连铸连轧

连铸连轧
连铸连轧

连铸连轧

————————————————————————————————作者: ————————————————————————————————日期:

1、连铸流运行轨迹将连铸机分为哪几种?简述每种机型的特点?

1)立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机和水平连铸机。

2)A、立式连铸机:优点:铸机坯壳冷却均匀,且不受弯曲矫直作用,故不宜产生内部和表面裂纹,有利于夹杂物上浮;缺点:其设备高度大,操作不方便,投资费用高,设备维护及事故处理难,铸坯断面和定长及拉速受限,并且铸坯因钢水静压力大,板坯股肚变形较突出。

B、椭圆形连铸机:优点:是高度较弧形大大减小,钢水静压力低,铸坯股肚量小,内部裂纹中心偏析得到改善,投资节约20%----30%(比弧形)。缺点:结晶器内钢水中的夹杂物几乎无上浮机会,故对钢水要求严格。

C、水平连铸机:优点:是设备高度最低,钢水物二次氧化,铸坯质量得到改善,不受弯曲及矫直作用,有利于防止裂纹,设备维护简单,事故处理方便;缺点:中间包和结晶器连接处的分离较贵,结晶器和铸坯间润滑困难,拉坯时结晶器不振动,适合小坯量,多种浇注,200mm以下方坯,圆坯,特殊钢。

D、弧形连铸机:分为单点矫直弧形连铸机,多点矫直弧形连铸机,直结晶器弧形连铸机。

a)单点矫直弧形连铸机:优点:高度比立式、立弯式低,故设备重量轻,投资费用低,安装和维修方便,钢水对铸坯的静压力小,可减少因股肚造成的内列和偏析,有利于提高拉速改善铸坯质量。缺点:钢水凝固过程中,非金属夹杂物有向弧内聚焦的倾向,一造成铸坯内部杂物分布不均匀。

b)多点矫直弧形连铸机:优点:固液界面变形率降低铸坯带液芯矫直时,不产生内部裂纹,有利于提高拉速。

c)直结晶器弧形连铸机优点:具有立式的优点,有利于大型夹杂物的上浮及钢中夹杂物的平均分布,比立弯式高度更高,建设费用低。缺点:铸坯外弧侧坯壳受拉伸,两相区易造成裂纹缺陷,设备结构复杂,检修,维修难度大。

2、连铸生产工艺对连铸设备的要求:

1)必须适合高温钢水由液态变成液固态,又变成固态的全过程;

2)必须具有高度的抗高温,抗疲劳强度的性能和足够的强度;

3)必须具有较高的制造和安装精度,易于维修和快速更换,充分冷却和良好的润滑等。

3、连铸连轧的定义:由连铸机生产出来的高温无缺陷坯,不需要清理和再加热(但需进过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧。

4、连铸和连轧紧凑联结的方法:连铸坯热装、连铸坯直接轧制。

连铸坯热装工艺是指连铸机生产的钢坯不经过冷却,在热状态下卷入加热炉加热,然后进行轧制的方法。

连铸坯直接轧制工艺是指铸机出来的高温铸坯不再经过加热或只对边棱进行轻度的补充加热就直接送往轧机轧制成材。

5、连铸连轧的优点:1)简化生产工艺流程,生产周期短; 2)占地面积少;

3)固定资产投资少;4)金属的收得率高; 5)钢材性能好;6)能耗少;

7)工厂定员大幅降低;8)劳动条件好,易于实现自动化。

6、提高拉坯速度的限制因素:1)拉坯力的限制;2)铸坯断面影响; 3)铸坯厚度影响;

4)结晶器导热能力的限制;5)速度对铸质的影响;6)钢水过热度的影响;7)钢种的影响。7、二次区包括:足辊段、支撑导向段和扇形段。

二冷区冷却方式:1)干式冷却;2)水喷雾冷却;3)水—气喷雾冷却(效果最好)。

二冷区作用:1)带液心的铸坯从结晶器中拉出后,需喷水或喷气水直接冷却,使铸坯快速凝固,以进入拉铸区;

2)对未完成凝固的铸坯起支撑、导向作用,防止铸坯的变形;

3)在上引锭杆时对锭杆起支撑、导向作用;

4)直弧形连铸机,二冷区第一段把直坯弯成弧形坯。

8、结晶器的主要参数:⑴长度;⑵倒锥度(最重要);⑶结晶器断面。

倒锥度:为了减少气隙,加速钢水的传热和坯壳生长,通常结晶器的下口断面比上口断面小。倒锥度过小会导致坯壳过早脱离铜壁产生气隙,降低冷却效果,或使结晶器的坯壳厚度不够产生拉漏事故;倒锥度过大容易导致坯壳与结晶器铜壁之间的挤压力过大从而加速

铜壁的磨损。

结晶器满足要求:1)结构简单重量轻;2)良好的导热性和水冷条件;

3)应做上下往复运动并加润滑剂;4)结晶器有足够的刚度,以免影响铸坯质量。

结晶器震动方式:同步式、负滑脱式、正弦振动式(应用最广)。

结晶器震动作用:上下往复振动起到“脱模”作用,以防止初生坯壳表面产生过大压力而导致裂纹的产生。

结晶器调宽方法:1)停机变宽;2)平移变宽; 3)转动加平移变宽(最具代表性)。

9、立式轧边机中立辊的基本形状:1)平辊;2)锥形辊;

3)带平或凸槽底表面的孔型辊;4)带斜槽底表面的孔型辊。

10、轧制调宽中特殊的辊型法:1)扇贝形轧辊增宽;2)具有交错辊环的轧辊增宽;

3)具有中部凸出块的轧辊增宽; 4)具有可变环型凸出块的轧辊增宽;

5)大凸度辊增宽;6)锥形辊增宽。

11、短锤头调宽压力机分为:

1)起—停式调宽压力机; 2)连续式调宽压力机;3)摇动式调宽压力机。

特点:1)起停式调宽压力机:工件在工作中保持静止,定位精确,夹持辊可以防止板坯和弯曲; 2)连续式调宽压力机:对工件的压缩与工作的前进是同步的,作业周期短,效率高,工作连部表面质量高; 3) 摇动式调宽压力机:以上两个优点结合。

12、长锤头压力机对板坯减宽时通常需要一个行程。

13、轧件调宽过程中易出现的失稳情况:板坯的倾翻、板坯的翘曲。

板坯的倾翻预防办法:1)用孔型辊或带底腔的锥度辊来防止脱分;

2)采用倾斜立辊防止板坯升高。

板坯翘曲预防办法:1)中心支撑,两端支撑,三点支撑; 2)采取防止下弯的措施;

3)把两个立辊斜置。

14、减少调宽切量的方法:1)利用凸形板坯法;2)润滑轧制法;3)后推板坯轧制法;

4)凸形断面轧制法;5)利用可变孔形尺寸轧制法;6)板坯端部预成型法。

15、铸、轧的连续衔接匹配:速度匹配、温度匹配、规格匹配、产量匹配。

16、轧制过程瞬时速度变化的影响因素:1)轧制规格对速度的影响;2)换辊对速度的影响;

连铸过程瞬时速度变化的影响因素:1)中间包液面高度变化对拉速的影响;

2)水口通流截面变化对拉速的影响;3)钢温变化对拉速的影响;4)过渡过程对坯料的处理。17、浇铸温度的定义:指中间包的钢水温度。

平均浇铸温度的测量方法:通常一炉钢水需要在中间包内测三次温度,分别在开浇后和结束浇铸前的5分钟以及在浇铸中间各测一次温度,这三次结果算出平均值。

理想浇铸温度的计算:T=TL+▽T 式中TL—液相线温度;▽T—钢水过热度。

18、热带轧制中采用的保温罩系统:绝热保温罩,反射保温罩,逆辐射保温罩(保温效率最高)。19、连铸坯在线保温技术:1)为了保证铸坯达到剪切机前,液芯完全凝固,应该知道该冶金长度,为了保证拉速,适应轧制需要,增加结晶器的长度;

2)铸坯被切断后,利用高速辊道运输,或采用保温辊道运输,降低温度损失;

3)铸坯边角散热快,采取(补)加热措施;

4)软二冷,进入矫直机的温度应保证在1000℃以上。

21、连铸坯的质量概念包括:1)铸坯洁净度;2)铸坯表面质量;

3)铸坯内部质量;4)铸坯断面形状。

影响:1)洁净度取决于钢水进入结晶器之前的各工序;

2)连续铸坯表面质量决定于钢水在结晶器的凝固过程;

3)铸坯内部质量主要决定于钢水在二冷区的凝固过程。

22、影响连铸洁净度的因素:1)机型;2)连铸操作;3)耐火材料质量

23、表面纵向裂纹发生在板坯那个部位:主要发生在板坯宽面中央位置及内部。

形成原因:初生坯壳厚度不均匀,在薄的地方应力集中,当应力超过坯壳抗拉强度时产生纵向裂纹。

24、星状裂纹形成原因:主要是因结晶器的铜渗入钢液所致,铸坯在少许应力作用下晶间即会发生断裂。

预防措施:采用镀Cr、Ni结晶器。(较薄时采用镀Cr较厚时采用镀Ni)

网状裂纹形成原因:连铸过程中结晶器镀层发生严重磨损,铜板与铸坯发生粘结,铜渗到铁基中恶化了钢的塑性,导致裂纹产生。

预防措施:1)改善结晶器表面镀Cr和Ni的质量,增加结晶器硬度;2)调整出结晶器段夹辊支撑硬度;3)调整二冷水量,防止铸坯在连铸过程中受到过大的应力。

25、液面结壳:液面结壳就好像浮在结晶器保护渣层下边,钢水表面之上,当它与坯壳的凝固层接触时,就融在坯壳表皮层上并一起被拉入结晶器之中。

凹坑:铸坯表面粗糙形成了铸坯表面出现皱纹,严重的呈现出山谷状的凹陷。

重皮:对于横向凹陷,由于沿拉坯方向收到结晶器摩擦力的作用,很容易产生横裂纹。

如果这时有钢水渗漏出来,遇到结晶器壁若能重新凝固,就形成所谓的重皮。

26、内裂纹形成的三阶段:1)拉伸力作用到凝固界面; 2)造成柱状晶间开裂;

3)偏析元素富集的钢液填充到开裂的空隙小。

27、中心偏析:连铸坯的中心部分形成的元素富集偏析。影响因素:机械因素:铸坯鼓肚。

冶金因素:1)晶状生长;2)某些工艺因素影响使得柱状晶生长不稳定;3)优先生长的柱状晶在铸坯中心相遇,形成“晶桥”;4)晶桥形成的上部钢水变阻,不能对下部钢

水的凝固收缩进行及时补充。

28、鼓肚变形:带液心的铸坯在运行过程中,于两支撑辊之间,在高温坯壳中钢液静

压力作用下,发生鼓胀成凸面的现象,称之为鼓肚变形。

铸坯鼓肚量大小的影响因素:1)铸坯横断面的尺寸与形状; 2)钢水静压力;

3)支持辊的间距;4)凝固的坯壳的厚度; 5)钢的高温弹性模数;

6)坯壳的温度; 7)拉速。

减小鼓肚的措施:1)降低连铸机的高度;2)二冷区采用小辊距、密排列、铸机由上到下辊距应由密到疏;3)支持辊要严密对中; 4)加大二冷区冷却强度;

5)防止支持辊的冷却变形,板坯的支持辊最好选用多节辊。

29、保护渣组成:1)基料部分:提供SiO2、CaO、Al2O3的基本造渣材料;

2)辅助材料:调节融化温度及粉度;3)熔速调节剂:调节融化温度。

作用:1)绝热保温;2)隔绝空气,防止钢水二次氧化;

3)净化钢渣界面,吸附钢液中的夹杂物; 4)润滑凝固坯壳并改善凝固传热;

5)充填坯壳与结晶器间的气隙,改善结晶器传热。

30、连铸保护渣三层结构:由下到上→熔渣层;过渡层(烧结层);粉渣层。

31、薄板坯连铸机浸入式水口要求:1)与结晶器铜板间需有一定的间隔,以保证不凝钢;

2)水口直径大小能提供足够的钢水流量;3)水口应有足够的壁厚,以使其有较长的使用寿命;4)浸入式水口的内部与外部形状,尤其是开口的布置和配置,决定了结晶器内钢水的流向和钢液的形状,以及注入结晶器后引起的功能配置。

32、四种典型薄板坯连铸连轧生产技术?结晶器名称及特点?

漏斗形结晶器

CSP二冷方式喷水冷却,冷却强度大,根据浇注速度调整水量及水压

驱动方式四点偏心轮机振动驱动形式

振动频率40-400次/分钟

震动波形正弦波形

特点

1)有利于浸入式水口的置入2)有利于保护渣的均匀扩散3)满足

铸坯厚度要求4)漏斗形状能尽量满足减少坯壳弯曲应变量保证表

面质量

缺点:1)造价高2)斜度大,拉坯时阻力大3)不适宜于浇注较窄的和

中等宽度的薄板坯

浸入式

水口特点

具有良好的抗热震性、抗渣性及高温强度,防止钢水喷溅,在结晶器

壁上,可保障钢液在结晶器中的均匀分配,以利于形成均匀的凝固坯

壳。

透镜式结晶器

FTSR二冷方式气水混合冷却

驱动方式液压驱动

振动频率0-400次/分钟

震动波形波形可调

特点

其鼓肚形状贯穿整个钢板自上而下,内部容积大,钢水有自然减速的

效应。此外,结晶器上部尺寸加大,保证结晶器液面稳定,适宜生产高

质量的钢坯。

浸入式

水口特点

水口面积大,钢液从水口流出的速度低,加之水口与结晶器距离较

大,可以防止对坯壳的冲刷,坯壳生长有规律,能最大限度地减少拉

漏事故的发生。

平行板式

薄板坯结晶器

ISP 二冷方式气水混合冷却

特点

承受拉应力的能力较强,拉坯时经受的变形小,上中尺寸小,不利于

浸入式水口的插入,保护渣熔化效果不好,薄板坯表面质量不好。浸入式

水口特点

对材质的要求较高,并以静压法成型,单位质量金属液的接触面积

大。水口下口出钢。

平行板式

中厚坯结晶器

CONROLL 二冷方式气水混合冷却

驱动方式液压驱动式四点偏心轮振动

振动频率最大400次/分钟

震动波形

特点

宽度尺寸和浇注速度可在较大的范围内调整。钢水初期的凝固过程

平衡而均匀,夹杂物能充分上浮,表面质量好。

浸入式

水口特点

使用表片形的浸入式水口。缺点:寿命短。

33、电磁搅拌技术的作用:1)明显的提高铸坯质量;2)改善了晶体结构;

3)提高了一冷端的冷却效率;4)中心碳偏析也显著减少。

34、液芯压下技术的定义:是在铸坯出结晶器下口后,对其坯壳施加压力加工,此时液芯仍保留在其中。就是在液芯末端以前对铸坯施以压缩加工。

注意事项:液芯压下厚度必须小于产生裂纹的最大压下值,压下后的叠加应变低于产

生裂纹的临界应变,最好在上部扇形段完成压下,且不要集中在很短的区域。

35、薄板坯连铸连轧生产中常用三种加热炉,那种占地面积大、最简单、技术最新?

1)隧道式辊底加热炉(CSP、FTSR):加热段、均热段、缓冲段、出料端。

优缺点:使用最多,可靠性强,工艺顺畅,使用灵活,占地面积过大,生产线过长,维护费用高(耐热辊的定期更换)。

2)感应加热炉(ISP):是在加热炉中采用排列在辊道上的一组感应线圈实行加热技术。

优缺点:较长的缓冲时间,可灵活调整加热温度和深度,占地小,新技术不成熟,维护困难,投资相对大。

3)步进梁式加热炉(CONROLL):

优缺点:最简单,技术成熟,投资少,使用维修费用低,易掌握,对铸坯单位重量有限制(单重增大、炉子过宽导致投资增多)。

36、半无头轧制:

无头轧制:指将粗轧后的带坯在中间辊道上焊合起来,并连续不断地通过精轧机进行连续轧制。

铁素体轧制:轧体在进入精轧机之前,就应该完成r-α的相变。

连铸连轧

薄板坯连铸连轧之产品质量控制 王庆 (安徽工业大学) 摘要介绍了国外关于薄板坯连铸连轧生产中影响产品质量各种因素的研究成果, 对于一些主要的影响原理进行了简单的探讨,并且介绍了薄板坯来连铸连轧工艺产品的质量优势和工艺优势,使人们对采用薄板坯连铸连轧技术生产质量合格产品主要方面有一定基本了解。 关键词薄板坯连铸连轧质量 薄板坯连铸连轧在国际上是新出现的技术, 这些技术在正常生产中可满足用户需要, 但为达到现代工业对于板带钢质量的苛刻要求, 在生产控制方面要注意一些问题, 本文介绍了国外的一些经验。 1 薄板坯连铸连轧技术工艺流程与产品质量 现在拥有薄板坯连铸连轧技术的外国公司主要有4家, 其典型工艺布置各不相同。工艺布置的不同对质量性能是有影响的。 1.1 西马克的CSP技术 西马克CSP技术设备相对简单, 流程通畅, 易于掌握, 但是由于其采用50mm的板坯, 对薄规格产品道次变形量过大, 轧机负荷大; 对厚规格的产品压缩比过小, 对提高质量不利, 了产品范围的扩大和质量的提高。 1.2 德马克的ISP技术 德国德马克ISP技术连铸75mm板坯, 液芯压下至60m , 2架大压下轧机轧制到20mm, 进感应炉和无芯卷取箱炉均热, 4架精轧机轧制为成品。德马克方案的技术含量较高, 液芯压下大压下轧机、感应加热等都有特色, 但是新技术多带来的问题就是设备复杂,对管理水平和水平要求高。另外, 板坯出连铸机后进大压下轧机前, 板坯温度一般已不均匀, 工艺设计此有一除鳞设备, 但是板坯此时除鳞, 温度下降不利于轧制, 不除鳞则影响表面质量, 在生产一矛盾始终未得到解决。大压下轧机与连铸机连接在一起, 中间无缓冲设备, 而轧机换辊需要停机进行, 势必影响铸机的工作。 1.3奥钢联的CONROLL技术 奥钢联只在美国MANSFIELD的ARMCO利用原有的旧轧机改造了一条使CONROLL铸机的生产线。该生产线浇铸75~125mm的板坯, 奥钢联技术的特点是全部使用成熟技术。近年人们认为,连铸薄板坯从质量与经济性方面考虑, 并非越薄越好, 而是有一个经济厚度, 这一厚度为90~100mm左右。因为这个厚度离传统的板坯厚度较近, 可以借用长期积累的丰富经验与技术; 板坯较厚压缩比大, 从而可提高产品质量; 板坯断面积大可采用较低的拉速, 降低了结晶器磨损, 减少了拉漏几率; 在卷重相同的情况下板坯定尺短, 输送辊道、加热炉长度较短, 节省了投资, 平板结晶器的加工、修复也相对容易, 有色金属消耗低。 1.4 达涅利的FTSR技术 达涅利为加拿大的ALGOMA钢铁公司建设薄板坯连铸连轧线已投产, 该生产线使用达涅利的凸透镜型结晶器, 铸造60~80mm的薄板坯, 出结晶器进行液芯压下到50~70mm然后进入辊底式隧道炉均热, 由一台粗轧机轧制到25~35mm , 再进行均热(辊底式隧道炉) ,最后进入6机架精轧机组。达涅利技术生产的钢种范围较广, 包括包晶钢在内均可生产。在提高质量方面考虑也比较全面, 增加了边部感应加热和粗轧后的二次加热。为得到更好的表面质量, 达涅利的生产线有三次除鳞, 分别在连铸机出口、粗轧机入口和精轧机入口, 这对于提高表面质量无疑是有利的。达涅利设计的除鳞机为旋转的形式, 这对于提高表面质量和减少

连铸连轧法生产铜杆---图

连铸连轧法生产铜杆 一、连铸连轧铜杆生产工艺过程: 电解铜加料机竖炉上流槽保温炉下流槽浇堡 铸造机夹送辊剪切机坯锭预处理设备轧机清洗冷却管道涂蜡成圈机包装机成品运输 二、连铸连轧铜杆生产线 当前世界各国采用的铜杆连续生产线新工艺主要有:意大利的Properzi系统(缩称CCR系统),美国的SouthWire系统(缩称SCR系统)、联邦德国的Krupp/Hazelett系统(缩称Contirod系统)、以及将法国的SECIM系统。这些系统在原理上基本相同,工艺上也大同小异,其差异主要是在铸机和轧机的形式和结构上。 CCR系统沿用铝连铸连轧的双轮铸机和三角轧机形式连铸连轧铜杆。最初铜铸锭截面1300mm2,现在最大可达2300mm2,理论能力18t/h,轧制孔型系“三角——圆”系统。当锭子截面太大时,原轧机前面加两平一立辊机架,采用箱式孔型开坯,箱孔型道次减缩率在40%左右。 SCR系统是在CCR的基础上改进而成的如图2-35,铸机由双轮改为五轮(一大四小),轧机则改为平一立辊式连轧机,孔型改为箱—椭—圆系统。头上两道箱式孔型同样起开坯作用。SCR五轮铸机可铸铜锭截面6845 mm2,理论能力2518t/h。 图2-35 1——提升机及加料台2——熔化炉3——保温炉4——液压剪5——铸锭整形器6——飞剪7——酸洗8——卷取装置9——精轧机组10——粗轧机组11——连铸机 Contirod系统工艺和生产规模基本上和SCR一样,只是铸机改用了“无轮双钢带式”即Hazelett式。 SECIM系统(图2-36),采用四轮式连铸机,(一大三小),最大铸锭截面4050mm2,11机架,孔型前三道为箱—扁—圆系统。生产铜杆φ7~16mm,重量达到5t,生产能力30 t/h。

连铸连轧知识点

连铸连轧部分知识点 1、连铸生产工艺对连铸设备的要求: 1)必须适合高温钢水由液态变成液固态,又变成固态的全过程; 2)必须具有高度的抗高温,抗疲劳强度的性能和足够的强度; 3)必须具有较高的制造和安装精度,易于维修和快速更换,充分冷却和良好的润滑等。 2、连铸流运行轨迹将连铸机分为哪几种?简述每种机型的特点? 1)立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机和水平连铸机。2)A、立式连铸机:此铸机坯壳冷却均匀,且不受弯曲矫直作用,故不宜产生内部和表面裂纹,有利于夹杂物上浮,但其设备高度大,操作不方便,投资费用高,设备维护及事故处理难,铸坯断面和定长及拉速受限,并且铸坯因钢水静压力大,板坯股肚变形较突出。 B、立弯式连铸机:铸机的中间包,结晶器,导辊,引锭杆沿垂线分布。拉矫机切割机沿水平布置,浇注和冷却凝固在垂直方向上完成,完全凝固后被顶弯90°,进入弯曲段,在水平方向出坯,它的铸机高度比立式下降,运输方便,可适合较长定尺的要求,但由于增加了一次弯曲和矫直,一造成裂纹。 C、弧形连铸机:分为单点矫直弧形连铸机,多点矫直弧形连铸机,直结晶器弧形连铸机。a)单点矫直弧形连铸机:优点:高度比立式、立弯式低,故设备重量轻,投资费用低,安装和维修方便,钢水对铸坯的静压力小,可减少因股肚造成的内列和偏析,有利于提高拉速改善铸坯质量。缺点:钢水凝固过程中,非金属夹杂物有向弧内聚焦的倾向,一造成铸坯内部杂物分布不均匀。b)多点矫直弧形连铸机:优点:固液界面变形率降低铸坯带液芯矫直时,不产生内部裂纹,有利于提高拉速。 c)直结晶器弧形连铸机优点:具有立式的优点,有利于大型夹杂物的上浮及钢中夹杂物的平均分布,比立弯式高度更高,建设费用低。缺点:铸坯外弧侧坯壳受拉伸,两相区易造成裂纹缺陷,设备结构复杂,检修,维修难度大。 D、椭圆形连铸机:其优点是高度较弧形大大减小,钢水静压力低,铸坯股肚量小,内部裂纹中心偏析得到改善,投资节约20%----30%(比弧形)。但结晶器内钢水中的夹杂物几乎无上浮机会,故对钢水要求严格。 E、水平连铸机:其优点是设备高度最低,钢水物二次氧化,铸坯质量得到改善,不受弯曲及矫直作用,有利于防止裂纹,设备维护简单,事故处理方便,但中间包和结晶器连接处的分离较贵,结晶器和铸坯间润滑困难,拉坯时结晶器不振动,适合小坯量,多种浇注,200mm以下方坯,圆坯,特殊钢。 3、连铸连轧的定义:由连铸机生产出来的高温无缺陷坯,不需要清理和再加热(但需经过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧。 4、连铸和连轧紧凑联结的方法:连铸坯热装、直接轧制。连铸坯热装工艺是指连铸机生产的钢坯不经过冷却,在热状态下卷入加热炉加热,然后进行轧制的方法。连铸坯直接轧制工艺是指铸机出来的高温铸坯不再经过加热或只对边棱进行轻度的补充加热就直接送往轧机轧制成材。 5、连铸连轧的优点:1)简化生产工艺流程,生产周期短; 2)占地面积少; 3)固定资产投资少; 4)金属的收得率高; 5)钢材性能好; 6)能耗少; 7)工厂定员大幅降低; 8)劳动条件好,易于实现自动化。 6、提高拉坯速度的限制因素:1)拉坯力的限制; 2)铸坯断面影响; 3)铸坯厚度影响; 4)结晶器导热能力的限制; 5)速度对铸质的影响; 6)钢水过热度的影响;7)钢种的影响。 7、二冷区包括:足辊段、支撑导向段和扇形段。 二冷区冷却方式:1)干式冷却;2)水喷雾冷却;3)水—气喷雾冷却(效果最好)。 8、倒锥度:为了减少气隙,加速钢水的传热和坯壳生长,通常结晶器的下口断面比上口断面小。倒锥度过小会导致坯壳过早脱离铜壁产生气隙,降低冷却效果,或使结晶器的坯壳厚度不够产生拉漏事故;倒锥度过大容易导致坯壳与结晶器铜壁之间的挤压力过大从而加速铜壁的磨损。 9、结晶器满足要求:1)结构简单重量轻;2)良好的导热性和水冷条件; 3)应做上下往复运动并加润滑剂; 4)结晶器有足够的刚度,以免影响铸坯质量。 10、结晶器震动方式:同步式、负滑脱式、正弦振动式 11、结晶器调宽方法:1)停机变宽; 2)平移变宽; 3)转动加平移变宽(最具代表性)。

连铸结晶器液面自动加渣控制系统简介

连铸结晶器液面自动加渣控制系统简介

连铸结晶器液面自动加渣控制系统简介 一、概述 连铸机浇筑时结晶器加保护渣是连铸生产中最重要的工作,保护渣在连铸生产中起着极为重要的作用,如防止二次氧化、润滑及吸附杂质等。连铸工艺要求保护渣在浇铸过程中形成熔融层、烧结层及粉渣层等三层结构,以便更好的发挥作用。少加勤加是添加保护渣的一条重要原则。 二、现场现状 目前连铸机上采用的加渣方式大都还是人工方式,每个工人管理着一流或两流,需时刻观察着结晶口的状态,需要加时就用随便的推上一堆,心情好或领导在时加的还均匀些,领导不在那就看自己的心情了,心情好负责些,心情不好那就随便了。况且连铸机旁的环境比较恶劣,工人的劳动强度很大,要求工人长时间的高质量的完成加渣工作也有难度。因此人工添加保护渣受操作者因素的影响较大,很难保证添加的稳定性,容易产生卷渣和液面波动,从而产生夹杂、振痕加深等缺陷。针对这种情况,我公司最新研发了一套连铸结晶器液面自动加渣控制系统,可以代替工人进行自动加渣而基本无需工人干预。 三、系统简介 我公司新研发的连铸结晶器液面自动加渣控制系统,包括工控机、控制执行单元、现场控制报警单元、加料仓、气动单元、结晶器渣液面温度检测装置、渣料喷头、料位计、专用软件组成。

连铸结晶器液面自动加渣控制系统是一套闭环自动控制系统,它以工控机为核心,通过专用软件来自动控制各个组成部分自动工作,在基本参数设置完成后,由工控机来根据连铸机结晶器内渣液面的实际情况进行参数调整,无需再人工干预调整而能保证结晶器内渣液面的均匀和稳定。 系统的工作过程由工控机实时不停的读取结晶器内渣液面的表面温度,如果渣液面的表面温度超过设定的加料温度,则工控机控制执行单元让加料仓下料,同时打开气动单元,保护渣在下料管内被送料气体经渣料喷头均匀吹送到结晶器内,然后再测结晶器内渣液面的表面温度,如果渣液面的表面温度仍然超过设定的加料温度,则工控机重复上面的加料过程,如果测量到结晶器内渣液面的表面温度低于设定的加料温度则停止加料和关闭气动单元。 在现场设有工人控制箱,可以控制任意一流加料系统的启动和停止。当出现故障时控制箱会发出声光报警,并指示灯提示哪一流出现问题。 系统实现框图如下: 图1系统框图 加 料 下料控制单 渣料 工控 干燥 渣层 料显示 报

连铸连轧

1、连铸流运行轨迹将连铸机分为哪几种?简述每种机型的特点? 1)立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机和水平连铸机。 2)A、立式连铸机:优点:铸机坯壳冷却均匀,且不受弯曲矫直作用,故不宜产生内部和表面裂纹,有利于夹杂物上浮;缺点:其设备高度大,操作不方便,投资费用高,设备维护及事故处理难,铸坯断面和定长及拉速受限,并且铸坯因钢水静压力大,板坯股肚变形较突出。 B、椭圆形连铸机:优点:是高度较弧形大大减小,钢水静压力低,铸坯股肚量小,内部裂纹中心偏析得到改善,投资节约20%----30%(比弧形)。缺点:结晶器内钢水中的夹杂物几乎无上浮机会,故对钢水要求严格。 C、水平连铸机:优点:是设备高度最低,钢水物二次氧化,铸坯质量得到改善,不受弯曲及矫直作用,有利于防止裂纹,设备维护简单,事故处理方便;缺点:中间包和结晶器连接处的分离较贵,结晶器和铸坯间润滑困难,拉坯时结晶器不振动,适合小坯量,多种浇注,200mm 以下方坯,圆坯,特殊钢。 D、弧形连铸机:分为单点矫直弧形连铸机,多点矫直弧形连铸机,直结晶器弧形连铸机。a)单点矫直弧形连铸机:优点:高度比立式、立弯式低,故设备重量轻,投资费用低,安装和维修方便,钢水对铸坯的静压力小,可减少因股肚造成的内列和偏析,有利于提高拉速改善铸坯质量。缺点:钢水凝固过程中,非金属夹杂物有向弧内聚焦的倾向,一造成铸坯内部杂物分布不均匀。 b)多点矫直弧形连铸机:优点:固液界面变形率降低铸坯带液芯矫直时,不产生内部裂纹,有利于提高拉速。 c)直结晶器弧形连铸机优点:具有立式的优点,有利于大型夹杂物的上浮及钢中夹杂物的平均分布,比立弯式高度更高,建设费用低。缺点:铸坯外弧侧坯壳受拉伸,两相区易造成裂纹缺陷,设备结构复杂,检修,维修难度大。 2、连铸生产工艺对连铸设备的要求: 1)必须适合高温钢水由液态变成液固态,又变成固态的全过程; 2)必须具有高度的抗高温,抗疲劳强度的性能和足够的强度; 3)必须具有较高的制造和安装精度,易于维修和快速更换,充分冷却和良好的润滑等。 3、连铸连轧的定义:由连铸机生产出来的高温无缺陷坯,不需要清理和再加热(但需进过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧。 4、连铸和连轧紧凑联结的方法:连铸坯热装、连铸坯直接轧制。 连铸坯热装工艺是指连铸机生产的钢坯不经过冷却,在热状态下卷入加热炉加热,然后进行轧制的方法。 连铸坯直接轧制工艺是指铸机出来的高温铸坯不再经过加热或只对边棱进行轻度的补充加热就直接送往轧机轧制成材。 5、连铸连轧的优点:1)简化生产工艺流程,生产周期短;2)占地面积少; 3)固定资产投资少;4)金属的收得率高;5)钢材性能好;6)能耗少; 7)工厂定员大幅降低;8)劳动条件好,易于实现自动化。 6、提高拉坯速度的限制因素:1)拉坯力的限制;2)铸坯断面影响;3)铸坯厚度影响;4)结晶器导热能力的限制;5)速度对铸质的影响;6)钢水过热度的影响;7)钢种的影响。 7、二次区包括:足辊段、支撑导向段和扇形段。 二冷区冷却方式:1)干式冷却;2)水喷雾冷却;3)水—气喷雾冷却(效果最好)。 二冷区作用:1)带液心的铸坯从结晶器中拉出后,需喷水或喷气水直接冷却,使铸坯快速凝固,以进入拉铸区; 2)对未完成凝固的铸坯起支撑、导向作用,防止铸坯的变形; 3)在上引锭杆时对锭杆起支撑、导向作用; 4)直弧形连铸机,二冷区第一段把直坯弯成弧形坯。 8、结晶器的主要参数:⑴长度;⑵倒锥度(最重要);⑶结晶器断面。 倒锥度:为了减少气隙,加速钢水的传热和坯壳生长,通常结晶器的下口断面比上口断面

连铸连轧

连铸连轧

————————————————————————————————作者: ————————————————————————————————日期:

1、连铸流运行轨迹将连铸机分为哪几种?简述每种机型的特点? 1)立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机和水平连铸机。 2)A、立式连铸机:优点:铸机坯壳冷却均匀,且不受弯曲矫直作用,故不宜产生内部和表面裂纹,有利于夹杂物上浮;缺点:其设备高度大,操作不方便,投资费用高,设备维护及事故处理难,铸坯断面和定长及拉速受限,并且铸坯因钢水静压力大,板坯股肚变形较突出。 B、椭圆形连铸机:优点:是高度较弧形大大减小,钢水静压力低,铸坯股肚量小,内部裂纹中心偏析得到改善,投资节约20%----30%(比弧形)。缺点:结晶器内钢水中的夹杂物几乎无上浮机会,故对钢水要求严格。 C、水平连铸机:优点:是设备高度最低,钢水物二次氧化,铸坯质量得到改善,不受弯曲及矫直作用,有利于防止裂纹,设备维护简单,事故处理方便;缺点:中间包和结晶器连接处的分离较贵,结晶器和铸坯间润滑困难,拉坯时结晶器不振动,适合小坯量,多种浇注,200mm以下方坯,圆坯,特殊钢。 D、弧形连铸机:分为单点矫直弧形连铸机,多点矫直弧形连铸机,直结晶器弧形连铸机。 a)单点矫直弧形连铸机:优点:高度比立式、立弯式低,故设备重量轻,投资费用低,安装和维修方便,钢水对铸坯的静压力小,可减少因股肚造成的内列和偏析,有利于提高拉速改善铸坯质量。缺点:钢水凝固过程中,非金属夹杂物有向弧内聚焦的倾向,一造成铸坯内部杂物分布不均匀。 b)多点矫直弧形连铸机:优点:固液界面变形率降低铸坯带液芯矫直时,不产生内部裂纹,有利于提高拉速。 c)直结晶器弧形连铸机优点:具有立式的优点,有利于大型夹杂物的上浮及钢中夹杂物的平均分布,比立弯式高度更高,建设费用低。缺点:铸坯外弧侧坯壳受拉伸,两相区易造成裂纹缺陷,设备结构复杂,检修,维修难度大。 2、连铸生产工艺对连铸设备的要求: 1)必须适合高温钢水由液态变成液固态,又变成固态的全过程; 2)必须具有高度的抗高温,抗疲劳强度的性能和足够的强度; 3)必须具有较高的制造和安装精度,易于维修和快速更换,充分冷却和良好的润滑等。 3、连铸连轧的定义:由连铸机生产出来的高温无缺陷坯,不需要清理和再加热(但需进过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧。 4、连铸和连轧紧凑联结的方法:连铸坯热装、连铸坯直接轧制。 连铸坯热装工艺是指连铸机生产的钢坯不经过冷却,在热状态下卷入加热炉加热,然后进行轧制的方法。 连铸坯直接轧制工艺是指铸机出来的高温铸坯不再经过加热或只对边棱进行轻度的补充加热就直接送往轧机轧制成材。 5、连铸连轧的优点:1)简化生产工艺流程,生产周期短; 2)占地面积少; 3)固定资产投资少;4)金属的收得率高; 5)钢材性能好;6)能耗少; 7)工厂定员大幅降低;8)劳动条件好,易于实现自动化。 6、提高拉坯速度的限制因素:1)拉坯力的限制;2)铸坯断面影响; 3)铸坯厚度影响; 4)结晶器导热能力的限制;5)速度对铸质的影响;6)钢水过热度的影响;7)钢种的影响。7、二次区包括:足辊段、支撑导向段和扇形段。 二冷区冷却方式:1)干式冷却;2)水喷雾冷却;3)水—气喷雾冷却(效果最好)。 二冷区作用:1)带液心的铸坯从结晶器中拉出后,需喷水或喷气水直接冷却,使铸坯快速凝固,以进入拉铸区; 2)对未完成凝固的铸坯起支撑、导向作用,防止铸坯的变形; 3)在上引锭杆时对锭杆起支撑、导向作用; 4)直弧形连铸机,二冷区第一段把直坯弯成弧形坯。 8、结晶器的主要参数:⑴长度;⑵倒锥度(最重要);⑶结晶器断面。 倒锥度:为了减少气隙,加速钢水的传热和坯壳生长,通常结晶器的下口断面比上口断面小。倒锥度过小会导致坯壳过早脱离铜壁产生气隙,降低冷却效果,或使结晶器的坯壳厚度不够产生拉漏事故;倒锥度过大容易导致坯壳与结晶器铜壁之间的挤压力过大从而加速

连铸结晶器液面自动加渣控制系统简介样本

连铸结晶器液面自动加渣控制系统简介 一、概述 连铸机浇筑时结晶器加保护渣是连铸生产中最重要的工作, 保护渣在连铸生产中起着极为重要的作用, 如防止二次氧化、润滑及吸附杂质等。连铸工艺要求保护渣在浇铸过程中形成熔融层、烧结层及粉渣层等三层结构, 以便更好的发挥作用。少加勤加是添加保护渣的一条重要原则。 二、现场现状 当前连铸机上采用的加渣方式大都还是人工方式, 每个工人管理着一流或两流, 需时刻观察着结晶口的状态, 需要加时就用随便的推上一堆, 心情好或领导在时加的还均匀些, 领导不在那就看自己的心情了, 心情好负责些, 心情不好那就随便了。况且连铸机旁的环境比较恶劣, 工人的劳动强度很大, 要求工人长时间的高质量的完成加渣工作也有难度。因此人工添加保护渣受操作者因素的影响较大, 很难保证添加的稳定性, 容易产生卷渣和液面波动, 从而产生夹杂、振痕加深等缺陷。针对这种情况, 我公司最新研发了一套连铸结晶器液面自动加渣控制系统, 能够代替工人进行自动加渣而基本无需工人干预。 三、系统简介 我公司新研发的连铸结晶器液面自动加渣控制系统, 包括工控机、控制执行单元、现场控制报警单元、加料仓、气动单元、结晶器渣液面温度检测装置、渣料喷头、料位计、专用软件组

成。 连铸结晶器液面自动加渣控制系统是一套闭环自动控制系统, 它以工控机为核心, 经过专用软件来自动控制各个组成部分自动工作, 在基本参数设置完成后, 由工控机来根据连铸机结晶器内渣液面的实际情况进行参数调整, 无需再人工干预调整而能保证结晶器内渣液面的均匀和稳定。 系统的工作过程由工控机实时不停的读取结晶器内渣液面的表面温度, 如果渣液面的表面温度超过设定的加料温度, 则工控机控制执行单元让加料仓下料, 同时打开气动单元, 保护渣在下料管内被送料气体经渣料喷头均匀吹送到结晶器内, 然后再测结晶器内渣液面的表面温度, 如果渣液面的表面温度依然超过设定的加料温度, 则工控机重复上面的加料过程, 如果测量到结晶器内渣液面的表面温度低于设定的加料温度则停止加料和关闭气动单元。 在现场设有工人控制箱, 能够控制任意一流加料系统的启动和停止。当出现故障时控制箱会发出声光报警, 并指示灯提示哪一流出现问题。 系统实现框图如下:

各种连铸连轧生产线的比较

各种连铸连轧生产线的比较 一、基本概述 裸电线是电线电缆不可缺少的部分,除了光缆以外,几乎所有的电线电缆都需要导体、需要裸线,而且相当数量的一部分产品就以裸电线的形式出现,例如钢芯铝绞线。粗略概算,包括导体部分在内的裸电线的总产值,约占电线电缆总产值的三分之一,它有着举足轻重的作用。 裸电线、电线电缆导体,其材料主要是铜、铜合金、铝、铝合金,以及其它有色和稀有金属材料。 在工农业总的用铜量中,电线电缆行业用铜量占有很高的比重。九十年代初期,全国电线电缆行业的用铜量约近30万吨,而今年估计用铜量为80余万吨,约增加近二倍的用铜量,价格却从最高每吨3万元至现在每吨1.5万元,下跌约50%,因此一些在缺铜时采用铝作代用品的电线电缆产品又恢复采用铜,如布电线、电车线等,使铜的用量日增。铜作为电线电缆最主要的导电材料,又逐步向不同的用途延伸,如用作电车线的高强度、高耐磨的铜合金线应运而生;使用高纯度、高精度的铜线为通信电缆等提供优质导电材料;特细铜线、超细铜线更为新型的电子仪器设备、通信设备、办公自动化设备等提供更为优良的产品,用铜量的增加便是理所当然的。 每年几十万吨铜需要加工,从电解铜板、加工成杆、线或异型材,需要约万台套以上的杆材、线材和异型材的生产设备,这是十分庞大的设备群体。 铜杆生产中最主要四种方法的设备,我国都应有尽有。拥有2台套浸涂法设备和至少700余台套的上引法机组用于生产无氧铜杆,保守估计,设备年生产能力在180万吨至200万吨;从德国、美国、意大利引进的铜铸轧机组超过10

台套,加上国产的连铸连轧机组,光亮铜杆的生产能力至少为50万吨至60万吨;至于原有常用的横列式轧机轧制黑铜杆,加上用水平连铸法制作型材的坯料,其年生产能力不低于30万吨至50万吨。也就是说,我国拥有的生产设备中,无氧、低氧铜杆的年生产能力在220万吨至250万吨左右。加上黑铜杆生产能力,将超过300万吨。由于乡镇企业的大量出现,一些简易的生产铜杆的方法,也就无法在此估计之中。80万吨的需要量和250万吨无氧、低氧铜装机能力之间,存在着很大的距离,因此相当大的部分设备就不得不处于减产或停产状态,以700 余台套上引法机组为例,估计约1/3至1/4的机组由于各种原因而处于停产状态,而1/2的机组的产量尚未达到原设计的生产能力,但即使如此,由上引法机组生产的铜材,仍占有我国铜杆用量的半璧江山,起着重要的作用。 我国铜线拉线机约在万台左右,至少有一半是由电工机械厂制造的,少量由国外引进,这二部分设备的性能都较优,特别至九十年代中后期,国产大、中、小拉采用连续退火的水平,已与国外设备逐步靠近,差距大大缩小了。然而在乡镇企业中仍有土拉线机,这些机器能耗高、劳动强度高、效率低、粗糙,难以加工质优的产品,这部分设备数量估计约为总数的一半,需要给予彻底改造或弃之不用。 裸电线中大量采用铝,例如:铝绞线及钢芯铝绞线。九十年代初期,用铝量每年尚不超过20万吨,以后随着经济的增长逐年增加,由于以前国家在电力系统的政策上是重发电轻送电,使送电的增长赶不上发电的增长速度。近年来开始的城市电网和农村电网改造,使送电的增长速度急剧加快,兼之九十年代开始建设的大型电站,像二滩电站、黄河小浪底电站和长江三峡电站,将相继逐步建成,送电便成为电站建设以后的重中之重,送电工程建设步入本世纪以来最辉煌、

连铸自动化

攀钢1#板坯连铸机的自动化系统改造实践 2009-4-29 9:13:00 来源:中国自动化网浏览:50 网友评论条点击查看 一、引言 攀钢1#板坯连铸机于1993年10月18日一次热负荷试车成功。1996年实现高效化改造,2003年年产板坯210万吨,大大超过原设计100万吨的能力。原自动化控制系统采用贝利-N90集散控制系统,原过程计算机系统采用的是TJ2236小型计算机,控制系统的设备已淘汰,有的元件也日趋老化,系统故障增多,控制系统备件已无法准备。因此,对现有的基础自动化控制系统和过程计算机控制系统进行了改造。 二、自动化控制系统的构建 攀钢1#板坯连铸机自动化系统改造拟采用两级控制系统,即由基础自动化系统(L1)及过程控制计算机系统(L2)组成。基础自动化网络系统采用光纤环形以太网,过程计算系统的网络采用星型连接,两条以太网独立配置,以解决网络数据的畅通。自动化系统配置如图1所示。 1. 基础自动化系统构成 基础自动化(L1)级配置11套西门子S7-400PLC系统,其中新增7套PLC(包括1套平台控制的公共PLC,2套流道控制的流PLC,2套冷却控制的冷却PLC,1套出坯控制的出坯PLC),且大量采用分布式远程I/O站,各分布式I/O站与控制器间以现场总线连接;利旧4套(包括2套

拉矫机控制PLC和2套框架控制PLC)。HMI系统配置两台服务器,互为热备方式。设置5个操作员站、1个工程师站。 ⑴公共PLC系统的配置 公共PLC配备了主站、2路PROFIBUS-DP网络以及4个远程I/O站。其中,一路DP网络连接浇铸平台大包操作的1个远程I/O站,另一路DP网络连接电气室和公共水系统的3个远程I/O 站。 ⑵流PLC系统的配置 流PLC配备了主站、2路PROFIBUS-DP网络以、11个远程I/O站以及PROFIBUS-DP网络中继器2台。其中,一路DP网络连接浇铸平台上的1个远程I/O站,另一路DP网络连接切割PLC 室、电气室、切割室、现场液压阀台、现场操作箱的10个远程I/O站。由于第2路PROFIBUS-DP 网络线路较长,在线路中配置了PROFIBUS-DP网络中继器,对信号进行放大。 ⑶冷却PLC系统的配置 冷却PLC配备了主站、2路PROFIBUS-DP网络以及5个远程I/O站。其中,一路DP网络连接结晶器水的1个远程I/O站,另一路DP网络连接二冷水、二冷气控制的4个远程I/O站。 ⑷出坯PLC系统的配置 出坯PLC配备了主站、1路PROFIBUS-DP网络以及6个远程I/O站。其中,电气室3个远程I/O站、切割室2个远程I/O站、出坯室1个远程I/O站。 ⑸网络系统的配置 L1网络是自动化系统的关键环节,采用了光纤环形以太网。网络系统连接11套PLC系统、2台L1监控服务器、2台L2服务器、5个L1操作员站以及1个L1工程师站。 ⑹操作监控系统的配置 操作监控系统配置2台L1监控服务器以及5个L1操作员站,两台服务器,互为热备方式。 2. 过程计算机系统L2的构成 过程控制计算机系统在结构上采用三层应用结构,第一层为前端客户表现层,即系统的HMI,主要完成L2系统与用户的人机界面交互,第二层为中间应用服务层,主要完成应用系统的业务逻辑处理;第三层为后台数据库层,完成生产数据的历史存储。L2级系统在L1级系统的支撑下,对连铸生产过程进行优化控制、管理。 ⑴L2服务器系统 L2服务器系统包括1台数据库服务器和1台用服务器。由1台PC服务器担当数据库服务器,由1台PC服务器担当应用服务器。在服务器中配置Windows 2003 Server操作系统和Oracle 数据库管理系统。服务器位于计算机机房。服务器通过高速以太网与各PC客户机相连接,实现数据共享,提高了系统的灵活性和可靠性。网络拓扑结构为星型,采用100Mbps快速以太交换网技术构建系统网络,通讯协议采用TCP/IP。 ⑵技术工作站 配置技术工作站TWS(Technology Work Station)1台。位于计算机室,与二级应用服务器交换数据,主要用于模型开发及模型仿真程序,可选择配置较好的专用工作站。 ⑶工艺师工作站

连铸连轧杆工艺技术操作规程

山东平阴铝厂企业标准 QJ/PL03.4-2001 连铸连轧杆工艺技术 操作规程 2001—10—01发布2001—11—01实施 山东平阴铝厂

说明: 1.本规程由山东平阴铝厂科技处提出,由科技处组织起草. 2. 编制:邹永华、叶俊 审核:黄建芳 批准:谷吉存 参加讨论人员::黄建芳、沈其民、杨飞侠、王显锋、边红、 邹永华、赵凯

目录 一生产工艺流程图 (1) 二熔炼工艺技术操作规程 (1) 三浇铸工艺技术操作规程 (3) 四轧制工艺技术操作规程 (4) 五收杆工艺技术操作规程 (5) 六清炉工艺技术操作规程 (6) 七烘炉工艺制度 (6) 八检查、包装 (6) 附:连铸连轧杆生产工艺卡片

一、生产工艺流程图 铝杆 二熔炼工艺技术操作规程 1 新保温炉的使用 ①保温炉投入使用前,按烘炉工艺制度进行烘炉,待炉膛温度升到800℃以上时进行洗炉。 ②洗炉应用A199.70以上品位铝水,灌铝水占炉子容积的1/2,用大耙伸进熔体中充分搅拌,然后将铝水放出,如此再清洗一次。

按连铸连轧杆生产工艺技术要求进行配料。 3 装炉 ①一般固体炉料要在灌炉前加入。若为调整铝液温度或化学成份,需要加入固体炉料。固体炉料在加入之前,要在炉门预热,待干燥后再用大耙或钎子推入炉内。禁止向炉内扔甩固体炉料以免铝水溅到电热体上或者溅出伤人。 ②灌炉前要扒干净敞口包表面的浮渣,小心倒入炉内,要倒干净敞口包内的铝水。 ③装炉前要停电,加完炉料后,根据情况确定是否送电与关闭炉门。 ④将装入的铝水、固体炉料重量记入连铸连轧杆生产工艺卡片。 4 取样 ①取样温度720~740℃,当铝水温度高出这个温度时,要通过添加固体炉料来调整铝水温度,取样前铝水温度夏天720~730℃,冬天730~740℃。 ②取样部位:熔体中间部位。 ③取样前,必须充分搅拌,搅拌时间不少于5分钟。搅拌时,作到铝液“起波不起浪”。 ④搅拌后,立即取样进行分析,鉴定化学成分是否符合要求,取样前,取样勺要预热。 ⑤当成分不符合要求时,应采用加中间合金或稀释的方法重新配料,再进行二次取样分析。 ⑥将加入的中间合金的重量计入连铸连轧杆生产工艺卡片。 5 精炼 ①精炼之前温度720~740℃。 ②精炼所用保温砖必须预热,并且在四氯化碳中浸泡30分钟以上。 ③精炼器装入保温砖之前,先在炉门口予热。 ④精炼时,精炼器应在整个熔池内缓慢移动,沿整个熔池均匀精炼,时间不少于15分钟。 ⑤精炼剂用量0.5千克/吨铝。 ⑥将精剂量的用量计入卡片。

连铸连轧

第一章 模铸与连铸的比较 ?模铸:钢水→整模→浇铸→脱模→均热→初轧→成品轧制 ?连铸:钢水→连铸→成品轧制 ?液态铸轧:钢水→铸轧成品 模铸铸锭的凝固 ?将炼成的钢水浇注到铸铁或砂型制成的钢锭模内,凝固后形成的锭子称为钢锭。钢锭经轧制或锻压成为钢 材后方能使用,所以钢锭是半成品。 ?根据浇注方法的分为上注钢锭和下注钢锭。下注锭的表面质量优于上注锭。 ?根据脱氧程度的不同又有沸腾钢钢锭、半镇静钢钢锭和镇静钢钢锭三种。沸腾钢是脱氧不完全的钢,镇静 钢是脱氧完全的钢,半镇静钢的脱氧程度介于前两者之间,接近于镇静钢。 钢锭的应用现状 ?模铸锭与连铸坯相比,所占比例逐年减少,最终将减少到约占10%,其中合金钢和不锈钢将减少到20%, 工具钢和特殊钢将减少到40%。这是由于连铸坯可以多炉连浇、收得率高、不需初轧或开坯、能耗低,质量甚至优于模铸锭。 ?但模铸镇静钢不可能完全被淘汰,因为锻造用钢、一些小批量生产的高级合金钢及VAR(真空电弧重熔)和 ESR(电渣精炼)用的坯料仍需用模铸镇静钢来生产。 钢锭的质量 ?钢锭的质量有表面质量和内部质量之分。 ?表面质量:结疤、裂纹、表皮的纯净度和致密度。 ?内部质量:钢锭内部的纯净度、致密度、低倍非金属夹杂物数量和宏观偏析的程度。 ?沸腾钢的表面质量好,但由于锭心偏析大,内部质量不如镇静钢。 连铸:使金属液由中间包经浸入式水口不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的一种铸造工艺。 连铸的设备以弧形连铸机为例,主要有钢包支承装置、盛钢桶(钢包)、中间罐、结晶器(一次冷却装置)、结晶器振动装置、铸坯导向和二次冷却装置、引锭杆、拉坯矫直装置(拉矫机)、切割设备和铸坯运出装置(见辊道和横向移送设备)等 连铸的优点 变间断生产为连续生产,产量↑(连铸比,连浇炉数) 冷却强度大,铸造组织比较细密,偏析小 切头切尾率少,成才过程烧损和切损少,成材率提高8~12% 工艺过程缩短,生产周期短,能耗、运输成本降低,能耗降低30~60%(视是否热装、热送、直接轧制而定) 环保条件好,无整、脱模时的污染 便于自动化,提高技术水平 连铸的好处在于节能和提高金属收得率。 连铸的发展史 1、现代炼钢技术的发展(连铸技术的作用) (1) 1947年-1974年: 技术特点:转炉、高炉的大型化;以模铸-初轧为核心,生产外延扩大。 (2) 1974年-1989年: 技术特点:全连铸工艺,以连铸机为核心。 (3) 1989年-现在:

铝杆连铸连轧机简单说明

UL+Z-1800/10+255/12型铝杆连铸连轧生产线机械说明一、机组用途及组成 本设备采用连铸连轧法工艺生产电工铝杆,生产的杆径为¢10mm。原材料为普铝锭或废铝线。 本生产线由溶化炉(竖炉)、五轮式整体连铸机、油剪机、喂料装置、连轧机、润滑系统、冷却系统、滑动无油收杆装置等组成。 (其中炉子为外购配套或用户自备) 二、技术规范 (一)主要技术参数 导电铝杆直径:¢10mm 生产能力: 2.5-4.8t/h 设备总尺寸:36.05×7.2×4.2m 设备总重量:55t (二)各组成部分技术参数: 1、五轮式连铸机(四面冷却) 1)、结晶轮直径¢1800mm 2)、结晶轮截面积 1800mm2 3)、铸锭面积 1800mm2 4)、浇铸速度 8-15m/min(电动机转速 500-1000rpm) 5)、结晶轮转速 1.66-3.3r/min 6)、电动机型号 Z4-112/4-2 5.5K 1000r/min 7)、冷却水压 0.35-0.6Mpa 8)、冷却水量 100t/h (内冷 40t/h;外冷 40t/h;侧冷 20t/h) 9)、浇堡升降电机 Y901-2 1.1KW 2840r/min 10)、钢带压紧气缸 10A-2CDD125B100-Y 11)、钢带张紧气缸 10A-2CDD250B100-Y 2、油剪 3、连轧机 1)、形式 2+10(2架两辊;10架三辊Y型) 2)、出杆直径¢10 3)、机架数 12架 4)、轧辊名义尺寸¢255mm 5)、相邻机架传动比 1:1.25 6)、终轧速度 V=7.2m/s 7)、产量 2.5-4.8t/h 8)、轧制中心高 900mm 9)、主电机型号功率 Z4-315-22 225kw 680r/min 10)、齿轮箱润滑油箱 3m3 11)、乳化液 65m3 4、喂料装置

连铸连轧综述

薄板坯连铸连轧综述 1.前言 连铸连轧技术作为钢铁生产工业近年来最重要的技术进步之一,具有节约能源、流程短、设备少、成材率高、生产成本低、产品质量好、品种开发潜力大等突出优点[1~5]。而在薄板坯在生产过程中应用该技术时获得的组织晶粒细小、二次枝晶间距小、偏析程度低,应用该技术进行生产优势更加明显[6]。因此,全世界各大钢铁生产企业纷纷引进投建薄板坯连铸连轧生产线。近些年来,随着薄板坯连铸连轧技术日益成熟和广泛,使人们认识到原来的薄板坯连铸连轧技术仍有许多不足之处,开始进行技术的再开发和提高,使技术更臻于成熟和完善。2.薄板坯连铸连轧技术简介 2.1连铸连轧技术 连铸连轧全称连续铸造连续轧制,是将液态金属连续通过水冷结晶器凝固后直接进入轧机进行塑性变形的工艺方法。传统生产工艺是用熔炼炉将炼好的钢液铸成铸锭,经过保温、锻造制成锻坯,之后再通过均热炉加热到高温并保温一段时间后才进行热轧。这一过程需要多次加热保温,既浪费了能源,也使生产周期过长。而连铸连轧技术则是把熔炼好的液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。这种工艺巧妙地把铸造和轧制两种工艺结合起来,相比于传统的先铸造出钢坯后经加热炉加热再进行轧制的工艺具有简化工艺、改善劳动条件、增加金属收得率、节约能源、提高连铸坯质量、便于实现机械化和自动化的优点[1~5]。 2.2薄板坯连铸连轧 连铸坯在轧制之前依据板坯厚度可以分为厚板坯连铸、中厚板坯连铸和薄板坯连铸。随着连铸坯厚度的减小,板坯中部的冷却速度增大。冷却速度增大之后,铸坯中部的晶粒变得细小、缺陷减少、偏析减轻、二次枝晶的间距也随之减小。

连铸连轧

第一章钢铁冶金基本知识 第二章连铸机构造及各部分功能 第三章连铸坯质量及其控制 第四章连铸坯的热装、热送、能量的衔接 第五章薄板坯连铸连轧 第六章连铸大方坯液芯轧制 第七章近终型连铸及铸轧的配合 第一章钢铁冶金基本知识 一.钢铁冶金系统工程 二.对合格钢水的要求 三.炉外精炼 连铸与冶炼能力、节奏的匹配 一、钢铁冶金系统工程 1.工艺过程:矿石→选矿(磁选、浮选)→烧结(球团)→炼铁(高炉、非高炉)→炼钢(平炉、转炉和电炉; 炉外精炼)→铸造(模铸、连铸)→轧制(热轧、冷轧)→成品(板、管、型、线)。 2.最终产品的组织性能要满足用户的各种需要。(强度、塑性、韧性、加工性能、特殊物理化学性能)。 3.最终性能取决于成份控制、各工序的组织性能控制、具有遗传性、要求系列优化 二、对合格钢水的要求 1.温度合格 2.成份合格 3.纯净度合格 二、对合格钢水的要求 1. 温度合格:控制出钢温度、浇铸温度(考虑各中间过程温降)。 温度过高:钢中气体夹杂物↑,铸坯易裂,钢质变差,各项耐火材料消耗增加,枝晶粗大,偏析增加。 温度过低:浇铸困难,结晶器液面结壳,钢水粘度增加,气体夹杂物上浮困难。 . 温度合格:控制出钢温度、浇铸温度(考虑各中间过程温降)。 过热度:钢的浇铸温度与该钢种的液相线温度之差。 △T=Tm-Tl,一般15~35℃ Tl=1537℃-[88C%+8Si%+5Mn%+30P% +25S%+5Ca%+4Ni%+2Mo%+2V%+ +1.5Cr%] 2.成份合格 基本成分: C 来自铁水、增碳剂、高碳铁合金、保护渣 Si 来自铁水、脱氧剂、铁合金 Mn 来自铁水、脱氧剂、铁合金 P 来自铁水中的矿石 S 来自铁水中的焦炭、石灰 P 、S为有害元素,S引起热脆,P引起冷脆,要通过炉外精炼将S脱至0.01%以下,P脱至0.015%以下(高级钢S和P脱至0.005%以下)。 2.成份合格 合金成分:特殊加入,视钢种而定。 Cr、Ni、Mo、Mn、Si 等 微合金元素:特殊加入或铁矿石残留,少量加入(如0.003%)就可获得优异性能。Nb、V、Ti、Re、B 有害成份:S%、P%、Cu%、As%、Pb%、Sn%等来自废钢和炼钢辅料,要求控制在要求范围以下 调整成份时要考虑合金元素的收得率,应在脱氧后加入,并有成分微调功能。 3.纯净度合格 气体[H] 来自原材料、耐火材料、空气中的水分,易引起白点。目前控制水平在2ppm 以下。 [O] 来自空气及吹炼中的氧,引起皮下气泡、氧化物夹杂,故炼钢后期要脱氧(加入MnFe、SiFe、Al)。

连铸连轧及人工智能技术课程总结报告

连铸连轧及人工智能技术课程总结报告 本课程主要讲述了连铸坯的热送热装技术、CSP 连铸连轧工艺与传统工艺的区别与优势,薄板坯连铸连轧、CSP 产品特征,还有热轧板带无头轧制、半无头轧制技术的设备、优点、应用现状和发展趋势;之后讲述了什么是人工智能技术,人工智能技术包括的具体内容,以及在连铸连轧工艺中的应用现状及前景。通过本课程的学习深入了解了CSP 工艺过程及人工智能技术,以及人工智能技术在连铸连轧中的应用潜能。下面从学习的先后顺序进行本课程的分析、归纳和总结。 其一,从CSP 工艺与传统工艺的比较可以看出,CSP 工艺的流程短且紧凑通畅、设备相对简单、占地面积少、设备成本低、生产效率高、生产比较稳定,而最大的不同在于热历史:在CSP 工艺中,板坯经历了由γ→α转变的单向变化过程,而传统板坯的热历史为γ(1)→α,α→γ(2),γ(2)→α过程,热历史、变 形条件与过程的不同决定其再结晶、相变以及第二相粒子析出过程、状态和条件的不同,从而使板坯的组织性能不同。在CSP 生产线中,精轧机组与均热炉紧密衔接,具有大压下和高刚度轧制等特点,采用轧制润滑技术和先进的板形厚度控制技术;直通式辊底隧道炉可保证坯料头尾无温降差;层流快速冷却可保证薄板在长度及宽度方向上温度均一,有利于相变细化和组织强化。CSP 工艺具有超薄规格板坯轧制的能力,经辊底炉均热和升温的薄板坯温度可达1100-1150℃,板坯厚度达到1.4mm 。CSP 工艺还具有铁素体型钢种的轧制能力,像低碳钢、微碳钢、超低碳钢和无间隙原子钢等,该技术的关键在于粗轧与精轧之间要有强力冷却系统。 其二,介绍了半无头轧制的工艺特点及连铸连轧低碳钢的组织与力学性能。半无头轧制应用于第二代薄板坯连铸连轧生产线中,其特点是可消除穿带、甩尾过程中因头尾无张力而导致的头尾厚度、凸度和板形不良等缺陷;提高轧辊寿命;避免薄规格板坯的“漂浮”等。其关键技术有采用动态CVC 轧机、动态PC 轧机、等;采用动态变规格轧制技术;均匀轧辊磨损专用设备和技术;在卷取机前设置高速滚筒式飞剪;靠近末架精轧机近距离设置轮盘式卷取机;优化铸坯长度和拉坯速度;采用工艺润滑等。采用CSP 工艺生产的低碳钢强度高、塑性好,成品板材晶粒细小均匀,氧化物、硫化物夹杂尺寸细小。 其三,讲解了热轧板带无头轧制、半无头轧制技术的现状和发展趋势,主要阐述了无头轧制技术的发展,热带无头轧制技术、无头轧制的中间坯连接技术(主要讲述了感应加热连接技术与北科大康永林教授自主研发的模压齿成形连接法)、板厚、板形和品质控制技术、无头轧制技术的应用、CSP 生产薄规格半无头轧制技术等。 其四,讲授了人工智能技术的概念、产生与发展、涵盖的基本内容及研究途径,重点讲述了人工智能技术在轧制中的应用。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。轧制中的人工智能技术与传统方法的不同在于它避开了过去那种对轧制过程深层规律的无止境的探求,转而模拟人脑来处理那些实实在在发生了的事情,它不是从基本原理出发,而是以事实和数据作依据,来实现对过程的优化控制。目前人工智能中的专家系统是应用最活跃、最有成效的一个研究领域。它是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题。例如,工字钢孔型设计专家系统、热轧钢材组织和性能预测及控制专家系统、带钢厚度偏差诊断与监控专家系统等;还有

相关文档
最新文档