一种基于改进网格聚类的雷达信号预分选算法

一种基于改进网格聚类的雷达信号预分选算法
一种基于改进网格聚类的雷达信号预分选算法

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

改进的K-means聚类算法及应用

改进的K-means聚类算法及应用 摘要:传统的k-means算法需要事先确定初始聚类中心,聚类精确程度不高。针对以上问题,本文结合熵值法和动态规划算法来对传统的k-means算法进行改进,提出了基于熵值法及动态规划的改进k-means算法。熵值法用来修订算法的距离计算公式,以提高算法的聚类精确程度, 动态规划算法用来确定算法的初始聚类中心。将改进算法应用于矿井监测传感器聚类中,结果显示较传统的k-means算法,改进算法效率有了明显提高,聚类精确程度有较大增强。 关键词:k-means;动态规划;熵值法;聚类精确度;矿井监测传感器 【abstract】the traditional k-means has sensitivity to the initial clustering centers, and its clustering accuracy is low. to against these short comings, an improved k-means algorithm based on the combination of dynamic programming algorithm and entropy method is proposed. the entropy method is used to amend the distance calculating formula to improve the clustering accuracy, and dynamic programming algorithm is used to define the initial cluster centers. the result of the simulation on the clustering in the mine monitoring sensors shows that the proposed algorithm has better

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

(完整版)聚类算法总结

1.聚类定义 “聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性”——wikipedia “聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。”——百度百科 说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N 个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。 2.聚类过程: 1) 数据准备:包括特征标准化和降维. 2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中. 3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.

4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组. 5) 聚类结果评估:是指对聚类结果进行评估.评估主要有3 种:外部有效性评估、内部有效性评估和相关性测试评估. 3聚类算法的类别 没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示 的4 个类别.

[改进的聚类算法在农业经济类型划分中的应用] kmeans聚类算法改进

[改进的聚类算法在农业经济类型划分中的应用] kmeans聚类算法改进 一、引言 吉林省各地自然、经济、社会条件各有差异,对农业经济的 影响很大。为了稳定提高粮食综合生产能力,促进农业经济结构 进一步优化。就需要准确地对省内各市县农业经济类型进行划 分,以期做到合理的资源优化配置。本文采用一种改进的k-均值 聚类分析技术对所采集的吉林省各县市农业生产的相关数据进行 分析,目的是对吉林省各地农业经济类型进行划分,揭示各地区 农业生产的特点和优势,为加快全省农业经济发展提供依据。 二、改进的聚类算法基本原理 改进的聚类算法的基本思想是:首先对数据集合进行系统聚 类分析,得到聚类树及相应的聚类中心矩阵;接着从聚类树中查 找较早形成的大类,并计算其聚类中心,这样我们就得到了较好 的聚类数k及比较具有代表性的初试聚类中心集合;最后通过k- 均值算法进行聚类分析。 虽然此改进算法需要我们人为的设定条件,但是这些条件都 是在进行系统聚类分析之后的数据基础上得来的,比经典的k-均 值算法的直接判断聚类数和随机抽取初始聚类中心要具有明显的 优势。根据本文待挖掘的数据量和系统聚类的结果,初始条件设

定如下:被判定为较早形成的大类聚类,其包含的数据对象应大于4,与下一次合并的聚类间距越小越好,且应小于所有聚类过程中的聚类间距均值。 三、改进的聚类算法在吉林农业经济类型划分中的应用 分类指标的选择 农业经济系统是一个多因素、多层次、结构复杂的系统,要正确地划分农业经济类型,首先必须选择一套能全面反映当前农业经济状况的指标体系。为此我们根据吉林农业的实际情况,选择对农业经济发展起主导作用的因子作为聚类指标,通过实地调查和对统计资料的综合分析,选定以下10个指标:X1 ,年平均降水量;X2 ,年平均温度;X3 ,农业人口;X4 ,每公顷粮食产量;X5 ,农业机械总动力;X6 ,粮食面积占耕地面积比例; X7 ,林业产值占农业总产值比例;X8 ,牧业产值占农业总产值比例;X9,渔业产值占农业总产值比例;X10 ,人均收入。 数据准备 根据以上10项指标,我们通过查阅xx年《吉林省统计年鉴》可以得到吉林省各地区农业经济各项指标的原始数据,如表1所示。 数据来源:根据xx年《吉林省统计年鉴》整理。 数据挖掘结果 首先对以上数据进行标准化转换,之后采用系统聚类分析法得到聚类树,分析聚类树及聚类间距我们可以得到初始聚类数为

各种聚类算法的比较

各种聚类算法的比较 聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点 优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力 缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类

1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解

改进C均值聚类算法

改进C 均值聚类算法 C 均值算法属于聚类技术中一种基本的划分方法,具有简单、快速的优点。其基本思想是选取c 个数据对象作为初始聚类中心,通过迭代把数据对象划分到不同的簇中,使簇内部对象之间的相似度很大,而簇之间对象的相似度很小。对C 均值算法的初始聚类中心选择方法进行了改进,提出了一种从数据对象分布出发动态寻找并确定初始聚类中心的思路以及基于这种思路的改进算法。 1、C-均值聚类算法 ① 给出n 个混合样本,令1=I ,表示迭代运算次数,选取c 个初始聚合中心)1(j Z ,c j ,...,2,1=; ② 计算每个样本与聚合中心的距离))(,(I Z x D j k ,n k ,....,2,1=,c j ,...,2,1=。 若},...,2,1)),(,({min ))(,(,...,2,1n k I Z x D I Z x D j k c j i k ===,则i k w x ∈。 ③ 计算c 个新的集合中心:∑== +j n k j k j j x n I Z 1 )(1)1(,c j ,...,2,1=。 ④ 判断:若)()1(I Z I Z j j ≠+,c j ,...,2,1=,则1+=I I ,返回②,否则算法结束。 2、C-均值改进算法的思想 在C-均值算法中,选择不同的初始聚类中心会产生不同的聚类结果且有不同的准确率,此方法就是如何找到与数据在空间分布上尽可能相一致的初始聚类中心。对数据进行划分,最根本的目的是使得一个聚类中的对象是相似的,而不同聚类中的对象是不相似的。如果用距离表示对象之间的相似性程度,相似对象之间的距离比不相似对象之间的距离要小。如果能够寻找到C 个初始中心,它们分别代表了相似程度较大的数据集合,那么就找到了与数据在空间分布上相一致的初始聚类中心。 目前,初始聚类中心选取的方法有很多种,在此仅介绍两种: 1)基于最小距离的初始聚类中心选取法 其主要思想: (1) 计算数据对象两两之间的距离; (2) 找出距离最近的两个数据对象,形成一个数据对象集合A1 ,并将它们从总的数据集合U 中删除; (3) 计算A1 中每一个数据对象与数据对象集合U 中每一个样本的距离,找出在U 中与A1 中最近的数据对象,将它并入集合A1 并从U 中删除, 直到A1 中的数据对象个数到达一定阈值; (4) 再从U 中找到样本两两间距离最近的两个数据对象构成A2 ,重复上面的过程,直到形成k 个对象集合; (5) 最后对k 个对象集合分别进行算术平均,形成k 个初始聚类中心。 这种方法和Huffman 算法一样。后一种算法介绍是是基于最小二叉树的方法,看

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

(完整版)X-means:一种针对聚类个数的K-means算法改进

X-means:一种针对聚类个数的K-means算法改进 摘要 尽管K-means很受欢迎,但是他有不可避免的三个缺点:1、它的计算规模是受限的。2、它的聚类个数K必须是由用户手动指定的。3、它的搜索是基于局部极小值的。在本文中,我们引入了前两种问题的解决办法,而针对最后一个问题,我们提出了一种局部补救的措施。根据先前有关算法改进的工作,我们引入了一种根据BIC(Bayesian Information Criterion)或者AIC(Akaike information criterion)得分机制而确定聚类个数的算法,本文的创新点包括:两种新的利用充分统计量的方式,还有一种有效地测试方法,这种方法在K-means算法中可以用来筛选最优的子集。通过这样的方式可以得到一种快速的、基于统计学的算法,这种算法可以实现输出聚类个数以及他们的参量值。实验表明,这种技术可以更科学的找出聚类个数K值,比利用不同的K值而重复使用K-means算法更快速。 1、介绍 K-means算法在处理量化数据中已经用了很长时间了,它的吸引力主要在于它很简单,并且算法是局部最小化收敛的。但是它有三点不可避免的缺点:首先,它在完成每次迭代的过程中要耗费大量的时间,并且它所能处理的数据量也是很少的。第二,聚类个数K值必须由用户自身来定义。第三,当限定了一个确定的K值时,K-means算法往往比一个动态K值的算法表现的更差。我们要提供针对这些问题的解决办法,通过嵌入树型的数据集以及将节点存储为充分统计变量的方式来大幅度提高算法的计算速度。确定中心的分析算法要考虑到泰森多边形边界的几何中心,并且在估计过程的任何地方都不能存在近似的方法。另外还有一种估计方法,“黑名单”,这个列表中将会包含那些需要在指定的区域内被考虑的图心。这种方法不仅在准确度上以及处理数据的规模上都表现的非常好,而这个快速算法在X-means 聚类算法当中充当了结构算法的作用,通过它可以很快的估计K值。这个算法在每次使用 K-means算法之后进行,来决定一个簇是否应该为了更好的适应这个数据集而被分开。决定的依据是BIC得分。在本文中,我们阐述了“黑名单”方法如何对现有的几何中心计算BIC 得分,并且这些几何中心所产生的子类花费不能比一个单纯的K-means聚类算法更高。更进一步的,我们还通过缓存状态信息以及估计是否需要重新计算的方法来改善估计方法。 我们已经用X-means算法进行了实验,验证了它的确比猜K值更加科学有效。X-means 算法可以在人造的或者是真实数据中表现的更好,通过BIC得分机制。它的运行速度也是比K-means更快的。 2、定义 我们首先描述简单的K-means算法应该考虑哪些因素。通过K-means可以把一定量的数据集分为K个数据子集,这K个数据子集分别围绕着K个聚类中心。这种算法保持着K个聚类中心不变,并且通过迭代不断调整这K个聚类中心。在第一次迭代开始之前,K个聚类中心都是随机选取的,算法当聚类中心不再变化的时候返回最佳的结果,在每一次迭代中,算法都要进行如下的动作: 1、对于每一个节点向量,找到距离它最近的聚类中心,归入此类。 2、重新评估每一个图心的位置,对于每一个图心,必须是簇的质心。 K-means聚类算法通过局部最小化每个向量到对应图心的距离来实现聚类。同时,它处理真实数据时是非常慢的。许多情况下,真实的数据不能直接用K-means进行聚类,而要经过二次抽样筛选之后再进行聚类。Ester曾经提出了一种可以从树形数据中获得平衡的抽样数据的方法。Ng和Han曾经提出了一种可以指导概率空间对输入向量的检索模拟模型。

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/543824430.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.360docs.net/doc/543824430.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.360docs.net/doc/543824430.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.360docs.net/doc/543824430.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

数据挖掘常用聚类算法比较分析

1 BIRCH算法 BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的表示可用对应的聚类特征,而不必用具体的一组点来表示。它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。BIRCH算法通过聚类特征可以方便地进行中心、半径、直径及类内、类间距离的运算。算法的聚类特征树是一个具有两个参数分枝因子B和类直径T的高度平衡树。分枝因子规定了树的每个节点子女的最多个数,而类直径体现了对一类点的直径大小的限制即这些点在多大范围内可以聚为一类,非叶子结点为它的子女的最大关键字,可以根据这些关键字进 行插人索引,它总结了其子女的信息。 聚类特征树可以动态构造,因此不要求所有数据读人内存,而可以在外存上逐个读人。新的数据项总是插人到树中与该数据距离最近的叶子中。如果插人后使得该叶子的直径大于类直径T,则把该叶子节点分裂。其它叶子结点也需要检查是否超过分枝因子来判断其分裂与否,直至该数据插入到叶子中,并且满足不超过类直径,而每个非叶子节点的子女个数不大于分枝因子。算法还可以通过改变类直径修改特征树大小,控制其占内存容量。 BIRCH算法通过一次扫描就可以进行较好的聚类,由此可见,该算法适合于大数据量。对于给定的M兆内存空间,其空间复杂度为O(M),时间间复杂度为O(dNBlnB(M/P)).其中d为维数,N为节点数,P为内存页的大小,B为由P决定的分枝因子。I/O花费与数据量成线性关系。BIRCH算法只适用于类的分布呈凸形及球形的情况,并且由于BIRCH算法需提供正确的聚类个数和簇直径限制,对不可视的高维数据不可行。 2 CURE算法 CURE算法即使用代表点的聚类方法。该算法先把每个数据点看成一类,然后合并距离最近的类直至类个数为所要求的个数为止。CURE算法将传统对类的表示方法进行了改进,回避了用所有点或用中心和半径来表示一个类,而是从每一个类中抽取固定数量、分布较好的点作为描述此类的代表点,并将这些点乘以一个适当的收缩因子,使它们更靠近类的中心点。将一个类用代表点表示,使得类的外延可以向非球形的形状扩展,从而可调整类的形状以表达那些非球形的类。另外,收缩因子的使用减小了嗓音对聚类的影响。CURE算法采用随机抽样与分割相结合的办法来提高算法的空间和时间效率,并且在算法中用了堆和K-d树结构来提高算法效率。 3 DBSCAN算法 DBSCAN算法即基于密度的聚类算法。该算法利用类的密度连通性可以快速发现任意形状的类。其基本思想是:对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目。在DBSCAN算法中,发现一个类的过程是基于这样的事实:一个类能够被其中的任意一个核心对象所确定。为了发现一个类,DBSCAN先从对象集D中找到任意一对象P,并查找D中关于关径Eps和最小对象数Minpts的从P密度可达的所有对象。如果P是核心对象,即半径为Eps的P的邻域中包含的对象不少于Minpts,则根据算法,可以找到一个关于参数Eps和Minpts的类。如果P是一个边界点,则半径为Eps的P邻域包含的对象少于Minpts,P被暂时标注为噪声点。然后,DBSCAN处理D中 的下一个对象。 密度可达对象的获取是通过不断执行区域查询来实现的。一个区域查询返回指定区域中的所有对象。为了有效地执行区域查询,DBSCAN算法使用了空间查询R-树结构。在进行聚类前,必须建立针对所有数据的R*-树。另外,DBSCAN 要求用户指定一个全局参数Eps(为了减少计算量,预先确定参数Minpts)。为了确定取值,DBSCAN计算任意对象与它的第k个最临近的对象之间的距离。然后,根据求得的距离由小到大排序,并绘出排序后的图,称做k-dist图。k-dist 图中的横坐标表示数据对象与它的第k个最近的对象间的距离;纵坐标为对应于某一k-dist距离值的数据对象的个数。R*-树的建立和k-dist图的绘制非常消耗时间。此外,为了得到较好的聚类结果,用户必须根据k-dist图,通过试探选定一个比较合适的Eps值。DBSCAN算法不进行任何的预处理而直接对整个数据集进行聚类操作。当数据量非常大时,就必须有大内存量支持,I/O消耗也非常大。其时间复杂度为O(nlogn)(n为数据量),聚类过程的大部分时间用在区域查询操作上。DBSCAN算法对参数Eps及Minpts非常敏感,且这两个参数很难确定。 4 K-pototypes算法 K-pototypes算法结合了K-means方法和根据K-means方法改进的能够处理符号属性的K-modes方法,同K-means 方法相比,K-pototypes 算法能够处理符号属性。 5 CLARANS算法 CLARANS算法即随机搜索聚类算法,是一种分割聚类方法。它首先随机选择一个点作为当前点,然后随机检查它周

聚类比较

聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点

优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类 2.1.2典型算法 1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率 2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据 4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解2.4.2具体算法 1)概率聚类算法 期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释 2)最近邻聚类算法——共享最近邻算法SNN 特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数 不足:时间复杂度提高到了O(N^2) 3)K-Medioids算法 特点:用类中的某个点来代表该聚类

相关文档
最新文档