圆的综合练习题及答案完整版

圆的综合练习题及答案完整版
圆的综合练习题及答案完整版

圆的综合练习题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

圆的综合练习题答案

1.如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B .

(1)求证:AD 是⊙O 的切线;

(2)若⊙O 的半径为3,AB =4,求AD 的长.

(1)证明: 如图, 连接AO 并延长交⊙O 于点E , 连接BE , 则∠ABE =90°.

∴ ∠EAB +∠E =90°. ……………………

∵ ∠E =∠C , ∠C =∠BAD , ∴ ∠EAB +∠BAD =90°.

∴ AD 是⊙O 的切线. ……………………(2)解:由(1)可知∠ABE =90°.

∵ AE =2AO =6, AB =4, ∴ 5222=-=AB AE BE . …………………………………………………3分 ∵ ∠E=∠C =∠BAD , BD ⊥AB ,

∴ .cos cos E BAD ∠=∠ …………………………………………………4分 ∴ .

AE

BE AD

AB =

∴ 5

512=AD . …………………………………………………5分 2.已知:在⊙O 中,AB 是直径,AC 是弦,OE⊥AC

于点E ,过点C 作直线FC ,使∠FCA=∠AOE,交 AB 的延长线于点D.

(1)求证:FD 是⊙O 的切线;

(2)设OC 与BE 相交于点G ,若OG =2,求⊙O

半径的长;

证明:(1)连接OC

(如图①),

∵O A =OC ,∴∠1=∠A.

∵OE ⊥AC ,∴∠A +∠AOE =90°. ∴∠1+∠AOE =90°.

又∠FCA =∠AOE , 图① ∴∠1+∠FCA =90°. 即∠OCF =90°.

∴FD 是⊙O 的切线. (2)

(2)连接BC (如图②),

∵OE ⊥AC ,∴AE =EC. 又AO =OB , ∴OE ∥B C 且BC OE 2

1

=

(3)

∴△OEG ∽△CBG. 图② ∴21==CB OE CG OG . ∵OG =2,∴CG =4.

∴OC =6. (5)

即⊙O 半径是6.

3.如图,以等腰ABC ?中的腰AB 为直径作⊙O ,交底边BC

点D .过点D 作DE AC ⊥,垂足为E . (I )求证:DE 为⊙O 的切线;

(II )若⊙O 的半径为5,60BAC ∠=,求DE 的长.

解:(I )证明:连接AD ,连接OD

AB 是直径,∴BC AD ⊥,

又 ABC ?是等腰三角形,∴D 是BC 的中点. OD AC ∴∥.

DE AC ⊥,DE OD ⊥∴. DE ∴为⊙O 的切线.

(II )在等腰ABC ?中,60BAC ∠=,知ABC △是等边三角形.

⊙O 的半径为5,10AB BC ∴==,1

52

CD BC =

=. 4. 如图,△ABC 中,AB =AE ,以AB 为直径

作⊙O 交BE 于C ,过C 作CD ⊥AE 于D , DC 的延长线与AB 的延长线交于点P . (1)求证:PD 是⊙O 的切线; (2)若AE =5,BE =6,求DC 的长. (1)证明:连结OC …………………1分 ∵PD ⊥AE 于D ∴∠DCE +∠E =900

∵ AB=AE , OB =OC ∴∠CBA =∠E =∠BCO 又∵∠DCE =∠PCB ∴∠BCO +∠PCB =900

∴PD 是⊙O 的切线 ……………2分 (2)解:连结AC ………………3分 ∵ AB=AE =5 AB 是⊙O 的直径

BE =6

∴ AC ⊥BE 且EC=BC =3 ∴ AC =4

又 ∵ ∠CBA =∠E ∠EDC =∠ACB =90°

∴△ EDC ∽△BCA ………………4分

∴AC DC =AB EC

即4DC =53 ∴ DC =512

5分

5.在Rt △ABC 中,∠C=90 , BC =9, CA =12,∠ABC 的平

分线BD 交AC 于点D , DE ⊥DB 交AB 于点E ,⊙O 是△

BDE

的外接圆,交BC 于点F

(1)求证:AC 是⊙O 的切线;

(2)联结EF ,求EF

AC

的值.

(1) 证明:连结OD ,-------1分 ∵90C ∠=,∴90DBC BDC ∠+∠=. 又∵BD 为∠ABC 的平分线,∴ABD DBC ∠=∠. ∵OB OD =,∴ABD ODB ∠=∠

∴90ODB BDC ∠+∠=,即∴90ODC ∠=-----2分 又∵OD 是⊙O 的半径, ∴AC 是⊙O 的切线.

··· ……………

(2) 解:∵ DE ⊥DB ,⊙O 是Rt△BDE 的外接圆, ∴BE 是⊙O 的直径, 设⊙O 的半径为r ,

在Rt△ABC 中, 22222912225AB BC CA =+=+=, ∴15AB =

∵A A ∠=∠,90ADO C ∠=∠=,∴△ADO ∽△ACB .

AO OD AB BC =.∴15159r r

-=.

∴458r =.∴454

BE = ········· 4分

又∵BE 是⊙O 的直径.∴90BFE ∠=.∴△BEF ∽△BAC

∴4534154

EF BE AC BA ===.……………………………5分 A C

E

O

B

F D

(第5题)

F

E C

A D o B

O

F

E

D

C

B

A A

B C

D

E F O 7. 已知:如图,AB 是⊙O 的直径,E 是AB 延长线上的一点,D 是⊙O 上的一点,且

AD 平分∠FAE ,ED ⊥AF 交AF 的延长线于点C . (1)判断直线CE 与⊙O 的位置关系,并证明你的结论;

(2)若AF ∶FC =5∶3,AE =16,求⊙O 的直径AB 的长.

解:(1)直线CE 与⊙O 相切.

证明:如图,连结 OD .

∵AD 平分∠FAE , ∴∠CAD =∠DAE .

∵OA =OD , ∴∠ODA =∠DAE . ∴∠CAD =∠ODA . ∴OD ∥AC . ∵EC ⊥AC , ∴OD ⊥EC .

∴CE 是⊙O 的切线. ……………………………………………………………2分

(2)如图,连结BF .

∵ AB 是⊙O 的直径,

∴ ∠AFB =90°. ∵∠C =90°, ∴∠AFB =∠C . ∴BF ∥EC .

∴AF ∶AC = AB ∶AE .

∵ AF ∶FC =5∶3,AE =16, ∴5∶8=AB ∶16.

∴AB = 10.…………………………………………………………5分

8已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E . (1)求证:AD 是圆O 的切线;

(2)若PC 是圆O 的切线,BC = 8,求DE 的长. (1)证明:∵AB = AC ,点D 是边BC 的中点,

∴AD ⊥BD .

又∵BD 是圆O 直径, ∴AD 是圆O 的切线.……2分 (2)解:连结OP ,

由BC = 8,得CD = 4,OC = 6,OP = 2. ∵PC 是圆O 的切线,O 为圆心,∴90OPC ∠=?. 由勾股定理,得42PC = 在△OPC 中,2

tan 4

42OP OCP PC ∠=

==

A

B C D P E . O (第8题)

在△DEC 中,

9.

如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线的一点,AE ⊥CD 交DC 的延长线于E ,CF ⊥AB 于F ,且CE =CF . (1) 求证:DE 是⊙O 的切线;

(2) 若AB =6,BD =3,求AE 和BC 的长. 证明:(1)连接OC,

10如图,⊙O 的直径4=AB ,点P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,联结AC .

(1)若?=∠30CPA ,求PC 的长;

(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M .你认为CMP ∠的大

小是否发生变化?若变化,请说明理由;若不变化,求出CMP ∠的大小.

解:(1)联结OC ,则PC OC ⊥.

在Rt △OCP 中,22

1

==

AB OC ,?=∠30CPA . ∴ 323==OC PC . ……………………2分 (2)CMP ∠的大小不发生变化. …………………3分

CPO COP ∠+∠=

2121 ?=??=45902

1

. ………5分 11如图,点P 在半O 的直径BA 2AB PA =PC O C ,连

结BC .

(1)求P ∠的正弦值;

(2)若半O 的半径为2,求BC 的长度.

(1)证明:如图,连接OC . ∵PC 切半O 于点C ,

90PCO ∴∠=?.…………………1分

∵2AB PA =, PA OA OB OC ∴===.

在Rt PCO △中,1

sin 2

OC P OP ∠==. ················· 2分 (2)过点O 作OD BC ⊥于点D ,则2BC BD =. ··········· 3分

F A O B C

D

C

P 2

tan ,tan 24 2.54DE DCE DC DE DC DCE ∠=

=∴=∠=?=分

第19题

D

C

1sin 2

P ∠=

, 30P ∴∠=?, 60POC ∴∠=?. ∵OC OB =,

30B OCB ∴∠=∠=?. 在Rt OBD △中,2

OB =, cos30BD OB ∴=?=

····················· 4分 BC ∴= ·························· 5分

12已知:如图,在Rt△ABC 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线DE 交BC 于点E . 求证:BE=CE .

证明:连接CD.

∵∠ACB=90° ,AC 为⊙O 直径,

∴EC 为⊙O 切线,且∠A D C=90°. (2)

∵ED 切⊙O 于点D,

∴EC =E D . …………………………………3分 ∴∠ECD =∠EDC.

∵∠B+∠ECD =∠BDE+∠EDC =90°, ∴∠B=∠BDE.

∴BE=ED. ………………………………………………4分

13.已知:如图,AB 是⊙O 的直径,C 是⊙O 上的一点,且∠BCE =∠CAB ,CE 交AB 的延长线于点E ,AD ⊥AB ,交EC 的延长线于点D .

(1)判断直线DE 与⊙O 的位置关系,并证明你的结论;

(2)若CE =3,BE =2,求CD 的长.

解:(1)直线DE 与⊙O 相切. 证明:如图,连结 OC . ∵ AB 是⊙O 的直径, ∴ ∠ACB =90°.

∵OA =OC , ∴∠OAC =∠ACO . ∵∠BCE =∠CAB , ∴∠BCE =∠ACO . ∵ AB 是⊙O 的直径, ∴ ∠ACB =90°.

∴∠BCE +∠BCO =∠BCO +∠ACO =∠OCE =90°. ………………1分 ∴DE 是⊙O 的切线. ……………………………………………2分

B A

(2)∵∠BCE =∠CAB ,∠BEC =∠CEA ,

∴ △BEC ∽△CEA . ∴CE ∶AE = BE ∶CE . ∵ CE =3,BE =2, ∴3∶AE =2∶3.

∴AE = 9

2

. ……………………………………………………3分

∵AD ⊥AB ,AB 是⊙O 的直径, ∴DA 是⊙O 的切线.

∴AD =CD . ………………………………………………4分 在Rt △ABC 中,由勾股定理得222AD AE DE +=,

∴()

2

2

2932CD CD ??+=+ ???

. ∴CD =

15

8

.………………………………………………5分 14. 已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A .

(1)求证: BC 是⊙O 的切线; (2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. (1)证明: ∵ AB 是⊙O 的直径,

∴ ∠ADB =90°.………………………… 1分 ∴ ∠ABD +∠A =90°. 又∵∠DBC =∠A .

∴ ∠ABD +∠DBC =90°. ∴ ∠ABC =90°.

∴BC 是⊙O 的切线. ………………………2分

(2)解: ∵ OC ∥AD , ∠ADB =90°,

∴ OE ⊥BD ,∠OED =∠ADB = ∠BEC =90°.

∴ BE =12

BD =3. ………………………4分

又∵∠DBC =∠A ,

∴ △CBE ∽△BAD .

∴AD BD BE

CE

=,即63

4

AD =. ∴AD =92

. ……5分

15.如图:AB 是⊙O 的直径,AD 是弦,22.5DAB ∠=,延长AB 到点C , 使得

2ACD DAB ∠=∠.

(1)求证:CD 是⊙O

的切线; (2)若AB =BC 的长.

(1)证明:连结DO ………………………………1分 ∵ AO=DO

∴∠DAO =∠ADO =

C

B O

D

A

∴∠DOC =450

又∵∠ACD =2∠DAB

∴∠ACD =∠DOC =450

∴∠ODC =900 ………………2分

∴CD 是⊙O 的切线

(2)解:连结DB ………………………………………3分

∵ AB 是⊙O 的直径 ∴∠ADO +∠ODB =900

由(1)知∠CDB +∠ODB =900 ∴∠ADO =∠OAD =∠CDB ………4分 又∵∠DCB =∠ACD ∴ △ADC ∽△DBC

∴ BC DC =DC BC AB +

2

222BC

BC +=

∴BC =2-2 BC =-2-2(舍负)

∴ BC =2-2 ………………………………………5分

O

D

A

C B

中考数学二模试题分类汇编——圆的综合综合附答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90° 在△COF中, ∵∠OFC+∠OCF=90°, ∴∠HBC=∠OFC=∠AFH, 在△AEH和△AFH中,

∵ AFH AEH AHF AHE AH AH ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△AEH≌△AFH(AAS), ∴EH=FH; (3)由(1)易知,∠BMT=∠BAC=60°, 作直径BG,连CG,则∠BGC=∠BAC=60°, ∵⊙O的半径为4, ∴CG=4, 连AG, ∵∠BCG=90°, ∴CG⊥x轴, ∴CG∥AF, ∵∠BAG=90°, ∴AG⊥AB, ∵CE⊥AB, ∴AG∥CE, ∴四边形AFCG为平行四边形, ∴AF=CG=4. 【点睛】 本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键. 2.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,55△AFG的面积.

圆的综合大题

二次函数与圆 1、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的 速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

2、如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3). (1)求此抛物线的解析式 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

3、如图,抛物线2 23y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作 PF DE ∥交抛物线于点F ,设点P 的横坐标为m ; ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设BCF △的面积为S ,求S 与m 的函数关系式.

圆的综合解答题

专题一:圆的综合解答题 【知识储备】 1、同圆或等圆中,半径处处相等; 2、射影定理; 3、有一条公共边的两个三角形相似,公共边的平方等于它在两个三角形中的对应边的乘积。 AB CD BC ?=2 AC CD BC ?=2(公共边的平方等于共线边之积)。 4、垂径定理基本模型: 2 2 2 2?? ? ??+=d h r (r :半径、h :圆心距、d :弦长) 5、∥+角平分线→等腰三角形(知二推一) 6、相等的角的三角函数值相等。 【例题讲解】 基本题型:条件发散 例1、(2016.内江)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC 、BC 及AB 的延长线相交于点D 、E 、F ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接BD 、FH 。 (1)试判断BD 与⊙O 的位置关系,并说明理由; (2)当AB =BE =1时,求⊙O 的面积; (3)在(2)的条件下,求HB HG ?的值。

练习:(2016.资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD。 (1)求证:∠A=∠BDC; (2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长。 例2、(2016.绵阳)如图,AB为⊙O直径,C为⊙O上一点,点D是 BC的中点,DE

⊥AC 于点E ,DF ⊥AB 于点F 。 (1)判断DE 与⊙O 的位置关系,并证明你的结论; (2)若OF =4,求AC 的长度。 练习: 1、(2016.南充)如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线交BC 于点O ,OC =1,以点O 为圆心、OC 为半径作半圆。 (1)求证:AB 为⊙O 的切线; (2)如果tan ∠CAO= 3 1 ,求cosB 的值。 2、(2016.甘孜)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点,过点D 作DH ⊥AC 于点H 。 (1)判断DH 与⊙O 的位置关系,并说明理由;

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

《圆的有关概念》练习题

《圆的有关概念》练习题 一.选择题(共7小题) 1.下列各图形中,各个顶点一定在同一个圆上的是() A.正方形B.菱形C.平行四边形D.梯形 2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个 3.下列说法中,(1)长度相等的两条弧一定是等弧;(2)半径相等的两个半圆是等弧;(3)同一条弦所对的两条弧一定是等弧;(4)直径是圆中最大的弦,也就是过圆心的直线.其中正确说法的个数是() A.1个B.2个C.3个D.4个 4.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则 ∠DAC等于() A.15°B.30°C.45°D.60° 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20° 第4题图第5题图第6题图 6.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为() A.70°B.60°C.50°D.40° 7.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.5 二.填空题(共3小题) 8.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交 AB于点D,则∠ACD=度. 第8题图第9题图第0题图 9.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=. 10.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则a、b、c的大小是. 三.解答题(共6小题)

圆的综合复习测试题

图 3 图6 《圆》综合复习测试题 一、选择题(本题有10小题,每小题3分,共30分) 1.图1是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) (A )内含 (B )相交 (C )相切 (D )外离 2.如图2,点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=?,则A C B ∠ 的度数是( ) (A )18° (B )30° (C )36° (D )72° 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( ) (A )相切 (B )内含 (C )外离 (D )相交 4.如图3,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的度数是( ) (A )50o (B )40o (C )30o (D )25o 5.边长为2的等边三角形的外接圆的半径是( ) (A) 3 3 (B) 3 (C)2 3 (D)2 3 3 6.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( ) (A)3 8 cm (B) 3 16cm (C)3cm (D) 3 4cm 7.如图5,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin∠APO 等于( ) (A)5 4 (B)5 3 (C)3 4 (D)4 3 8.如图6,AB 是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) (A)10 (B)8 (C)6 (D)4 9.如图7,扇形纸扇完全打开后,外侧两竹条AB,AC 夹角为120 ,AB 的长为30cm ,贴纸部分 BD 的长为20cm ,则贴纸部分的面积为( ) 图1 O C B A 图2 P O A · 图5

圆中综合题复习专题

圆中综合题复习专题 第一组 1.若集合A ={(x ,y)|x 2+y 2≤16},B ={(x ,y)|x 2+(y -2)2≤a -1}且A ∩B =B ,则a 的取值范围是________. 解:由题意知B ?A.当a<1时,B =?,满足题意;当a =1时,B ={(0,2)},满足题意;当a>1时,则集合A ,B 分别表示圆面x 2+y 2≤16与圆面x 2+(y -2)2 ≤a -1,由题意得B 内含于A ,从而4-a -1≥2,解得a ≤5.综上,a ≤5. 2.已知两点A (1,2),B (5,5)到直线l 的距离分别是3和2,则满足条件的直线共有_____条. 解以A (1,2)为圆心,3为半径的圆A :(x -1)2+(y -2)2=9,以B (5,5)为圆心,2为半径的圆B :(x -5) 2+(y -5)2=4,根据题意所要满足的条件,则l 是圆A 与圆B 的公切线,因为A (1,2),B (5,5)两点间的距离d =5,即d =r 1+r 2,所以圆A 与圆B 相外切,所以有3条公切线. 3.过点(3,1)作圆()1122=+-y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为________. 解:点P (3,1)与圆心C (1,0)PA 2,则以P (3,1)为圆心,以2为半径的圆P 方程为(x -3)2+(y -1)2 =4,则两圆的交点即为A ,B ,两圆相减可得AB 的方程为2x +y -3=0. 4.在平面直角坐标系xOy 中,已知圆1C : ()()22481x y -+-=,圆2C :()()22 669x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是_______________________. 解:由题意,圆C 与圆C 1和圆C 2的公共弦分别为圆C 1和圆C 2的直径,设C (a ,0),则(a ﹣4)2+(0﹣8)2+1=(a ﹣6)2+(0+6)2+9,∴a =0,∴圆C 的方程是x 2+y 2=81. 5.圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a 的值为________. 15+,解得a =± 51=-,得0a =.综上 a =±0. 6.在平面直角坐标系xOy 中,若与点A(2,2)的距离为1且与点B(m ,0)的距离为3的直线恰有两条,则实数m 的取值范围是________. 解:由题意知以A(2,2)为圆心,1为半径的圆与以B(m ,0)为圆心,3为半径的圆相交,所以4<(m -2)2+ 4<16,所以-23+2

圆的综合解答题复习过程

圆的综合解答题

收集于网络,如有侵权请联系管理员删除 专题一:圆的综合解答题 【知识储备】 1、同圆或等圆中,半径处处相等; 2、射影定理; 3、有一条公共边的两个三角形相似,公共边的平方等于它在两个三角形中的对应边的乘积。 AB CD BC ?=2 AC CD BC ?=2(公共边的平方等于共线边 之积)。 4、垂径定理基本模型: 2222??? ??+=d h r (r :半径、h :圆心距、d :弦 长) 5、∥+角平分线→等腰三角形(知 二推一) 6、相等的角的三角函数值相等。

收集于网络,如有侵权请联系管理员删除 【例题讲解】 基本题型:条件发散 例1、(2016.内江)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC 、BC 及AB 的延长线相交于点D 、E 、F ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接BD 、FH 。 (1)试判断BD 与⊙O 的位置关系,并说明理由; (2)当AB =BE =1时,求⊙O 的面积; (3)在(2)的条件下,求HB HG ?的值。

收集于网络,如有侵权请联系管理员删除 练习: (2016.资阳)如图,在⊙O 中,点C 是直径AB 延长线上一点,过点C 作⊙O 的切线,切点为D ,连接BD 。 (1)求证:∠A =∠BDC ; (2)若CM 平分∠ACD ,且分别交AD 、BD 于点M 、N ,当DM =1时,求MN 的长。 例2、(2016.绵阳)如图,AB 为⊙O 直径,C 为⊙O 上一点,点D 是 BC 的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F 。 (1)判断DE 与⊙O 的位置关系,并证明你的结论; (2)若OF =4,求AC 的长度。

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

圆的综合解答题

专题一:圆的综合解答题 【知识储备】 1、同圆或等圆中,半径处处相等; 2、射影定理; 3、有一条公共边的两个三角形相似,公共边的平方等于它在两个三角形中的对应边的乘积。 AB CD BC ?=2 AC CD BC ?=2(公共边的平方等于共线边之 积)。 4、垂径定理基本模型: 2 2 2 2?? ? ??+=d h r (r :半径、h :圆心距、d :弦长) 5、∥+角平分线→等腰三角形(知二推一) 6、相等的角的三角函数值相等。 【例题讲解】 基本题型:条件发散 例1、(2016.内江)如图,在R t△AB C中,∠A BC=90°,AC的垂直平分线分别与AC 、BC 及AB 的延长线相交于点D 、E 、F ,⊙O 是△BEF 的外接圆,∠EB F的平分线交EF 于点G ,交⊙O 于点H ,连接BD 、F H。

(1)试判断BD与⊙O的位置关系,并说明理由; (2)当AB=BE=1时,求⊙O的面积; HG?的值。 (3)在(2)的条件下,求HB 练习: (2016.资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD。 (1)求证:∠A=∠BDC; (2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长。

例2、(2016.绵阳)如图,AB 为⊙O 直径,C 为⊙O 上一点,点D 是 BC 的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F 。 (1)判断DE 与⊙O 的位置关系,并证明你的结论; (2)若O F=4,求AC 的长度。 练习: 1、(2016.南充)如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线交BC 于点O,OC=1,以点O 为圆心、OC 为半径作半圆。 (1)求证:AB 为⊙O的切线; (2)如果t an∠CAO= 3 1 ,求cosB 的值。

2015中考数学专题与圆有关的综合题

与圆有关的综合题 知识考点?对应精练 【知识考点】 (1)圆与三角函数; (2)圆与函数; (3)圆与点、线、三角形; (4)圆与多边形. 【方法总结】 (1)看到求圆的切线,想到:有交点,连半径,证垂直;无交点,作垂直,证半径;(2)看到圆中的三角函数,想到三角函数一般在直角三角形中使用,直径所对的圆周角是直角; (3)看到过圆外的同一点的两条切线,想到切线长定理; (4)看到垂直于弦的直径,想到垂径定理. 【失分盲点】 (1)易忽视圆中的两条半径构成等腰三角形这个条件; (2)在证明一条直线是圆的切线时,若直线与圆的公共点未确定时,易犯证明直线与半径垂直的错误; (3)在圆中的三角形,易犯不说明其为直角三角形就应用三角函数解决问题的错误. 【对应精练】 例.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB 垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值 、

真题演练?层层推进 1.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C. (1)求证:AB与⊙O相切; (2)若∠AOB=120°,AB= ,求⊙O的面积. 2.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 3.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)PF是⊙O的切线。

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

九年级《圆》综合测试题含答案

九年级《圆》测试题 (时间90分钟,满分100分) 一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只 有一项是符合题目要求的,请选出来) 1.如图,点A B C ,,都在⊙O 上,若34C =o ∠, 则AOB ∠的度数为( ) A .34o B .56o C .60o D .68o 2.已知两圆的半径分别为6和8,圆心距为7, 则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切 3.如图,圆内接正五边形ABCD E 中,∠ADB =( ). A .35° B .36° C .40° D .54° 4.⊙O 中,直径AB =a , 弦CD =b ,,则a 与b 大小为( ) A .a >b B .a <b C .a ≤b D . a ≥b 5.如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A .40° B .55° C .65° D .70° 6.边长为a 的正六边形的面积等于( ) A . 2 4 3a B .2a C . 2 2 33a D .233a 7.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方 向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的 方向折向行走。按照这种方式,小华第五次走到场地边缘时 处于弧AB 上,此时∠AOE =56°,则α的度数是( ) A .52° B .60° C .72° D .76° 8.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( ) O C B A (第1题图) O A F C E (第5题图) E A B C D (第3题图) (第7题图)

圆的综合问题练习题

圆的综合问题 一、 填空题 1. “k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的 条件. 2. 直线y =kx +1与圆M :x 2+y 2-2y =0的位置关系是 . 3. 已知直线y =kx +1与圆(x -3)2+(y -2)2=9相交于A ,B 两点.若AB>4,则实数k 的取值范围是 . 4. 过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 . 5. 已知圆O :x 2+y 2=4,若不过原点O 的直线l 与圆O 交于P ,Q 两点,且满足直线OP ,PQ ,OQ 的斜率依次成等比数列,则直线l 的斜率为 . 6. (2017·苏北四市期末)已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆 C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为 . 7. 在平面直角坐标系xOy 中,已知A (-12,0),B (0,6),点P 在圆O :x 2+y 2 =50上.若PA →·PB →≤20,则点P 横坐标的取值范围是 . 8. 在平面直角坐标系xOy 中,过点M (1,0)的直线l 与圆x 2+y 2=5交于A ,B 两点, 其中点A 在第一象限,且BM →=2MA →,则直线l 的方程为 .

二、 解答题 9. 已知圆C 经过点A (-2,0),B (0,2),且圆心在直线y =x 上,又直线l :y =kx +1与圆C 相交于P ,Q 两点. (1) 求圆C 的方程; (2) 若OP →·OQ →=-2,求实数k 的值.

专题3.4 以解析几何中与圆相关的综合问题为解答题 高考数学压轴题分项讲义(解析版)

专题三压轴解答题 第四关以解析几何中与圆相关的综合问题 【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,圆不会单独出大题,一般是结合椭圆、抛物线一起考查,预计在15年高考中解答题仍会重点考查圆与椭圆、抛物线相结合的综合问题,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.这体现了考试中心提出的“应更多地从知识网络的交汇点上设计题目,从的整体意义、思想含义上考虑问题”的思想. 类型一以圆的切线为背景的相关问题 典例1【浙江省台州市2019届高三上学期期末质量评估】设点为抛物线外一点,过点作抛物线 的两条切线,,切点分别为,. (Ⅰ)若点为,求直线的方程; (Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.【解析】(Ⅰ)设直线方程为,直线方程为. 由可得. 因为与抛物线相切,所以,取,则,. 即. 同理可得.所以:. (Ⅱ)设,则直线方程为, 直线方程为.

由可得. 因为直线与抛物线相切,所以 . 同理可得 ,所以,时方程 的两根. 所以,. 则 . 又因为,则, 所以 .学_ 【名师指点】圆的切线的应用,往往从两个方面进行考查,一是设切线方程,利用圆心到切线的距离等于半径列方程求解;二是结合切线长定理与勾股定理求解. 【举一反三】已知椭圆C :2 2 24x y +=. (1)求椭圆C 的离心率; (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆2 2 2x y +=的位置关系,并证明你的结论. 【解析】(1)由题意椭圆C 的标准方程为12 422=+y x , 所以42 =a ,22 =b ,从而2242 2 2 =-=-=b a c , 所以2 2 == a c e . (2)直线AB 与圆22 2 =+y x 相切,证明如下: 设点),(00y x A ,)2,(t B ,其中00≠x , 因为OB OA ⊥,所以0=?,即0200=+y tx ,解得0 2x y t - =,

圆的综合解答题

3、有一条公共边的两个三角形相似,公共边的平方等于它在两个三角形中的对应边的乘 积。 【例题讲解】 基本题型:条件发散 例1、(2016.内江)如图,在 及AB 的延长线相交于点 D 、 交O O 于点H,连接BD F 耳 (1) 试判断BD 与O O 的 位置关系,并说明理由; (2) 当AB= BE = 1时,求O O 的面积; 专题一: 圆的综合解答题 【知识储备】 1同圆或等圆中, 2、射影定理; 半径处处相等; $ AC" = AD^ AB SC- =SD T E CD 亠二AD ? BD 2 BC 2 CD ?AB BC 2 CD ? AC (公共边的平方等于共线边之积)。 4、垂径定理基本模型: ?? 2 2 , 2 d r h — 5、 // +角平分线7等腰三角形(知二推一) 6、 相等的角的三角函数值相等。 (r :半径、h :圆心距、 d :弦长) Rt △ ABC 中, E 、F,O O 是△BEF 的外接圆,/ EBF 的平分线交 EF 于点G, / ABC= 90°, AC 的垂直平分线分别与 AC BC

(3)在(2)的条件下,求 HG?HB 的值。 例2、(2016.绵阳)如图,AB 为O 0直径,C 为O 0上一点,点D 是BC 的中点,DE 丄AC 练习: (2016.资阳)如图,在O 0中,点C 是直径 切 线,切点为D,连接BD 。 (1) 求证:/ A =/ BDC (2) 若CM 平分/ ACD 且分别交 AD BD 于点M N, AB 延长线上一点,过点 C 作O O 的 当

于点E , DF 丄AB 于点F 。 (1) 判断DE 与O O 的位置关系,并证明你的结论; (2) 若OF = 4,求AC 的长度。 练习: 1、(2016.南充)如图,在 Rt △ ABC 中,/ ACB= 90°,/ BAC 的平分线交 BC 于点O, OC =1,以点O 为圆心、OC 为半径作半圆。 (1) 求证:AB 为O O 的切线; (2) 如果 tan / CAO=1 ,求 cosB 的值。 3 2、(2016.甘孜)如图,在^ ABC 中,AB= AC,以AB 为直径的O O 与边BC AC 分别交于 D 、 E 两点,过点 D 作DHL AC 于点H 。 (1)判断DH 与OO 的位置关系,并说明理由; A

与圆有关的综合问题

与圆有关的综合问题 题型一:与圆有关的轨迹问题 [典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程; (2)若∠PB Q =90°,求线段P Q 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |. 设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法 [针对训练] 1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′), 由题意得,????? x ′+4=2x ,y ′-2=2y ,则? ???? x ′=2x -4,y ′=2y +2, 故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A. 2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→ =(2-x,2-y ). 由题设知CM ―→·MP ―→ =0, 故x (2-x )+(y -4)(2-y )=0,

圆的综合解答题练习(提高题)

圆 一.解答题(共23小题) 1.(2015?)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A. (1)求证:直线BC是⊙O的切线; (2)若AE=2,tan∠DEO=,求AO的长. 2.(2011?)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E. (1)若∠A+∠CDB=90°,求证:直线BD与⊙O相切; (2)若AD:AE=4:5,BC=6,求⊙O的直径. 3.(2011?)如图,在△ABC中,D为AB上一点,⊙O经过B、C、D三点,∠COD=90°,∠ACD=∠BCO+∠BDO.

(1)求证:直线AC是⊙O的切线; (2)若∠BCO=15°,⊙O的半径为2,求BD的长. 4.(2016?株洲)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形 (1)求证:△DFB是等腰三角形; (2)若DA=AF,求证:CF⊥AB. 5.(2016?)如图,正形ABCD接于⊙O,M为中点,连接BM,CM. (1)求证:BM=CM; (2)当⊙O的半径为2时,求的长.

6.(2013?模拟)已知:△ABC是⊙O的接正三角形,P为弧BC上一点(与点B、C不重合), (1)如果点P是弧BC的中点,求证:PB+PC=PA; (2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由. 7.(2011?南漳县模拟)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(,0),解答下列各题: (1)求线段AB的长; (2)求⊙C的半径及圆心C的坐标;

九年级数学圆的综合的专项培优练习题(含答案)含详细答案

九年级数学圆的综合的专项培优练习题(含答案)含详细答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若tan A=1 2 ,探究线段AB和BE之间的数量关系,并证明; (3)在(2)的条件下,若OF=1,求圆O的半径. 【答案】(1)答案见解析;(2)AB=3BE;(3)3. 【解析】 试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

几何综合题(与圆相关)

图3 N M F E B C A B A C E F M N P 图2图1 A 图3 D A 图2图1几何综合题:与圆相关 1.已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一圆心角为45°半径长等于CA 的扇形CEF 绕点C 旋转,直线CE 、CF 分别与直线AB 交于M 、N 。 (1)如图1,当AM =BN 时,将△ACM 沿CM 折叠,点A 落在EF 的中点P 处,再将△BCN 沿CN 折叠,点B 也恰好落在点P 处,此时,PM =AM ,PN =BN ,△PMN 的形状是 ,线段AM 、BN 、MN 之间的数量关系是 。 (2)如图2,当扇形CEF 绕点C 在∠ACB 内部旋转时,线段AM 、MN 、BN 之间的数量关系是 ,试证明你的结论。 (3)当扇形CEF 绕点C 旋转到图3的位置时,线段MN 、AM 、BN 之间的数量关系是 ,试证明你的结论。 2.李明同学在学习正多边形和圆时,发现了以下一些有趣的结论:若P 是正多边形外接圆上一点,将P 与正多边形相邻三个顶点连结,这三条线段之间有一些特殊的数量关系。 (1)如图1,若P 是正△ABC 外接圆的弧BC 上一点,连PA 、PB 、PC ,则PB +PC 与PA 之间的数量关系是 ; (2)如图2,若P 是正方形ABCD 的外接圆的弧BC 上一点,连PA 、PB 、PD ,则PB +PD 与PA 之间的数量关系是 ,试证明你的结论; (3)如图3,若点P 是正六边形ABCDEF 外接圆的弧BC 上一点,连PA 、PB 、PF ,则PB +PF 与PA 之间的数量关系是 。 3.小明学习了垂径定理后,作了下面的探究,请你根据题目要求帮小明完成探

相关文档
最新文档