工采用的主要施工设备:长螺旋桩机、注浆设备等。 2、施工设备进场施工作业前,必须进行全面检查,其中重点包括:安全防护设施检查、设备控制系统检查、维修保养记录检查、需要年检年审的设备须检查年检年审记录,确认合格后由项目部统一安排。 3、施工设备从土方坡道吊放至施工场地,抗浮锚杆施工结束后,由于土方坡道已开挖完,因此设备只能拆卸后用吊车吊运出基坑。 二、施工工艺及技术流程 1.测量定位→钻机成孔→验孔深→安放锚杆→边注浆边提升注浆管→结束至下一孔→返回二次注浆。 2.成孔:按设计要求测放土钉轴线及点位,钻孔直径150mm。 3.锚杆制作:锚杆制作采用HRB400¢28螺纹钢加工,从锚头开始每隔1.5m 焊制定位器。锚入基础沉台弯头用钢筋弯曲机制作。 4.抗浮锚杆注浆:锚杆注浆采用压力注浆工艺。第一次注浆压力在0.3-0.5Mpa左右,注到浆液从孔中溢出。第二次注浆在第一次初凝前达到注浆压力1-2分钟后即可结束注浆,注浆完成后周围的空隙用水泥袋或毛巾塞牢以防止漏水。注浆采用1:2微胀水泥浆液。 5.抗浮锚杆施工主要方法: 5.1机具设备:长螺旋钻机,HY50-50型注浆泵,灰浆搅拌机,灌浆管、阀门、压力表等。 5.2成孔:施工时长螺旋钻杆直接钻出土,这种方法把成孔过程中的钻进、出渣、清孔等工序一次完成。钻孔取出的土用挖机装运 6.锚杆安设:锚杆按施工图纸结构构造,由专人制作完成,锚杆一根螺纹钢筋(HRB400φ28)焊接而成,另外每隔1.5m焊置一个定位器(由φ6.5钢筋制成)。锚拉杆要求顺直。孔钻完后尽快地安设锚杆,放至距孔底保持50cm,插入时将锚杆有定位器支架的一面向下方。立即接上压浆管,即可进行注浆。 7.灌浆:灌浆材料为纯水泥浆。水泥采用32.5级水泥,水灰比为0.4-0.5,充盈系数不小于1.15。灌浆应持续至孔口流出水泥浆为止。第一次注浆压力为0.5~0.8MPa;在第一次注浆体强度达15 MPa时,进行第二次注浆,注浆压力为0.3MPa。锚杆注浆管边灌边浮,一次注浆量按理论计算值的

抗浮锚杆设计计算书

二、计算书 1、设计要求 本工程水池底板抗浮力的要求为: 表1 2、抗浮锚杆抗拔力设计值 根据技术要求,本工程单根锚杆的抗拔力标准值为87.5kN ,设计锚杆间距2.7x2.7m. 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ?= (7.4.1) 上面式中:K t — 锚杆的杆体抗拉安全系数,取2; N t —— 锚杆的轴向拉力设计值,取113.8KN. f yk —— 钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm 2 。 根据计算得:As=569mm 2 所以孔内应设置二根Φ20的HRB400钢筋. 4、锚固段长度计算. 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ πmg t a Df N K L ?> (7.5.1-1) ψ ξπms t a f d n N K L ?> (7.5.1-2) 上面式中:L a —— 锚杆锚固段的长度(m ); K —— 锚杆锚固体的抗拔安全系数,取2.2; N t —— 锚杆的轴向拉力设计值(kN); D —— 锚固体的钻孔直径,按0.12m d —— 钢筋的直径(m ); f m g ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取 锚杆周围地层加权平均值130kPa 。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa ,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa 。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa ; ξ ——界面粘结强度降低系数,取0.6; ψ —— 锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n —— 钢筋根数 由计算公式算得2#地块:L a 〉3.72m ,设计按照锚固段长度为5.10m 。 由计算公式算得3#地块:L a 〉7.18m ,设计按照锚固段长度为8.00m 。 由计算公式算得4#地块:L a 〉6.92m ,施工设计按照锚固段长度为8.00m 设计。 5、锚杆锚入基础的长度 根据规范要求,钢筋须插入基础内不少于35d ,本工程2#地块,采用Φ22螺纹钢筋,长度为35*22=770mm ,设计时取800mm 。本工程3#、4#地块采用Φ25螺纹钢筋,长度为35*25=875mm ,设计时取900mm 。 6、锚杆间距 本工程基础为筏板基础,考虑结构受力特点,本着减小底板弯曲应力的原则,本工程采用小吨位的锚杆。杭浮锚杆在整个底板上小间距均匀布置,局部地方(独立柱基位置)适当调整。该布置可降低底板的加筋费用,又可以减小因个别锚杆失效而造成的局部破坏。锚杆 大体成正方形布置,根据地下室抗浮区域、抗浮力要求的不同,锚杆间距为: 锚杆间距一览表 表6 7、设计实物工程量 根据计算,本工程抗浮锚杆设计实物工程量为:2号地块设置锚杆1107根,单根锚杆长度5.1m ,3#地块设置锚杆1927根,单根锚杆长度8m ,4#地块设置锚杆2707根,单根锚杆长度8m ,总计锚杆进尺43181.1m(含防水0.1m/根)。 8、锚固体强度及水泥浆配比 为增大锚固体的强度,锚固体采用豆石与砂浆结合体,填筑的豆石强度应无风化现象,

岩石锚杆风电机组基础设计及应用

龙源期刊网 https://www.360docs.net/doc/5317620482.html, 岩石锚杆风电机组基础设计及应用 作者:霍宏斌高建辉张文东 来源:《风能》2015年第03期 风能是最具开发前景的清洁可再生能源,同时也是具有巨大市场前景的能源。风电行业中风电机组整机销售价格逐年下降,风电场建造过程中风电机组本身造价几乎没有可减低空问。随着我国风电装机容量的快速增长,风电机组大型化趋势加快,风电机组基础安全问题频出。因此,在风电场的建设过程中,风电机组基础的安全性、风电场建设的造价成本、风电场建设周期等已经严重地影响了风电场的经济性,昂贵的传统风电机组基础形式已经严重地制约了风电场的健康发展。 因此,新型的风电机组基础研发是风电行业发展的必然趋势。风电机组基础能使风电场建设过程更加节省成本造价,在减低建设成本的同时又要保证更高的安全系数,保证了风电机组在趋于大型化的过程中风电机组基础更安全,保证风电场建设周期更快,提前建成投产,减少风电机组建设征地面积,更有效达到环评要求。同时,将基础形式衍生到其他大型高速设备基础结构中,使其各种大型设备基础结构更具有经济性。 岩石锚杆基础理论 一、基础分类 传统重力式基础主要是由大直径钢筋混凝土承台作为一个主要的结构体。从受力角度来看,传统基础的受力形式主要是用基础自身的重力来消化风电机组上部的巨大弯矩,风电机组与基础连接部位采用了基础环连接方式。 风电机组基础主要分为两种基础形式,分别为无张力灌注桩基础和岩石锚杆基础。无张力灌注桩基础适用于软土地区,例如砂土、粉土、粘土、湿陷性黄土、膨润土等。岩石锚杆基础适用于岩石、山地地区。 本文主要对锚杆基础进行说明,岩石锚杆风电机组基础是一种后张法无粘结预应力,岩石锚杆基础支持单筒式风电机组和塔筒。 二、基础组成 岩石锚杆主要由外圈锚杆系统、承台系统、内罔螺杆笼组成。锚杆系统由高强锚朴、螺母、高强灌浆料组成。螺杆笼由高强螺杆、底环、高强灌浆料组成。承台系统由高标号混凝土及钢筋组成。 外圈高强锚杆上部为2.5m-3.5m,使用PE套管形成自由端无粘结,高强锚杆下部与高强 灌浆料粘结,灌浆料与岩石产生粘结。承台使用C40混凝土将高强锚杆和高强螺杆连接为整

锚杆桩基础施工方案

锚杆桩基础施工方案 一、工程概况 东城丽景E栋应施工夯扩桩时漏打1根桩,经设计方设计5根静压锚杆桩来加强处理,单桩承载力为250KN,预制锚杆长2m和1m。 二、施工流程 1、垫层扎筋预埋锚杆支模浇砼堆载砂待压桩封桩回填土。 三、施工技术 1、承台梁浇筑 (1)钢筋及预埋锚杆 钢筋绑扎规范,在预留孔部位钢筋需截断时,必须在孔边设置加强筋,预理锚杆的位置必须准确,在定好位后与基础梁筋焊接,以保证其在浇砼时不发生错移。 (2)木模 预留压桩孔木模采用上口小,下口大形状,其上口尺寸为250 250,下口尺寸为300 300。 (3)砼浇筑 a、砼浇筑时严格按配合比执行。 b、浇砼时,振动器必须振到位,保证措施为在两侧各100mm处加高100mm砼振实。 C、砼浇后在基础梁侧及时回填湿土养护。 4、静压锚杆桩 (1)压桩时以2倍系数取值,即250KN 2=500KN。 (2)预制桩接桩焊接方式。

(3)严格按锚杆桩施工规范操作,相对应的桩应同时施工。 (4)压桩时技术员需架好水准仪,观测承台的上抬情况,如发现此状况立即停止加压,联系甲方与监理方现场处理,以防承台裂开。 (5)封桩的交叉钢筋焊接必须指派专业人员操作,焊接长度为10d(单面焊)或5d(双面焊)。 (6)封桩砼采用膨胀水泥或掺加膨胀剂。 (7)锚杆桩两端焊接角钢,并每隔0.1M扎一层钢筋网。 四、质量保证措施 (1)建立以生产管理为领导的施工、技术、材料、安全和质量管理小组,开展质量教育工作,使每一个员工都树立良好的质量意识。每道工序严格把关,保证施工质量,以优质高速完成工程。 (2)施工员要对轴线桩位进行反复校核,尺寸严加控制、复核。 (3)施工员对工程的每一道工序均认真进行复核,以设计要求和施工验收规范进行施工,做好隐蔽工程验收工作。严格掌握砼配合比的加料情况,按规定做好试块及进行养护。 (4)材料员严格把好材料关,每批材料进场必须有质量保证书,钢材采用涟钢正材,对不符合质量要求的材料一律退场。 (5)钢筋工程:所有进场钢筋必须提供质保书和产品质量证明书,同时现场按规范规定取样送检合格后,方可下料加工。钢筋加工和绑扎质量都必须符合设计和规范要求,钢筋采用集中加工,挂牌堆放。对绑焊接头均由技术熟悉的专业人员进行,且持证上岗,作业前进行模拟操作,试焊合格方可放焊并取样检测,现场焊接应作好详细记录,包括操作者姓名、证件号码,焊接部位数量,试件编号,试件质量情况。钢筋加工后应及时检查加工尺寸。在砼浇

锚杆计算

锚杆体杆体的截面积按下式确定: As>Kt*Nt/f yk As>Kt*Nt/f ptk Kt---锚杆杆体的抗拉安全系数,按7.3.2条选 Nt---锚杆的轴向拉力 锚杆杆体抗拉安全系数 锚杆的锚固长度可按下式的较大值 La>K*Nt/(∏*D*f mg*ψ) La>K*Nt/(n*∏*D*f ms*ψ*ε) K---锚杆锚固体的抗拔安全系数, Nt---锚杆的轴向拉力 La---锚杆的锚固长度 f mg---锚固段注桨体与地层间的粘结强度标准值 D---锚杆锚固段的钻孔直径 d---钢筋直径 ε---采用2根或以上钢筋,界面的黏结强度降低系数取0.6~0.85 ψ---锚固长度对黏结强度的影响系数 n---钢筋根数 岩土锚杆杆体抗拔安全系数 通常情况,锚杆入岩深度由岩石与水泥结石体之间的粘结强度强度控制。锚杆间距不小于1.5m 锚杆最大试验荷载不宜超过锚杆杆体极限承载力的0.8倍(9.1.1) 验收试验的锚杆数量不得少于锚杆总数的5%,且不得少于3根, 永久性锚杆最大试验荷载应取锚杆轴向拉力设计值的1.5倍,;临时性锚杆的最大试验荷载应取锚杆轴向拉力设计值的1.2倍。 (1)锚杆的基本试验:锚杆基本试验的目的是确定锚杆的抗拔承载力, 广东省基础规范11.2.2 锚杆杆体按轴心受拉构件计算,不考虑裂缝,仅按承载力要求计算As>Nt/f y 对永久抗拔锚杆锚杆尚应考虑抗腐蚀性要求,抗拔锚杆截面直径要比计算要求加大一个级别。 根据广东省基础规范11.2.1 Rt<0.8*d1*∑li*fi (锚杆规范确定入岩深度时采用锚杆轴向拉力设计值,水泥砂浆与岩石间的粘结强度的取为标准值,广东省确定入岩深度时采用锚杆轴抗拔承载力的特征值,水泥砂浆与岩石间的粘结

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b=KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b=44 .2643.0250??=1.48m

锚杆基础的施工

锚杆基础的施工 7.1施工前期准备工作 7.1.1熟悉基础图纸和地质勘探报告,了解工程特点、地层条件、设计要求。 7.1.2实地调查塔位的周边情况,包括施工场地、道路交通、水电供应、原材料采购等。 7.1.3结合实际地形提出图纸会审意见。 7.1.4对锚固段周边孔壁进行不透水性试验,当0.2~0.4Mpa压力作用10min后,锚固段周边渗水率超过0.01m3/mm时,应采用固结注浆或其他方法进行处理。 7.1.5对地下埋设物和障碍物等在规划设计阶段已经考虑的问题,在施工前应再度进行细部复核,实际确认无影响后方可施工。 7.1.6对钻孔。注浆及冲洗设备和管路排出的污水物,必须进行适当处理。 7.1.7充分了解关于作业的环保法律、地方法规、并掌握这些法律、法规对确定工程进度和管理的影响。 7.1.8其他:对施工空间、各种设备、辅助设备、工程用道路、与其他工程的配合关系、安全、卫生管理、气象条件等需要进行相应的检查。 7.2施工组织设计 岩石锚杆基础开工前,应详细制定施工组织设计,确定施工方法、施工材料、施工机械、施工程序、质量管理、进度计划、成本计划和安全管理等事项。锚杆基础工程的施工组织设计一般包括以下项目: 7.2.1工程概况:工程名称、工程特点、工程量、工期、地质情况。

7.2.2设计方对锚杆基础工程的要求7.2.3锚杆基础工程材料 7.2.4施工机械 7.2.5施工组织 7.2.6施工程序及各工程人员的配备。 7.2.7工程进度计划。 7.2.8施工管理及质量控制计划。 7.2.9安全、卫生管理计划。 7.2.10应交互工程验收的各种技术资料7.3施工管理程序示意图

关于抗浮锚杆的设计(精制甲类)

关于抗浮锚杆的设计 一、抗浮锚杆的构造要求: (1)、《全国民用建筑工程设计技术措施》2009 (简称《技术措施》)。第80页,7.3.1-5中,锚杆的长度不应小于4m,且不宜大于10m.。 (2)锚杆的间距除必须满足锚杆的受力要求外,尚需大于1.5m。 (3)《岩土锚杆(索)技术规程》第5.3.1条对注浆材料有要求。 A、水泥强度应大于32.5MPa, B、水泥采用普通硅酸盐水泥,其质量应符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB 175的要求。 C、第5.3.2条对搅拌水要求采用饮用水。拌合水的水质应复核现行行业标准《混凝土拌合用水标准》JGJ 63。 D、第5.3.3条对注浆材料采用的细骨料有要求。 E、第5.3.4条对注浆材料中使用的外加剂有要求。 二、抗浮锚杆的计算: 1、符号说明: Ru-------锚杆抗拔极限承载力标准值 Rt--------锚杆抗拔极限承载力特征值 Nt--------锚杆的轴向拉力设计值 Kt--------锚杆杆体的抗拉安全系数。 K---------锚杆锚固体的抗拔安全系数 2、计算内容 (1)、锚杆的轴向拉力设计值计算 根据抗浮水位及锚杆的间距,计算单根锚杆的所承担的轴向拉力设计值Nt A、地下室底板的水头为h,则水的浮力为f=10*h。 B、底板的自重为G C、抗浮锚杆承受的荷载q f D、根据《建筑荷载规范》,地下水浮力属可变荷载,底板自重(含地面做法)属永久荷载, 则荷载效应组合的设计值应根据其最不利荷载组合确定。

即抗浮锚杆承受的荷载q f由下式计算: q f=γQ*f - γG*G---------q f 为设计值, 其中γQ ----1.4 γG----0.9 单根锚杆的轴向拉力设计值Nt 计算 Nt= q f *a*b--------a、b为锚杆的间距 附加说明: 根据《地基基础设计规范》第9页3.0.5 条第3点,计算《建筑地基基础设计规范》第9页第3.0.5条第3 点的要求,计算基础抗浮稳定时,作用效应应按承载力极限状态下作用的基本组合,但其分项系数均为 1.0。-------根据《技术措施》,计算抗浮时,安全系数为 1.05。 但计算锚杆的配筋时,安全系数为 1.35. (2)、计算锚杆抗拔极限承载力标准值Ru 根据地勘报告提供的桩侧的阻力标准值,按《技术措施》第81页的7.3.2-2 公式 Ru=ξ1*π*D*Σ(λ1*q sin*L i ) 其中ξ1--------经验系数,永久锚杆取0.8 λ1-------抗拔系数。 q sin--------第I 层土的锚杆锚固段侧阻力标准值。 (3)、计算锚杆抗拔极限承载力特征值Rt 根据《岩土锚杆(索)技术规程》第21页,锚杆的抗拔安全系数K=2.2 详见表第7.3.1。 Rt=Ru/K 注意:承压桩(灌注桩、预应力桩的安全系数为2) 结论1: 单根锚杆的所承担的轴向拉力设计值1.05*Nt ≤Rt-------Rt 为特征值

岩石锚杆基础计算书

北大门岩石锚杆基础设计 一、 原始数据 1. 本基础为北大门岩石锚杆基础,起控制作用内力(设计值)为:N F =-16 2.72kN x V =-132.902kN,y V =-224.63kN (分解后)。由地质勘察院 提供的拟建场地土层分布为:○ 1 杂填土1.94m;○2中风化花岗岩深度未揭穿;岩石与砂浆的粘结强度特征值f=0.4Mpa。锚杆筋体采用热轧带肋三级钢筋,直径为32mm,水泥砂浆强度为30Mpa,细石混凝土强度等级为C30。基础混凝土强度等级为C30。锚杆的平面布置图及基础断面尺寸如下图所示: 锚杆平面布置图

A—A剖面图 2.构造要求 由《建筑地基基础设计规范》第8.6.1条及《高耸结构设计规范》第7.3.17条可得: 1)锚杆孔直径宜取锚杆筋体直径的3~4倍,即96~128mm,且不得 小于一倍锚杆直径加50mm,即不得小于82mm,本基础取

100mm,满足要求。 2) 锚杆中心间距不小于6倍的锚杆孔直径,即600mm,本基础取700mm,满足要求。 3) 锚杆筋体锚入岩石的深度应大于40d=40x32=1280mm,本基础为3000mm,满足要求。 4) 锚杆到基础边距不应小于150mm,本基础为200mm,满足要求。 5) 锚杆筋体插入上部的锚固长度应符合钢筋的锚固长度要求要求: /a y t l f d f α==0.14x360xd/1.43=35.3d 按一级抗震考虑需要乘以1.15的系数,且钢筋直径大于25mm 需要乘以1.1的修正系度,即: 1.051.1a E a l l =×=1.05x1.1x35.3d=45d 所以 a E l =45x32=1440mm 本基础为1500mm 满足要求。 二、 承载力计算 1.作用于基础底面形心处的内力为: x M =224.63x3.25=730kN m ?,y M =132.902x3.25=431.9kN m ?。 N F =-162.72kN,x V =-132.902kN,y V =-224.63kN。 2.基础自重及其上土重标准值为: k G =2x2x2x20=160kN 3.锚杆基础中单根锚杆所受最大拔力计算: 22yk i k k xk i ti i i M x F G M y N n y x ?+?=??∑∑ ,max t t N R ≤ ,max t N 22 162.721607300.75431.90.75860.7560.75?+××=??××=-258.54kN(拉) 由锚杆砂浆与岩石的粘结确定的t R 为

基坑锚杆设计

8888888888888 深基坑支护工程设计方案编制人: 审核人: 8888888888 二〇一二年一月九日

目录 第一章、工程概况 第二章、基坑支护方案设计及施工图第三章、降排水方案设计 第四章、施工技术措施 第五章、基坑变形及稳定性验算书

第一章、工程概况 一、工程概况 8888公司峰8号位于88路与88路交汇处的东南向,场地拟建2栋大楼,一栋30+1层,一栋32+1(均有一层地下室),框剪结构,场地设计地坪标高为 81.5m和82.5m(黄海高程)。 二、场地工程地质条件及水文地质条件 1、地层岩性 根据野外勘察结果,结合室内土工试验,场地地基土自上而下描述如下: ⑴杂填土层 灰褐色,褐黄色,紫红色,由砂砾,粘性土,风化岩块石,残积土,建筑垃圾等杂物的混合堆填,结构松散-稍密,湿-饱和,全场地分布;最薄处为0.50米,见于ZK19号孔;最厚处为7.00米,见于ZK3号孔;平均厚度为2.74米; 层面最高处标高为82.20米,见于ZK18号孔;层面最低处标高为81.00米,见于ZK29号孔;平均标高为81.67米; ⑵粉质粘土层 黄褐色间白色斑状,含有少量的铁锰质,硬塑状,饱和态。无摇震反应,稍有光泽,干强度中等,韧性中等。 该层分布于A号楼建筑场地,ZK1,ZK3,ZK4,ZK5,ZK6,ZK7,ZK8,ZK9,ZK11,ZK12,ZK13号孔揭露; 最薄处为2.40米,见于ZK3号孔;最厚处为4.40米,见于ZK1号孔;平

均厚度为3.23米; 层面最高处标高为78.60米,见于ZK9号孔;层面最低处标高为74.60米,见于ZK3号孔;平均标高为77.42米; ⑶强风化泥质砂岩 紫红色,黄褐色,层状构造,结构大部分破坏,风化裂隙很发育,岩体破碎,干钻钻进困难,取芯不完整呈碎块状与土状,浸水后易变软,岩体外露易崩解。岩体完整程度为极破碎,岩体基本质量等级为V级,极软岩。全场地分布; 其中在A号楼建筑场地,钻孔揭露的强风化层以黄褐色泥质砂岩为主,岩石风化为砂土状,块状,碎石状。 B号楼建筑场地,钻孔揭露的强风化层以紫红色泥质砂岩为主,岩石风化为块状,碎石状,岩心多为碎石状,短柱状。 该层最薄处为7.00米,见于ZK17号孔;最厚处为27.90米,见于ZK1号孔;平均厚度为16.01米。 层面最高处标高为81.70米,见于ZK19号孔;层面最低处标高为72.20米,见于ZK3号孔;平均标高为77.98米; ⑷中风化泥质砂岩层 紫红色,泥质结构,层状构造,风化裂隙稍发育,裂隙面可见有黑色氧化膜,结构面结合性一般,岩芯呈柱状,节长10-30cm。岩石完整程度为较完整,基本质量等级为IV级,软岩-软岩。全场地分布,揭露厚度10.8-20.9米;

相关文档
最新文档