基于网格的聚类方法研究

基于网格的聚类方法研究
基于网格的聚类方法研究

(a) (b)

图1 网格单元的相连定义(a)4-connection (b)8-connection

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

聚类分析算法解析.doc

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象 <- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法 "median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

基于k—means聚类算法的试卷成绩分析研究

基于k—means聚类算法的试卷成绩分析研 究 第39卷第4期 2009年7月 河南大学(自然科学版) JournalofHenanUniversity(NaturalScience) V o1.39NO.4 Ju1.2009 基于k—means聚类算法的试卷成绩分析研究 谭庆' (洛阳师范学院信息技术学院,河南洛阳471022) 摘要:研究_rk-means聚类算法,并将此算法应用于高校学生试卷成绩分析中.首先对数据进行了预处理,然后 使用k-means算法,对学生试卷成绩进行分类评价.用所获得的结果指导学生的学习和今后的教学工作. 关键词:数据挖掘;聚类;k-means算法;试卷成绩 中圈分类号:TP311文献标志码:A文章编号:1003—4978(2009)04—0412—04 AnalysisandResearchofGradesofExaminationPaper BasedonK—meansClusteringAlgorithm TANQing (Acaderny.l,InformationTechnologY,LuoyangNormalUniversity,LuoyangHenan47102 2,China) Abstract:Thispaperresearcheslhekmeansclusteringalgorithmandappliesittotheanalysiso fthegradedataof examinationpaperofhighereducationschoolSstudents.Firstly,itpreprocessesthedatabefor eminingThen,it usesthek—

基于聚类分析的Kmeans算法研究及应用概要

第24卷第5期 2007年5月 计算机应用研究 Application Resea心h of Computers V01.24.No.5 Mav 2007 基于聚类分析的K—means算法研究及应用爿: 张建萍1,刘希玉2 (1.山东师范大学信息科学与工程学院,山东济南250014;2.山东师范大学管理学院,山东济南250014 摘要:通过对聚类分析及其算法的论述,从多个方面对这些算法性能进行比较,同时以儿童生长发育时期的数据为例通过聚类分析的软件和改进的K.means算法来进一步阐述聚类分析在数据挖掘中的实践应用。 关键词:数据挖掘;聚类分析;数据库;聚类算法 中图分类号:TP311文献标志码:A 文章编号:1001—3695(200705—0166-03 Application in Cluster’s Analysis Is Analyzed in Children DeVelopment Period ZHANG Jian—pin91,UU Xi—yu。 (1.coz比伊矿,咖mo砌n 5c掂Me&E蟛袱^增,|s胁础增Ⅳo丌mf‰洫瑙毋,五n 帆5^a蒯D昭250014,吼i胁;2.cozz学矿讹加舻删眦, s^0n幽凡g舳丌Mf‰i孵璐匆,^加n乩。砌。昭250014,傩iM Abstract: nis paper passed cluster’s analysis and its algorithm corTectly,compared

these algorithm perfbrnlances f}om a lot of respects,and explained that cluster analysis excavates the practice application of in datum further to come through software and impmved K—means aIgorithm,cIuster of analysis at the same time practise appIication. Key words:data mining; cluster analysis; database; cluster algorithm 随着计算机硬件和软件技术的飞速发展,尤其是数据库技 术的普及,人们面临着日益扩张的数据海洋,原来的数据分析工具已无法有效地为决策者提供决策支持所需要的相关知识, 从而形成一种独特的现象“丰富的数据,贫乏的知识”。数据挖掘…又称为数据库中知识发现(Knowledge Discovery from Database,KDD,它是一个从大量数据中抽取挖掘出未知的、有价值的模式或规律等知识的复杂过程。目的是在大量的数据中发现人们感兴趣的知识。 常用的数据挖掘技术包括关联分析、异类分析、分类与预测、聚类分析以及演化分析等。由于数据库中收集了大量的数据,聚类分析已经成为数据挖掘领域的重要技术之一。 1问题的提出 随着社会的发展和人们生活水平的提高,优育观念嵋一。逐渐渗透到每个家庭,小儿的生长发育越来越引起家长们的重视。中国每隔几年都要进行全国儿童营养调查,然而用手工计算的方法在大量的数据中分析出其中的特点和规律,显然是不现实的,也是不可行的。为了有效地解决这个问题,数据挖掘技术——聚类分析发挥了巨大的作用。 在数据挖掘领域,聚类算法经常遇到一些问题如聚类初始点的选择H J、模糊因子的确定‘5o等,大部分均已得到解决。现在的研究工作主要集中在为大型的数据库有效聚类分析寻找适当的方法、聚类算法对复杂分布数据和类别性数据聚类的有效性以及高维数据聚类技术等方面。本文通过对聚类分析算法的分析并重点

系统聚类分析方法

系统聚类分析方法 聚类分析是研究多要素事物分类问题的数量方法。基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。 1. 聚类要素的数据处理 假设有m 个聚类的对象,每一个聚类对象都有个要素构成。它们所对应的要素数据可用表3.4.1给出。(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。 ①总和标准化 ②标准差标准化

③极大值标准化 经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。 ④极差的标准化 经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。 2. 距离的计算 距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。 ①绝对值距离

选择不同的距离,聚类结果会有所差异。在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。

例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。 对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:

3. 直接聚类法 直接聚类法是根据距离矩阵的结构一次并类得到结果。 ▲ 基本步骤: ①把各个分类对象单独视为一类; ②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。 ★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。因此,直接聚类法并不是最好的系统聚类方法。 [举例说明](点击打开新窗口,显示该内容) 例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。 解: 根据上面的距离矩阵,用直接聚类法聚类分析:

聚类分析法总结

聚类分析法 先用一个例子引出聚类分析 一、聚类分析法的概念 聚类分析又叫群分析、点群分析或者簇分析,是研究多要素事物分类问题的数量,并根据研究对象特征对研究对象进行分类的多元分析技术,它将样本或变量按照亲疏的程度,把性质相近的归为一类,使得同一类中的个体都具有高度的同质性,不同类之间的个体都具有高度的异质性。 聚类分析的基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 描述亲属程度通常有两种方法:一种是把样本或变量看出那个p维向量,样本点看成P 维空间的一个点,定义点与点之间的距离;另一种是用样本间的相似系数来描述其亲疏程度。有了距离和相似系数就可定量地对样本进行分组,根据分类函数将差异最小的归为一组,组与组之间再按分类函数进一步归类,直到所有样本归为一类为止。 聚类分析根据分类对象的不同分为Q型和R型两类,Q--型聚类是对样本进行分类处理,R--型聚类是对变量进行分类处理。 聚类分析的基本思想是,对于位置类别的样本或变量,依据相应的定义把它们分为若干类,分类过程是一个逐步减少类别的过程,在每一个聚类层次,必须满足“类内差异小,类间差异大”原则,直至归为一类。评价聚类效果的指标一般是方差,距离小的样品所组成的类方差较小。 常见的聚类分析方法有系统聚类法、动态聚类法(逐步聚类法)、有序样本聚类法、图论聚类法和模糊聚类法等。 二、对聚类分析法的评价 聚类分析也是一种分类技术。与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。与回归分析、判别分析一起被称为多元分析的三大方法。 聚类的目的:根据已知数据,计算各观察个体或变量之间亲疏关系的统计量(距离或相关系数)。根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的

聚类分析及算法研究

聚类分析及算法研究 公允价值计量属性的应用 ——以我国金融行业为例 赵婷 (重庆理工大学会计学院,重庆400054) 公允价值对金融行业的影响不容忽视。以我国金融行业A股上市公司2015年年报披露的信息为基础,分析了当前公允价值计量的应用意义;同时,阐述了金融行业运用公允价值计量的现状。结果表明,公允价值计量属性对金融行业资产的计量极其重要,可以帮助提高行业信息的相关性,有助于投资者了解金融市场动态。 标签:公允价值;金融行业;会计信息质量 1引言 随着经济的发展,国家在不断地修订会计准则,会计政策也随之产生巨大的变化,而会计政策的每一次变动,都对处于该经济背景下的企业产生了深远的影响。有学者认为,经济环境的变化将持续不断地影响着会计政策的选取,而如何在历次的变化中觉察会计政策变化的轨迹与特征,并利用其具有的特征和轨迹做出有利于企业经营管理的决策,应是我们重点关注的领域,而公允价值计量属性是会计政策的内容之一。 2公允价值计量属性的应用意义 公允价值计量属性对我国金融资产的计量影响深远。美国历史上著名的“储蓄与贷款危机”表明:企业若以公允价值对储蓄和贷款款项进行计量,能够及时的向大众传达企业已经资不抵债的现状,有助于减少投资者的损失,反之,企业若自欺欺人的认为自身资金实力雄厚,偿债能力较强,会误导外部投资者与政府监管部门而使企业和社会蒙受了巨大的损失。随着市场经济的发展,企业经营业务不断的扩张,越来越多的公司开展股票、债券等金融产品的交易,市场活跃程度加强,历史成本计量属性已不符合广大投资者的需求,急需“公允价值”入驻进行恰当的补充。 3金融行业公允价值计量属性应用现状 表12015年金融业A股上市公司年报披露公允价值变动损失最大的前十家公司及原因

大数据聚类算法研究(汽车类的)

大数据聚类算法研究(汽车类的) 摘要:本文分析了汽车行业基于不同思想的各类大数据聚类算法,用户应该根 据实际应用中的具体问题具体分析,选择恰当的聚类算法。聚类算法具有非常广 泛的应用,改进聚类算法或者开发新的聚类算法是一件非常有意义工作,相信在 不久的将来,聚类算法将随着新技术的出现和应用的需求而在汽车行业得到蓬勃 的发展。 关键词:汽车;大数据;聚类算法;划分 就精确系数不算太严格的情况而言,汽车行业内对各种大型数据集,通过对 比各种聚类算法,提出了一种部分优先聚类算法。然后在此基础之上分析研究聚 类成员的产生过程与聚类融合方式,通过设计共识函数并利用加权方式确定类中心,在部分优先聚类算法的基础上进行聚类融合,从而使算法的计算准度加以提升。通过不断的实验,我们可以感受到优化之后算法的显著优势,这不仅体现在 其可靠性,同时在其稳定性以及扩展性、鲁棒性等方面都得到了很好的展现。 一、汽车行业在大数据时代有三个鲜明的特征 1、数据全面数字化,第一人的行为数字化,包括所有驾驶操作、每天所有的行为习惯,甚至是座椅的习惯等等都将形成相应的数字化。以车为中心物理事件 的数字化,车况、维修保养、交通、地理、信息等等都会形成数字化,全面数字 化就会形成庞大的汽车产业链,汽车的大数据生态圈。这是第一个特点。 由于大数据拥有分析和总结的核心优势,越来越多的品牌厂商和广告营销机 构都在大力发展以数据为基础的网络营销模式,这些变化也在不断地向传统的汽 车营销领域发起进攻。从前品牌做营销仅能凭主观想法和经验去预估,而现在大 数据的出现则可以帮助客户进行精准的客户群定位。 2、第二个特点是数据互联资源化。有一个领导人讲过:未来大数据会成为石油一样的资源。这说明大数据可以创造巨大的价值,甚至可能成为石油之外,更 为强大的自然资源。 大数据首先改变了传统调研的方式。通过观察Cookie等方式,广告从业者可 以通过直观的数据了解客观的需求。之前的汽车市场调研抽样的样本有限,而且 在问题设计和角度选取过程中,人为因素总是或多或少地介入,这就可能会影响 到市场调研的客观性。大数据分析不只会分析互联网行为,也会关注人生活的更 多纬度。数据可以更加丰富,比如了解到消费者的习惯和周期、兴趣爱好、对人 的理解会更加深刻。这些因素综合在一起就会形成一笔无形且珍贵的数据资源。 有了大数据的支持,便可以实现曾经很多只能“纸上谈兵”的理论。 3、第三个特点则是产生虚拟的汽车,人和汽车可以对话,更具有智慧的新兴产业。这个就是未来在大数据时代,汽车行业会呈现的特点。 在这个情况下,我们以人、车、社会形成汽车产业大数据的生态圈,现实生 活中每个有车一族所产生的数据都对整个生态圈有积极的影响。车辆上传的每一 组数据都带有位置信息和时间,并且很容易形成海量数据。如果说大数据的特征 是完整和混杂,那么车联网与车有关的大数据特征则是完整和精准。如某些与车 辆本身有关的数据,都有明确的一个用户,根据不同用户可以关联到相应的车主 信息,并且这些信息都是极其精准的,这样形成的数据才是有价值的数据。 二、汽车行业大数据下聚类算法的含义 汽车行业大数据是指以多元形式,由许多来源搜集而组成的庞大数据组。电 子商务网站、社交网站以及网页浏览记录等都可以成为大数据的数据来源。同时,

K-均值聚类法实例解析

例: 为了更深入了解我国环境的污染程度状况,现利用2009 年数据对全国31个省、自治区、直辖市进行聚类分析。 解:现在要分析我国各个地区的环境污染程度,案例中选择了各地区“工业废气排放总量”、“工业废水排放总量”和“二氧化硫排放总量”三个指标来反映不同污染程度的环境状况,同时选择了北京等省市的数据加以研究。这个问题属于典型的多元分析问题,需要利用多个指标来分析各省市之间环境污染程度的差异。因此,可以考虑利用快速聚类分析来研究各省市之间的差异性,具体操作步骤如下。 1)打随书光盘中的数据文件9-2.sav,选择菜单栏中的【A nalyze(分析)】→【Classify(分 类)】→【K-Means Cluster(K均值聚类)】命令,弹出【K-Means Cluster Analysis(K均值聚类分析)】对话框。 2)在左侧的候选变量列表框中将X1、X2和X3变量设定为聚类分析变量,将其添加至 【Variables(变量)】列表框中;同时选择Y作为标识变量,将其移入【Label Cases by (个案标记依据)】列表框中。 3)在【Number of Clusters(聚类数)】文本框中输入数值“3”,表示将样品利用聚类分析 分为三类,如下图所示。 4)单击【Save(保存)】按钮,弹出【K-Means Cluster Analysis:Save(K均值聚类分析: 保存)】对话框;勾选【Cluster membership(聚类新成员)】和【Distanc e from cluster center (与聚类中心的距离)】复选框,表示输出样品的聚类类别及距离,其他选项保持系统默认设置,如下图所示,单击【Continue(继续)】按钮返回主对话框。

基于聚类分析的K-means算法研究及应用概要

基于聚类分析的K-means算法研究及应用 摘要:通过对聚类分析及其算法的论述,从多个方面对这些算法性能进行比较,同时以儿童生长发育时期的数据为例通过聚类分析的软件和改进的K-means算法来进一步阐述聚类分析在数据挖掘中的实践应用。 关键词:数据挖掘;聚类分析;数据库;聚类算法 随着计算机硬件和软件技术的飞速发展,尤其是数据库技术的普及,人们面临着日益扩张的数据海洋,原来的数据分析工具已无法有效地为决策者提供决策支持所需要的相关知识,从而形成一种独特的现象“丰富的数据,贫乏的知识”。数据挖掘[1]又称为数据库中知识发现(Knowledge Discovery from Database,KDD),它是一个从大量数据中抽取挖掘出未知的、有价值的模式或规律等知识的复杂过程。目的是在大量的数据中发现人们感兴趣的知识。 常用的数据挖掘技术包括关联分析、异类分析、分类与预测、聚类分析以及演化分析等。由于数据库中收集了大量的数据,聚类分析已经成为数据挖掘领域的重要技术之一。 1问题的提出 随着社会的发展和人们生活水平的提高,优育观念[2,3]逐渐渗透到每个家庭,小儿的生长发育越来越引起家长们的重视。中国每隔几年都要进行全国儿童营养调查,然而用手工计算的方法在大量的数据中分析出其中的特点和规律,显然是不现实的,也是不可行的。为了有效地解决这个问题,数据挖掘技术——聚类分析发挥了巨大的作用。 在数据挖掘领域,聚类算法经常遇到一些问题如聚类初始点的选择[4]、模糊因子的确定[5]等,大部分均已得到解决。现在的研究工作主要集中在为大型的数据库有效聚类分析寻找适当的方法、聚类算法对复杂分布数据和类别性数据聚类的有效性以及高维数据聚类技术等方面。本文通过对聚类分析算法的分析并重点从聚类分析的软件工具和改进的K-means算法两个方面来论证聚类分析在儿童生长发育时期中的应用。 2聚类算法分析 聚类[6]分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。在医学实践中也经常需要做分类工作,如根据病人的一系列症状、体征和生化检查的结果,判断病人所患疾病的类型;或对一

聚类分析原理及步骤

1、什么是聚类分析 聚类分析也称群分析或点群分析,它是研究多要素事物分类问题的数量方法,是一种新兴的多元统计方法,是当代分类学与多元分析的结合。其基本原理是,根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 聚类分析是将分类对象置于一个多维空问中,按照它们空问关系的亲疏程度进行分类。 通俗的讲,聚类分析就是根据事物彼此不同的属性进行辨认,将具有相似属性的事物聚为一类,使得同一类的事物具有高度的相似性。 聚类分析方法,是定量地研究地理事物分类问题和地理分区问题的重要方法,常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。 2、聚类分析方法的特征 (1)、聚类分析简单、直观。 (2)、聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析。 (3)、不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解。 (4)、聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。 (5)、研究者在使用聚类分析时应特别注意可能影响结果的各个因素。 (6)、异常值和特殊的变量对聚类有较大影响,当分类变量的测量尺度不一致时,需要事先做标准化处理。 3、聚类分析的发展历程 在过去的几年中聚类分析发展方向有两个:加强现有的聚类算法和发明新的聚类算法。现在已经有一些加强的算法用来处理大型数据库和高维度数据,例如小波变换使用多分辨率算法,网格从粗糙到密集从而提高聚类簇的质量。 然而,对于数据量大、维度高并且包含许多噪声的集合,要找到一个“全能”的聚类算法是非常困难的。某些算法只能解决其中的两个问题,同时能很好解决三个问题的算法还没有,现在最大的困难是高维度(同时包含大量噪声)数据的处理。 算法的可伸缩性是一个重要的指标,通过采用各种技术,一些算法具有很好的伸缩

聚类分析的算法和应用

聚类分析的算法和应用 聚类分析是无监督学习的一种方式,根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样品,要求能合理地按各自的特性来进行合理的分类,没有任何模式可供参考或依循,即是在没有先验知识的情况下进行的。聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。 聚类分析被应用于很多方面,在商业上,聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征;在生物上,聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识;在地理上,聚类能够帮助在地球中被观察的数据库商趋于的相似性;在保险行业上,聚类分析通过一个高的平均消费来鉴定汽车保险单持有者的分组,同时根据住宅类型,价值,地理位置来鉴定一个城市的房产分组;在因特网应用上,聚类分析被用来在网上进行文档归类来修复信息。 聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。 聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical methods):基于密度的方法(density-based methods): 基于网格的方法(grid-basedmethods): 基于模型的方法(model-based methods)。 分裂法又称划分方法(PAM:PArtitioning method),首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。 层次法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。 K-means cluster analysis(KCA)也叫快速聚类,是我们现在做人群细分时最常使用的方法。该方法是单纯应用统计技术根据若干指定变量将众多案例分到固定的类别中去。此种方法用于大量case的类别划分时非常有效。但该方法可以选择的内容较少,最重要的是选择聚类的数量,迭代的次数,和聚类的中心位置;人为经验和判断无形中会起很大作用。KCA 方法本身是要求事先确定分类的。它不仅要求确定分类的类数,而且你还需要事先确定点,也就是聚类种子,当然,SPSS可以为你自动选种子。然后,根据其他点离这些种子的远近把所有点进行分类。再然后呢,就是将这几类的中心作为新的基石,再分类。如此迭代。 TwoStep Cluster Analysis是揭示自然类别的探索性工具。该方法的算法与传统聚类技术

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1. 加载数据 data(iris) str(iris) > data (iris) > str(iris) 1 data .fizame :": 150 oba.. of 5 var iato les : $ Sepal. Length: num 5,. 1 电?9 屯?=4.6 5 5.4 4, E S 4?4 4?9 ■■甲 S Sepal. Width : num 3<5 3 3*2 3.1 3.6 3*9 3.4 3.1 2 ,9 3*1 $ Petal .Length: nuio 1?4 1?4 1?3 1.5 1?4 1,4 1 ■理 1?5??? $ Petal. Width. : num 0..2 0). 2 0.2 0.2 0.2 0.4 0?3 0.2 0.2 0.1 ■… $ Species : Factor w/ 3 levels ^setosa^-j -?verslcolor **, ■八 1 1 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在 R 中采用dist()函数,或者cluster 包中 的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x 是数据框(数据集),而方法可以指定为欧式距离 "euclidean", 最大距离 "maximum",绝对值距离"manhattan", "canberra", 二进制距离非对称 "binary" 和明氏距 离"mi nkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。 比如都是连续类型, 或者都是二值类型。 dd<-dist(iris) str(dd) > str(dd) Class 'disf atomic [1: 11175] CL 539 Cl ?£l 0.6^18 D ? 1^11 0.616 **? ??—attr (*z *r Size F,J = lnt 150 .attr= logi FALSE .atvr ^Vpper**) = logi FALSE ■ +— attr ( *, fr methcd r,) = chr fF euclidean F, ?* 一 attr ( *t *r calldist (x = ir is) 距离矩阵可以使用 as.matrix() 函数转化了矩阵的形式,方便显示。 例样本间距离矩阵为 150行列的方阵。下面显示了 1~5号样本间的欧式距离。 dd<-as.matrix(dd) > str(dd) -attr (*y ^diimnames"] =List of 2 ..$ : chr [1:150] H l ,f ”旷 ”3” "4” : chr [1:150] n l rr "2n Iris 数据共150 0.51 0.648 0?141 num [1:150, 0 0.539

聚类分析简单介绍

因为混合模型是一个灵活且强有力的概率建模工具,在理论和实践中得到了 极为广泛的应用,它具有以下的优势 (1)提供了用简单的结构模拟复杂分布的一个有效的模型。正态分布在实践中 应用很广,主要因为它形式较简单并且有很强的理论支持,因此它是最重要、最 基本的分布。理论己经证明,利用混合正态分布模型可以逼近任何一个光滑分布, 即只要项数it足够大,有限混合分布模型可以用于描述任何复杂现象,从而有利于解决实际生活中的许多难题。 (2)提供了模拟同质性和异质性的一个自然框架。当)t = l时,该模型是一个单一分布,因此数据具有相同的性质;当时,(1-1)式就反映了混合数据的异质 性。 (3)即使现象比较复杂时,混合模型在参数的框架内也提供了一个可行的建模 环境,它综合了参数模型的解析优势和非参数模型的灵活性,因而具有更多的建 模优势。 综上所述,混合分布模型是大量数据部分特征的比较有效的模拟。 高斯混合模型(Gaussian Mixture Model, GMM)是一个常用的描述混合密度分 布的模型,即多个高斯分布的混合分布ti5]。高斯混合模型是一种半参数的密度估计方法,它融合了参数估计法和非参数估计法的优点,既不局限于特定的概率密 度函数的形式,而且模型的复杂度仅与所求解的问题有关而与样本集合的大小无关。高斯混合模型的一个重要特性是,如果模型中的成员足够多,它能够以任意 精度逼近任意的连续分布。所以高斯混合模型在许多领域得到了广泛的应用。

复杂度这对矛盾,促使基于聚类分析的图像分割方法在实际图像分割应用中不仅可以得到正确的分割结果还可以满足计算效率的要求。 其二,制约软划分聚类算法在图像分割中应用的一个主要因素是算法对图像 中噪声干扰的抑制能力。在图像分割中,由于各种因素造成的不同程度的噪声存在于真实图像中,例如,核磁共振图像和计算机断层图像中由于部分容积效应产生的噪声,热红外图像中由于温度散射造成的噪声等等。这些图像的内容已经很复杂了并且具有很高的不确定性,再加之噪声的存在,影响了图像分割的效果, 干扰了感兴趣区域的提取。因此,通过分析和研究对软划分聚类算法引入和加强来自于图像像素间的空间信息能够提高算法在图像分割中对噪声的抑制能力。在空间信息的约束下,基于聚类分析的图像分割方法能够产生对噪声更加不敏感的分割结果并且提取出更加完整和平滑的感兴趣区域。 大化参数的似然函数的过程中搜索最优划分或解,例如模糊K均值算法[11],模糊J 均值算法[12],FMM[13-15], SVFMM[16]等。 对于图像分割问题来说,这两类聚类算法的关系是非常密切的。首先,硬划 分聚类算法先被提出并且对具有较简单内容的图像进行图像分割。经过一段时间的发展,通过引入不确定性分类思想,衍生出了软划分聚类算法,并且将它应用 于解决具有较复杂内容的图像分割问题。这说明这两类算法在解决图像分割问题上具有相同的核心思想,即基于相似性划分的图像分割。其次,由于引入了不确定性分类理论,软划分聚类算法可以解决硬划分聚类算法所不能解决的具有不确

相关文档
最新文档