导数及其应用测试题

导数及其应用测试题
导数及其应用测试题

导数及其应用测试题

一 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1、一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3

2

t 2+2t ,那么速度为零

的时刻是( )

A 0秒

B 1秒末

C 2秒末

D 1秒末和2秒末

2 曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

A (1,0)

B (2,8)

C (1,0)和(1,4)--

D (2,8)和(1,4)--

3 若()2

24ln f x x x x =--,则()'f x >0的解集为

A .()0,+∞ B. ()()1,02,-?+∞ C. ()2,+∞ D. ()1,0-

4、(原创题)下列运算中正确的是( )

①22()()()ax bx c a x b x '''++=+ ② 22(sin 2)(sin )2()x x x x ''''-=-

③222

sin (sin )()()x x x x x ''

-'= ④(cos sin )(sin )cos (cos )sin x x x x x x '''?=+

A ①④

B ①②

C ②③

D ③④

5、(改编题)下列函数中,在),0(+∞上为增函数的是 ( )

A.2sin y x =-

B.x xe y =

C.x x y -=3

D.x x y -+=)1ln(

6. (改编题)若函数f(x)=x 3

-3x+a 有3个不同的零点,则实数a 的取值范围是( )

A (-2,2)

B [-2,2]

C (-∞,-1)

D (1,+∞)

7 设函数f(x)=kx 3

+3(k -1)x 2

2k -+1在区间(0,4)上是减函数,则k 的取值范围是( )

A 、1

3

k <

B 、103

k <≤

C 、103

k ≤≤

D 、13

k ≤

8 (原创题)若函数1

()()f x x x a x a

=+

>-在3x =处取最小值,则=a ( ) A 1 B 2 C 4 D 2 或4

9 设函数f(x)在定义域内可导,y=f(x)的图象如下图所示,则导函数y=f '(x)

可能为 ( )

10 对于函数f(x)=x 3+ax 2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根.这四种说法中,正确的个数是( ) A 1 B 2 C 3 D 4 11 函数f(x)=

12e x (sinx +cosx)在区间[0,2

π

]上的值域为( ) A [12,122e π] B (12,1

2

2e π) C [1,2e π] D (1,2e π

)

12 设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( )

A

B

C

D 二 填空题(共4小题,每小题3分共12分,把答案填在相应的位置上) 13 (原创题) 已知函数3

1()138,2

f x x x =-+且,4)(0='x f 则=0x . 14 函数2cos y x x =+在区间[0,

]2

π

上的最大值是

15. 已知函数()2

x

e f x x =-,则f(x)的图象在与y 轴交点处的切线与两坐标轴围成的图形

的面积为_____________.

16(改编题)已知函数()x

f x e ex a =-+有零点,则a 的取值范围是 三 解答题(本大题五个小题,共52分,解答应写出文字说明,证明过程或演算步骤) 17 (改编题)已知函数d cx bx x x f +++=

23

3

1)(的图象过点(0,3),且在)1,(--∞和),3(+∞上为增函数,在)3,1(-上为减函数.

(1)求)(x f 的解析式; (2)求)(x f 在R 上的极值.

18 设函数f(x)=x+ax 2+blnx,曲线y=f(x)过P (1,0),且在P 点处的切线斜率为2. (1)求a,b 的值;

A B C D

(2)证明:f(x)≤2x -2.

19 已知c x bx ax x f +-+=2)(2

3在2-=x 时有极大值6,在1=x 时有极小值,求c b a ,,的值;并求)(x f 在区间[-3,3]上的最大值和最小值.

.

20 (改编题)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为

803

π

立方米,且l ≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>5)千元.设该容器的建造费用为y 千元.

(1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r. 21 已知函数ln ()1a x b

f x x x

=

++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.

(Ⅰ)求a 、b 的值;

(Ⅱ)证明:当0x >,且1x ≠时,ln ()1

x

f x x >-.

【挑战能力】

★1(改编题) 对于三次函数32

()(0)f x ax bx cx d a =+++≠,定义:设()f x ''是函数

()y f x =的导函数()y f x '=的导数,若()0f x ''=有实数解0x ,则称点00(,())x f x 为

函数()y f x =的“拐点”.现已知3

2

()322f x x x x =-+-,请解答下列问题: (1)求函数()f x 的“拐点”A 的坐标; (2)求证()f x 的图象关于“拐点”A 对称. ★2 设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.

(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,

∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.

3 已知二次函数)(x g 对任意实数x 都满足()()21121g x g x x x -+-=--,且()11g =-.令()

19()ln (,0)28

f x

g x m x m x =+++∈>R .

(1)求)(x g 的表达式;

(2)设1e m <≤,()()(1)H x f x m x =-+,证明:对任意21,x x []m ,1∈,恒有

12|()()| 1.H x H x -<

导数及其应用测试题答案

一 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只

有一项是符合题目要求的)

1、【答案】D

【解析】.∵s =

13t 3-32

t 2

+2t ,∴v =s′(t)=t 2-3t+2,令v =0得,t 2-3t+2=0, 解得t 1=1,t 2=2.

2 【答案】C

【解析】设切点为0(,)P a b ,'2'2

()31,()314,1f x x k f a a a =+==+==±, 把1a =-,代入到3()2f x x x =+-得4b =-;把1a =,代入到3()2f x x x =+-得0b =,所以0(1,0)P 和(1,4)-- 3 【答案】C. 【解析】

{}44

f (x)2x 2,f (x)0,2x 20,

x

x x 1)(x 2)

0,1x 0x 2,f (x)x x x 0,x 2.

=-->--

>+-><<>>>''-由条件得:令即(整理得:解得:或又因为的

定义域为所以 4、【答案】A

【解析】②2

2

(sin 2)(sin )2()x x x x '''-=-;③2224

sin (sin )()sin ()x x x x x

x x

''-'=;,

故选A

5、【答案】B

【解析】C 中'(1)0x x x y e xe e x =+=+>,所以x x y -=3为增函数. 6.【答案】A

【解析】.∵由f ′(x)=3x 2

-3=0得x=±1,∴f(x)的极大值为f(-1)=2+a , 极小值为f(1)=-2+a ,∴f(x)有3个不同零点的充要条件为2a 0

2a 0

+>??-+

即-2

【解析】2'()36(1)f x kx k x =+-,当0,'(4)0k f >≤;当0,'()60k f x x ==-<;

0,'()0k f x <<,综合1

3

k ≤.

8 【答案】B

【解析】.2

1

()1()f x x a '=-

-,因为函数在3x =处有最小值,则一定有

2

1

(3)10,(3)

f a '=-

=-解得24a a ==或,因为x a >,所以2a =. 9 【答案】D

【解析】当x<0时,f(x)单增,f '(x)>0; 当x>0时,f(x)先增后减,f '(x)的符号应是正负正,选D

10 【答案】C

【解析】.f′(x)=3x 2+2ax-1中Δ=4a 2+12>0,故该函数必有2个极值点x 1,x 2,且x 1·x 2=-

1

3

<0,不妨设x 1<0,x 2>0,易知在x=x 1处取得极大值,在x=x 2处取得极小值,而f(0)=1,故极大值必大于1,极小值小于1,而方程f(x)=0不一定有三个不等的实数根.故甲、乙、丙三人的说法都正确. 11 【答案】A 【解析】.f′(x)=

12e x (sinx +cosx)+1

2e x (cosx -sinx)=e x cosx , 当0≤x≤2π时,f′(x)≥0,∴f(x)在[0,2

π

]上是增函数.

∴f(x)的最大值为f(2π)=122e π,f(x)的最小值为f(0)=1

2

.

12 【答案】 C

【解析】.如图,

设底面边长为x(x>0)

则底面积S =

2x 4

, ∴h=

V S =

S 表=

×3+2x 4×2=x +2x 2

S′表=

S′表=

因为S 表只有一个极值,故x .

二 填空题(共4小题,每小题3分共12分,把答案填在相应的位置上)

13 【答案】

【解析】23'()8,2f x x =-+20003

'()842

f x x x =-+=∴= 14

【答案】36

【解析】'

12sin 0,6

y x x π

=-==,比较0,

,

62ππ

处的函数值,得max 6

y π

=

+15.【答案】

1

6

【解析】:函数f(x)的定义域为{x|x ≠2},(x)== .

f(x)的图象与y 轴的交点为(0,-),过此点的切线斜率k=

(0)=- .

∴直线方程为y+=-x ,即x+y+ =0 .

直线与x 轴、 y 轴的交点为(- ,0)∪(0,-) .∴S=

.

16 【答案】(,0]-∞

【解析】)(x f '=x e e -.由)(x f '0>得x

e e -0>,

∴2ln >x .由)(x f '0<得,1x <.

∴)(x f 在1x =处取得最小值. 只要0)(min ≤x f 即可.∴0e e a -+≤, ∴0a ≤.

∴a 的取值范围是(,0]-∞

三 解答题(本大题五个小题,共52分,解答应写出文字说明,证明过程或演算步骤) 17 【解析】(1))(x f 的图象过点)3,0(,3)0(==∴d f 33

1)(23

+++=

∴cx bx x x f ,c bx x x f ++='∴2)(2 又由已知得3,1=-=x x 是0)(='x f 的两个根, ??

?-=-=∴??

?=?--=+-∴3

1

31231c b c b 故333

1)(23

+--=

x x x x f (2)由已知可得1-=x 是)(x f 的极大值点,3=x 是)(x f 的极小值点 =∴极大值)(x f 3

14)1(=

-f =极小值)(x f 6)3(-=f 18 【解析】(1)f′(x)=1+2ax+

b x

. 由已知条件得()()f 10

f 12

=???'=??,即1a 012a b 2+=??++=?.

解得a=-1,b=3.

(2)f(x)的定义域为(0,+∞), 由(1)知f(x)=x-x 2+3lnx.

设g(x)=f(x)-(2x-2)=2-x-x 2+3lnx,则

g′(x)=-1-2x+3x =-()()x 12x 3x

-+.

当00;当x>1时,g′(x)<0.

所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减. 而g(1)=0, 故当x>0时,g(x)≤0,

即f(x)≤2x -2.

19 .【解析】:(1)

,223)(2

-+='bx ax x f 由条件知

.38,21,31.

6448)2(,

0223)1(,

02412)2(===??

?

??=+++-=-=-+='=--=-'c b a c b a f b a f b a f 解得

(2)

,2)(,38

22131)(223-+='+-+=

x x x f x x x x f

由上表知,在区间[-3,3]上,当3=x 时,

,6110max =f 1=x 时,.

23

min =f 20 【解析】(1)因为容器的体积为

803

π

立方米, 所以3

24r r l 3

π+π=803π,

解得l =

2804r

3r 3

-, 由于l ≥2r,因此0

2πr l =2πr(2804r 3r 3-)=2

1608r 3r 3

ππ-,

两端两个半球的表面积之和为4πr 2, 所以建造费用y=160r

π

-8πr 2+4πcr 2, 定义域为(0,2]. (2)因为y′=-

2160r

π

-16πr+8πcr =()32

8c 2r 20r π--[],0

由于c>5,所以c-2>0,

所以令y′>0得

令y′<0得

当c>5时,即

时, 函数y 在(0,2)上是先减后增的, 故建造费最小时

21 【解析】

(Ⅰ)22

1

(

ln )

'()(1)x x b x f x x x α+-=

-+

由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,

1'(1),2f f =??

?=-??即

1,

1,22

b a b =???-=-?? 解得1a =,1b =.

(Ⅱ)由(Ⅰ)知f(x)=

,1

1ln x

x x ++所以 ?

??

? ?

?---=--x x x x x f x

x 1ln 2111ln )(2

2

考虑函数 则h′(x)=

(

)()x

x x

x x x 2

2

22

2

1122--=---

所以x≠1时h′(x)<0而h(1)=0故 x ()1,0∈时h(x)>0可得ln ()1x

f x x >

-, x ()∞+∈,1

h(x)<0可得ln ()1x

f x x >-,

从而当0x >,且1x ≠时,ln ()1

x

f x x >-.

【挑战能力】

1 【解析】(1)2()362f x x x '=-+,()66f x x ''=-.令()660f x x ''=-=得 1x =, 3(1)13222f =-+-=-.∴拐点(1,2)A -

(2)设00(,)P x y 是()y f x =图象上任意一点,则32

0000322y x x x =-+-,因为

00(,)P x y 关于(1,2)A -的对称点为00(2,4)P x y '---,把P '代入()y f x =得

左边04y =--32

000322x x x =-+--,

右边32000(2)3(2)2(2)2x x x =---+--32

000322x x x =-+--

∴右边=右边00(2,4)P x y '∴---在()y f x =图象上∴()y f x =关于A 对称

2 【解析】(Ⅰ):根据求导法则有2ln 2()10x a

f x x x x

'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22

()10x F x x x x

-'=-=>,, 列表如下:

故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.

(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.

于是由上表知,对一切(0)x ∈+,

∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,

∞内单调增加. 所以当1x >时,()(1)0f x f >=,即2

1ln 2ln 0x x a x --+>.

故当1x >时,恒有2

ln 2ln 1x x a x >-+. 3 【解析】

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

导数及其应用测试题

导数及其应用测试题 一、选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.) 1.下列各式正确的是( ) A .(sin a )′=cos a (a 为常数) B .(cos x )′=sin x C .(sin x )′=cos x D .(x -5 )′=-15 x -6 2.函数y =x 2 (x -3)的减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2) 3.曲线y =4x -x 3 在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =7x +2 C .y =x -4 D .y =x -2 4.若函数f (x )=x 3 +ax 2 -9在x =-2处取得极值,则a =( ) A .2 B .3 C .4 D .5 5.函数y =13 x 3+x 2 -3x -4在[-4,2]上的最小值是( ) A .- 173 B.163 C .-643 D .-113 6.若曲线y =1 x 在点P 处的切线斜率为-4,则点P 的坐标是( ) A.????12,2 B.????-12,-2或????12,2 C.????-12,-2 D.????1 2,-2 7.已知函数y =f (x ),其导函数y =f ′(x )的图象如下图所示,则y =f (x )( ) A .在(-∞,0)上为减函数 B .在x =0处取极小值 C .在(4,+∞)上为减函数 D .在x =2处取极大值 8.若f (x )=-x 2 +2ax 与g (x )= a x +1 ,在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1) D .(0,1] 9.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .2∶1 B .1∶πC.1∶2 D .2∶π 10.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=, 且0x >时,()0f x '>,()0g x '>,则0x <时( ) A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C. ()0f x '<,()0g x '> D. ()0f x '<,()0g x '< 11.已知f(2)=-2,f ′(2)=g(2)=1,g ′(2)=2,则函数()() g x f x 在x=2处的导数值为( ) A.- 54 B.5 4 C.- 5 D.5 12.对于R 上可导的任意函数f (x ),若满足(x -1)f x '() ≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)

导数及其应用本章复习提升

第一章 导数及其应用 本章复习提升 易混易错练 易错点1 对导数的定义理解不够深刻致错 1.(2019安徽屯溪一中高二期中,★★☆)设f'(1)=4,则lim ?→0 f (1+2?)-f (1) ?=( ) A.8 B.4 C.-8 D.-4 2.(2019河南南阳高二月考,★★☆)已知函数f(x)在x=x 0处的导数为f'(x 0),则 lim Δx →0 f (x 0-mΔx )-f (x 0) Δx 等于( ) A.mf'(x 0) B.-mf'(x 0) C.-1m f'(x 0) D.1m f'(x 0) 易错点2 混淆“过某点”与“在某点处”的切线致错 3.(2019福建莆田八中高二期中,★★☆)曲线y=ex-ln x 在点(1,e)处的切线方程为( ) A.(1-e)x-y+1=0 B.(1-e)x-y-1=0 C.(e-1)x-y+1=0 D.(e-1)x-y-1=0 4.(2019湖南邵东一中高二期末,★★☆)曲线y=3x-ln(x+1)在点(0,0)处的切线方程为 . 5.(2019宁夏石嘴山第三中学高二期末,★★☆)曲线f(x)=2x 3-4x+1在点P 处的切线平行于直线y=2x-1,则点P 的坐标为 . 易错点3 对复合函数的求导法则理解不透致错 6.(★★☆)函数y=ln(1-x)的导数为 . 7.(★★☆)函数y=x ·e 1-cos x 的导数为 . 易错点4 忽视取极值的条件致错 8.(2019重庆一中高三下月考,★★☆)设函数f(x)=(x+1)e x +1,则( ) A.x=2为f(x)的极大值点

B.x=2为f(x)的极小值点 C.x=-2为f(x)的极大值点 D.x=-2为f(x)的极小值点 9.(★★☆)已知函数f(x)的导函数y=f'(x)的图象如图所示,则函数 f(x)的极大值共有( ) A.1个 B.2个 C.3个 D.4个 易错点5 利用导数研究函数的单调性 10.(★★☆)函数f(x)=x-ln x的单调递减区间是( ) A.(-∞,1) B.(0,1) C.(0,+∞) D.(1,+∞) x3-x2+bx,且f'(2)=-3. 11.(2019北京西城高二下期末,★★☆)已知函数f(x)=1 3 (1)求b; (2)求f(x)的单调区间.

导数及其应用多项选择题

导数及其应用 多项选择题(请将答案填写在各试题的答题区内) 1.(2019秋?滨州期末)已知定义在[0,)2π 上的函数()f x 的导函数为()f x ',且(0)0f =, ()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( ) A .()()64 f f ππ< B .()03f ln π > C .()2()63 f f ππ> D .()()43 f ππ > 2.(2019秋?张店区校级期末)关于函数2 ()f x lnx x =+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >成立 D .对任意两个正实数1x ,2x ,且12x x >,若12()()f x f x =,则124x x +> 3.(2019秋?济宁期末)已知函数()f x 的定义域为R 且导函数为()f x ',如图是函数()y xf x '=的图象,则下列说法正确的是( ) A .函数()f x 的增区间是(2,0)-,(2,)+∞ B .函数()f x 的增区间是(,2)-∞-,(2,)+∞ C .2x =-是函数的极小值点 D .2x =是函数的极小值点 4.(2019秋?漳州期末)定义在区间1[,4]2 -上的函数()f x 的导函数()f x '图象如图所示,则下列结论正确的 是( )

A .函数()f x 在区间(0,4)单调递增 B .函数()f x 在区间1 (,0)2 -单调递减 C .函数()f x 在1x =处取得极大值 D .函数()f x 在0x =处取得极小值 5.(2019秋?临沂期末)已知函数()sin cos f x x x x x =+-的定义域为[2π-,2)π,则( ) A .()f x 为奇函数 B .()f x 在[0,)π上单调递增 C .()f x 恰有4个极大值点 D .()f x 有且仅有4个极值点 6.(2019秋?烟台期中)已知函数()f x xlnx =,若120x x <<,则下列结论正确的是( ) A .2112()()x f x x f x < B .1122()()x f x x f x +<+ C . 1212 ()() 0f x f x x x -<- D .当1lnx >-时,112221()()2()x f x x f x x f x +> 7.(2019秋?润州区校级期末)直线1 2 y x b =+能作为下列函数图象的切线的有( ) A .1 ()f x x = B .4()f x x = C .()sin f x x = D .()x f x e = 8.如果函数()y f x =的导函数()y f x '=的图象如图所示,则以下关于函数()y f x =的判断正确的是( ) A .在区间(2,4)内单调递减 B .在区间(2,3)内单调递增 C .3x =-是极小值点 D .4x =是极大值点

(完整版)导数及其应用单元测试卷.docx

导数及应用 《导数及其应用》单元测试卷 一、 选择题 1.已知物体的运动方程是 s 1 t 4 4t 3 16t 2 ( t 表示时间, s 表示位移),则瞬时速度为 4 0 的时刻是:( ) A . 0 秒、 2 秒或 4 秒 B . 0 秒、 2 秒或 16 秒 C . 2 秒、 8 秒或 16 秒 D . 0 秒、 4 秒或 8 秒 2.下列求导运算正确的是( ) A . ( x 1 ) 1 1 B . (log 2 x) 1 x x 2 x ln 2 C . (3x ) 3x log 3 e D . x 2 cos x 2sin x 3.曲线 y x 3 2x 4 在点 (13), 处的切线的倾斜角为( ) A . 30° B . 45° C . 60° D . 120° 4.函数 y=2x 3-3x 2-12x+5 在 [0,3] 上的最大值与最小值分别是( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶 路程 s 看作时间 t 的函数,其图像可能是( ) s s s s O tO tO t O t A . 1 B . C . D . 6.设函数 f (x) 2x 1(x 0), 则 f ( x) ( ) x A .有最大值 B .有最小值 C .是增函数 D .是减函数 7.如果函数 y=f ( x ) 的图像如右图,那么导函数 y=f ( x ) 的图像可能是 ( ) 8.设 f ( x) x ln x ,若 f '(x 0 ) 2 ,则 x 0 ( ) A . e 2 B . e C . ln 2 D . ln 2 2

2012高中数学复习讲义(通用版全套)第十二章 导数及其应用

2012高中数学复习讲义 第十二章 导数及其应用 【知识图解】 【方法点拨】 导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。 1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。 2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。 3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。 4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。 5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。 6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。

(完整版)《导数及其应用》单元测试卷

《导数及其应用》单元测试 一、填空题(本大题共14题,每小题5分,共计70 分) 1、函数()cos sin f x x x x =+的导数()f x '= ; 2、曲线2 4x y =在点(2,1)P 处的切线斜率k =_________ ___; 3、函数13)(2 3+-=x x x f 的单调减区间为_________ __ _____; 4、设()ln f x x x =,若0'()2f x =,则0x =__________ ______; 5、函数3 2 ()32f x x x =-+的极大值是___________; 6、曲线3 2 ()242f x x x x =--+在点(1,3)-处的切线方程是________________; 7、函数93)(2 3 -++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =_______ __; 8、设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ____________; 9、已知曲线3lnx 4x y 2-=的一条切线的斜率为2 1 ,则切点的横坐标为_____________; 10、曲线3 x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 ; 11、已知函数3 ()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m , 则M m -=___________; 12、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = ; 13、已知函数)(x f x y '=的图像如右图所示(其中)(x f '是函数))(的导函数x f , 下面四个图象中)(x f y =的图象大致是______ ______; ① ② 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形, 记2 (S =梯形的周长) 梯形的面积 ,则S 的最小值是___ ____。

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

高中数学选修2-2第1章《导数及其应用》单元测试题

选修2-2第一章《导数及其应用》单元测试题 一、选择题:(每小题有且只有一个答案正确,每小题5分,共50分) 1.下列结论中正确的是( ) A .导数为零的点一定是极值点 B .如果在0x 附近的左侧0)('>x f ,右侧0)('x f ,右侧0)('x f ,那么)(0x f 是极大值 2. 已知函数c ax x f +=2)(,且(1)f '=2,则a 的值为( ) A .1 B .2 C .-1 D .0 3.()f x 与()g x 是定义在R 上的两个可导函数,若()f x 与()g x 满足()()f x g x ''=,则()f x 与()g x 满 足( ) A .()()f x g x = B .()()f x g x -为常数函数 C .()()0f x g x == D .()()f x g x +为常数函数 4.函数x x y 33-=在[-1,2]上的最小值为( ) A .2 B .-2 C .0 D .-4 5.设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( ) 6.方程010962 3 =-+-x x x 的实根个数是( ) A .3 B .2 C .1 D .0 7.曲线ln(21)y x =-上的点到直线082=+-y x 的最短距离是 ( ) A . B . C . D .0 8.曲线)2 30(cos π≤≤=x x y 与坐标轴围成的面积是( ) A .4 B . 52 C .3 D .2 9.设12ln )(:2 ++++=mx x x e x f p x 在),0(+∞内单调递增,5:-≥m q ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 A B C D

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

《导数及其应用》单元测试题详细答案

导数单元测试题 11.29 一、填空题 1.函数()2 2)(x x f π=的导数是_______ 2.函数x e x x f -?=)(的一个单调递增区间是________ 3.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则实数b 的范围是_______ 4.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为______ 5.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为_________ 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是_______ 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1) '(0) f f 的最小值为________ 8.设2 :()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的______________条件 9. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/ / f f f f -<<< y (B ) )2()2()3()3(0/ / f f f f <-<< (C ))2()3()2()3(0/ / f f f f -<<< (D ))3()2()2()3(0/ / f f f f <<-< O 1 2 3 4 x 10.函数()ln f x x x =的单调递增区间是____.

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题 一、 选择题(本大题共12小题,每小题5分,共60分) 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 》 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ) . A .]21,21[2π e B .)2 1 ,21(2π e C .],1[2π e D .),1(2π e 8.07622 3 =+-x x 在区间)2,0(内根的个数为 ( ) ] A .0 B .1 C .2 D .3

《导数及其应用》经典题型总结

《导数及其应用》 一、知识网络结构 题型一 求函数の导数及导数の几何意义 考点一 导数の概念,物理意义の应用 例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0(2)(2)lim 2h f h f h h →+--; (2)已知()(1)(2)(2008)f x x x x x =+++,求(0)f '. 考点二 导数の几何意义の应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c の值 例3:已知曲线y=.3 4313+x (1)求曲线在(2,4)处の切线方程;(2)求曲线过点(2,4)の切线方程. 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

题型二 函数单调性の应用 考点一 利用导函数の信息判断f(x)の大致形状 例1 如果函数y =f(x)の图象如图,那么导函数y =f(x)の图象可能是( ) 考点二 求函数の单调区间及逆向应用 例2 已知函数f (x )=12x 2+a ln x (a ∈R ,a ≠0),求f (x )の单调区间.(含参函数求单调区间) 例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a の取值范围.(单调性の逆向应用) 练习1:已知函数0],1,0(,2)(3>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a の取值范围。

2. 设a>0,函数ax x x f -=3)(在(1,+∞)上存在单调递减区间,求实数a の取值范围。 3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a の取值范围。 例3 已知x>1,证明x>ln(1+x).(证明不等式) 证明方法总结: 题型三 函数の极值与最值 例1 (1)求)f(x)=ln x +1x の极值(不含参函数求极值) (2)求函数[]2,2,14)(2-∈+=x x x x f の最大值与最小值。(不含参求最值) 例2 设a>0,求函数f(x)=x 2+a x (x>1)の单调区间,并且如果有极值时,求出极值. ( 含参函数求极值)

《导数及其应用》测试卷

导数及其应用测试卷 一、单项选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.函数()2 sin f x x =的导数是() A.2sin x B.2 2sin x C.2cos x D.sin2x 2.已知()2 1 cos 4 f x x x =+,() ' f x为() f x的导函数,则() ' f x的图像是() 3.若2 x=-是函数21 ()(1)x f x x ax e- =+-的极值点,则() f x的极小值为() A.1 - B.3 2e- - C.3 5e- D.1 4.若曲线() ln y x a =+的一条切线为y ex b =+,其中,a b为正实数,则 2 e a b + + 的取值范围是() A. 2 , 2 e e ?? ++∞ ? ?? B.[) ,e+∞ C.[) 2,+∞ D.[) 2,e 5.已知函数2x y=的图象在点) , (2 x x处的切线为l,若l也与函数x y ln =,)1,0( ∈ x的 图象相切,则 x必满足() A. 2 1 < ′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为() A.() f x B.() xf x C.() x e f x D.() x xe f x 7.已知函数 211 ()2() x x f x x x a e e --+ =-++ 有唯一零点,则a=() A. 1 2 - B. 1 3C. 1 2D.1

导数的综合应用练习题及答案

导数应用练习题答案 1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。 2(1)()23[1,1.5]f x x x =---; 2 1(2)()[2,2]1f x x = -+; (3)()[0,3]f x =; 2 (4)()1 [1,1]x f x e =-- 解:2 (1)()23 [1,1.5]f x x x =--- 该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14 ξ=。 解:2 1(2)()[2,2]1f x x = -+ 该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1 (2)5 f = ,满足罗尔定理,至少有一点(2,2)ξ∈-, 使22 2()0(1)f ξ ξξ-'= =+,解出0ξ=。 解:(3)()[0,3]f x = 该函数在给定闭区间上连续,其导数为() f x '=,在开区间上可导,而且(0)0f =, (3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈, 使()0 f ξ'==,解出2ξ=。 解:2 (4)()e 1 [1,1]x f x =-- 该函数在给定闭区间上连续,其导数为2 ()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2 ()2e 0f ξξξ'==,解出0ξ=。 2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。 3 (1)()[0,](0)f x x a a =>; (2)()ln [1,2] f x x =; 32(3)()52 [1,0] f x x x x =-+-- 解:3 (1)()[0,](0)f x x a a =>

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

导数及其应用》单元测试题(详细答案)

《导数及其应用》单元测试题(文科) (满分:150分 时间:120分钟) 一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D ) 2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )

最新《导数及其应用》单元测试题(理科)

《导数及其应用》单元测试题(理科) (满分150分 时间:120分钟 ) 一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()() ()(f x f x g x g x -=--=,,且0x >时,()0()f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4. =-+? dx x x x )1 11(322 1 ( ) (A)8 7 2ln + (B)872ln - (C)452ln + (D)812ln + 5.曲线1 2 e x y =在点2 (4e ),处的切线与坐标轴所围三角形的面积为( ) A. 2 9e 2 B.24e C.2 2e D.2 e 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有

第三章导数及其应用

第三章 导数及其应用 考点1 导数的概念及计算 1.(2014·陕西,10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( ) A .y =12x 3-1 2x 2-x B .y =12x 3+1 2x 2-3x C .y =1 4 x 3-x D .y =14x 3+1 2 x 2-2x 1.解析 法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项, y =12x 3-12x 2-x ,显然过两个定点,又y ′=3 2x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A. 法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题设有?????f (0)=0?d =0, f (2)=0?8a +4b +2c +d =0,f ′(0)=-1?c =-1, f ′(2)=3?12a +4b +c =3,解得a =12,b =-1 2,c =-1,d =0. 故该函数的解析式为y =12x 3-1 2x 2-x ,选A. 答案 A 2.(2016·新课标全国Ⅲ,16)已知f (x )为偶函数,当x ≤0时,f (x )=-x-1 e -x ,则曲线y =f (x ) 在

点(1,2)处的切线方程是________. 2.解析设x>0,则-x<0,f(-x)=e x-1+x, 因为f(x)为偶函数,所以f(x)=e x-1+x,f′(x)=e x-1+1,f′(1)=2, y-2=2(x-1),即y=2x. 答案y=2x 3.(2015·新课标全国Ⅰ,14)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 3.解析f′(x)=3ax2+1,f′(1)=1+3a,f(1)=a+2. 点(1,f(1))处的切线方程为y-(a+2)=(1+3a)(x-1). 将(2,7)代入切线方程,得7-(a+2)=(1+3a), 解得a=1. 答案1 4.(2015·新课标全国Ⅱ,16)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 4.解析由y=x+ln x,得y′=1+1 x,得曲线在点(1,1)的切线的斜率为k=y′|x=1=2,所以切 线方程为y-1=2(x-1),即y=2x-1,此切线与曲线y=ax2+(a+2)x+1相切,消去y得ax2+ax+2=0,得a≠0且Δ=a2-8a=0,解得a=8. 答案8 5.(2015·天津,11)已知函数f(x)=a ax ln,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________. 5.解析f′(x)=x a ln+ax·1x=a(ln x+1),由f′(1)=3得,a(ln 1+1)=3,解得a=3.

相关文档
最新文档