重庆大学出社高等数学题库参考答案

重庆大学出社高等数学题库参考答案
重庆大学出社高等数学题库参考答案

第五章 不定积分1(直接积分法、换元积分法)

一、单选题

1.设)(x f 是可导函数,则?'

))((dx x f 为( A ).

A.)(x f

B.C x f +)(

C.)(x f '

D.C x f +')(

2.函数)(x f 的( B )原函数,称为)(x f 的不定积分.

A.任意一个

B.所有

C.唯一

D.某一个 3.?

=

+=)(,2cos )(x f C x e dx x f x

则( A ).

A.)2sin 22(cos x x e x -

B.C x x e x +-)2sin 22(cos

C.x e x 2cos

D. x e x

2sin

4.函数x e x f =)(

的不定积分是( B ).

A.x e

B.c e x +

C.x ln

D.c x +ln 5.函数x x f cos )(=的原函数是 ( A ).

A.c x +sin

B.x cos

C.x sin -

D.c x +-cos 6.函数211)(x

x f -=的原函数是( A ).

A.c x x ++

1 B.x x 1- C.32

x

D.c x x ++12 7.设x 2是)(x f 的一个原函数,则[]

='

?dx x f )(( B )

A. x 2

B.2

C.2

x 8.若

c e dx e x x +=?

, 则

?x

d e x

22=( A )

A.c e

x

+2 B.c e x + C.c e x +-2 D.c e x +-2

9.函数x x f sin )(=的原函数是( D )

A.c x +sin

B.x cos

C.x sin -

D.c x +-cos 10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=( B )

A.)(x f

B.0

C.)(x F

D.)(x f ' 11.函数21

1)(x

x f +

=的原函数是( A ) A.c x

x +-1

B.x x 1-

C.32x

D.c x x ++12

12. 函数21

1)(x

x f -

=的原函数是( A )

A.c x

x ++

1 B.x x 1- C.32x D.c x x ++

12

13.若函数)(x f 、)(x g 在区间),(b a 内可导,且)()(x g x f '=',则( B ) A.)()(x g x f = B.C x g x f +=)()(

C.)()(x g x f ≠

D. 不能确定)(x f 与)(x g 之间的关系 14.若)()(x f x F =',则下列等式成立的是( B ). A.C x f dx x F +='?)()( B.?+=C x F dx x f )()( C.?+=C x f dx x F )()( D.C x F dx x f +='?)()( 15.经过点)1,0(-,且切线斜率为x 2的曲线方程是( D ).

A.2x y =

B. 2x y -=

C. 12+=x y

D. 12-=x y 二.填空题

1.)25ln(2125x d x dx --

=-.

2.)1(2

12x d xdx --

=.

3.C a

a dx a x

x +=?

ln .

4.设)(x f 是连续函数,则dx x f dx x f d )()(=?.

5.

x

x cos 2+的原函数是x x sin 2

+.

6.]4)3[(2

1)3(2---=-x d dx x .

7.C x xdx +=?7sin 7

1

7cos .

8.)1(ln 3133-=

x x a d a

dx a .

9.)3(cos 3

13sin x d xdx -

=.

10.C x dx x x +=

?2

ln 21ln .

11.C x dx x +=

?4

34

1.

12.)C 4

1

(22

22+-=--x x e d

dx xe .

13.C x xdx x +=

??2

sin 21sin cos . 14.

C x dx x +=

+?3arctan 3

1

911

2. 15.C x x dx x +-=

?)sin (2

1

2

sin 2.

16.?+=

'C x f dx x f )2(2

1

)2(.

17.设?+=.

)()(C x F dx x f ,若积分曲线通过原点,则常数)

0(F C -=.

18.

)3(arctan 31912

x d x dx

=

+. 19.)(2

12

2

x x e d dx xe =

.

20.已知x

x f C x dx x f 2sin )(,sin )(2=

+=?则.

21.设)()()(21x f x F x F 是、的两个不同的原函数,且=-≠)()(,0)(21x F x F x f 则有 C .

22.C x x dx x x +-=

+-?

2

2

2

11

1 23.C

e dx e x

x

x +-=

?11

21

.

24.)1ln(2

11

22

-=

-x d dx x x .

25.若x x f sin )(的导函数是,则)(x f 的原函数为

C

x +-sin .

26.设)(3

x f x 为的一个原函数,则dx

x x df 23)(=

.

27.)2cos 41(8

12sin x d xdx -=

28.x x sin 2

+的一个原函数是

x x cos 3

13

-.

29.)3

(cos 3

3sin x d dx x -=

.

30.C

x xdx +-=

?cos ln tan .

31.()C x dx x +--=-?)21sin(2

1

21cos .

32.C

x xdx +=?tan sec 2. 33.

C x x

dx

+-=?3cot 3

1

3sin

2

.

34.设x 2是)(x f 的一个原函数,则?

='])([dx x f 2 .

三.判断题 1.

?+=c

x xdx cos sin ( × ) 2.x

x e

dx e =?

( × )

3.?-=.

cos sin x xdx ( × ) 4.?

+-=c

x xdx cos sin ( √ ) 5.)

21sin()]21[sin(x dx x -=-?

( × ) 6.?

+-=c

x xdx sin cos ( × )

四.计算题

1.求不定积分dx x x ?+2

1. 解:原式=C x x d x ++=++?23

2

22)1(3

1)1(121

2.求不定积分

dx x ?-31

. 解: 原式=C x +--3ln

3.求不定积分?+dx e e x x 1. 解:原式=C e e d e

x x x ++=++?)1ln()1(11 4.求不定积分?

+-dx x

x x

)3sin 21(. 解: 原式=C x x x +++ln 3cos 22 5.求不定积分?-dx xe

x 2

. 解: 原式=C e x +--2

2

1 6.求不定积分dx x x

?+1

2. 解: 原式=C x ++)1ln(212

7.求不定积分dx x x

?+2

)72(. 解: 原式=

C x

x x ++?+7

ln 24914ln 1422ln 24 8.求不定积分?+dx x 10)12(. 解: 原式=

C x ++11)12(22

1

9.求不定积分?+-dx x

x x )1)(1(. 解: 原式=C x x x x x +-+-

22

1522

2

10.求不定积分?xdx 2sin . 解: 原式=C x x +-2sin 4

1

21 11.求不定积分?dx x x 22cos sin 1

. 解: 原式=C x x +-cot tan

12.求不定积分

dx x ?+321

. 解: 原式=C x ++32ln

21

13.求不定积分xdx x

arctan 112

?

+. 解: 原式=C x +2)(arctan 21 14.求不定积分?-dx

x x 4313. 解: 原式=C x +--41ln 4

3 15.求不定积分

?+dx x 2

411. 解: 原式=C x +2arctan 2

1

16.求不定积分?+dx x x

)5(3

. 解: 原式=C x x

++

5

ln 5414 17.求不定积分?

-dx e x 5. 解: 原式=C e x

+-

-55

1

五.应用题

1.设一质点作直线运动,已知其加速度为t t a sin 3122-=,如果0=t 时3,500-==s v , 求(1)t v 与的函数关系; (2)t s 与的函数关系. 解:

3

2sin 3)(2sin 3)2cos 34()(2

cos 34)(cos 34)sin 312()(4

3,04335

,032-++=???→?+++=++=++=??→?++=-=-====??t t t t s c t t t dt t t t s t t t v C t t dt t t t v s t v t

2.求经过点(0,0),且切线斜率为x 2的曲线方程. 解:20

,022x y C x xdx y y x =???→?+====?

3.一物体由静止开始运动,t 秒末的速度是2

3t (米/秒),问(1)在3秒末物体与出发点之间的距离是多少? (2)物体走完360米需多长时间?

解:设运动方程为:30

,032)(3)(t t S C t dt t t S S s t =??→?+=====?

(1)当3=t 时,27)3(=S (米)

(2)当.360360)(33

秒=?==t t t S

4.一曲线过原点且在曲线上每一点),(y x 处的切线斜率等于3

x ,求这曲线的方程. 解:40,043

4

141x y C x dx x y y x =???→?+=

=

==? 5.已知物体由静止开始作直线运动,经过t 秒时的速度为180360-t (米/秒),求3秒末物体离

开出发点的距离.

解: t t t S C t t dt t S s t 180180)(180180180)-60t 3()(20

,02-=??→?+-====?

.

当3=t 时,1080)3(=S (米).

6.求经过点)1,(e ,且切线斜率为x 1

的曲线方程.

解:x y C x dx x

y y e x ln ln 11,=??→?+==

==?. 7.求经过点(0,0),且切线斜率为2

11

x

+的曲线方程.

解:x y C x dx x y y x arctan arctan 110

,02

=???→?+=+===?.

第五章 不定积分2

一.单选题

1.下列分部积分法中, dv u ,选择正确的是( A ). A.?==xdx

dv x u xdx x 2sin 2sin ,, B.xdx

dv u xdx ln ,1,ln ==?

C.

dx x dv e u dx e x x x 22,,==--?

D.

xdx dv e u dx xe x

x ==?

,,

2.??-=)(

2arctan d 2arctan A

xd x x x x .

A.x arctan2

B.x arctan4

C.x arctan2-

D.x arctan4- 3.

=?

2

-4d x

x ( A ).

A.C x +2arcsin

B.C x +arcsin

C.C

x

+2arccos D.C x +arccos

二.判断题

1.分部积分法u v uv v u d d ?-=?的关键是恰当的选择u 和v d ,使u v d ?应比v u d ?容易积分.( √ )

2.若被积函数中含有2

2a x ±,则可利用三角函数代换法化原积分为三角函数的积分.

( √ )

三.填空题

1.

C

x dx x ++=

+?1211.

2.设)(x f 有一原函数?

+-=

'C

x dx x f x x

x cos )(,sin 则.

3.C x x x xdx x +-=?224

1

ln 21ln .

4.

)3(arcsin 3

1912

x d x

dx =

-.

5.C

x x e dx e x x x ++-=?)22(22.

6.?++-=C x x x xdx x 3sin 9

1

3cos 313sin .

四.计算题

1.求不定积分

?

-dx x x

2

32. 解:原式=C

x x d x +--=---

?22

2323

1)32(32161

2.求不定积分?dx

x

e x2

2

. 解:原式=C

x

x

e x+

+

-)

2

1

(

2

1

2

2

3.求不定积分?

+

+

dx

x

x

1

1. 解:

C

x

x

C

t

t

dt

t

t

t

x

+

-

-

+

=

+

-

=

-

=

+?

1

)1

(

3

2

3

2

)

2

2(

1

3

2

2

3

2

原式

4.求不定积分?

+)

1(x

x

dx

. 解:

c

x

C

t

dt

t

t

x

+

=

+

=

+

=?

arctan

2

arctan

2

1

2

2

2

原式

5.求不定积分?xdx

x2

sin

. 解:原式=C

x

x

x+

+

-2

sin

4

1

2

cos

2

1

6.求不定积分?+dx

e

x x5

)2

(

. 解:原式=C

x

e x+

+)

5

9

(

5

1

5

7.求不定积分

dx

xe x

?-4. 解:原式C

x

e x+

+

-

=-)

16

1

4

1

(

4

8. 求不定积分?

+

+

dx

x1

1

1

. 解:原式[]C

x

x+

+

+

-

+

=)

1

1

ln(

1

2

9.求不定积分?

+

-

dx

x1

2

1

1

. 解:原式[]C

x

x+

-

+

+

+

=1

1

2

ln

1

2

-

10.求不定积分

dx

e x

?

+

1

1

. 解:原式=C

e

e

x

x

+

+

+

-

+

1

1

1

1

ln

11.求不定积分?xdx

x ln

2

. 解:原式C

x

x+

-

=)

3

1

(ln

3

1

3

12.求不定积分

dx

x

x

?-1

. 解:原式C

x

x+

-

-

-

=)1

arctan

1

(2

13.求不定积分?

-

-

-

dx

x

x

2

2

1

1

2

. 解:原式C

x

x+

-

=)

(arcsin

2

14.求不定积分?dx

a

x x

2)1

,0

(≠

>a

a. 解:原式C

a

a

x

a

x

a x+

+

-

=)

ln

2

ln

2

ln

(

3

2

2

15.求不定积分

dx

x

?

-2

9

4

1

. 解:原式C

x+

=

2

3

arcsin

3

1

16.求不定积分

dx

x

?sin. 解:原式C

x

x

x+

+

=sin

2

cos

-2

17.求不定积分?

xdx x 3cos . 解:原式C x x x ++=

3cos 9

1

3sin 31 18.求不定积分

dx

x x ?

+2

. 解:原式C x x ++-+=21

23

)2(4)2(3

2

五.应用题 (增加题)

第六章 定积分

一.单选题 1.)(

24

0D

dx x =-?

A.??-+-4

2

2

0)2()2(dx

x dx x B.??-+-4

2

2

)2()2(dx

x dx x C.??-+-4

2

2

)2()2(dx

x dx x D.??-+-4

2

2

)2()2(dx

x dx x

2.=?a a

dx x f )(( C ) A.大于0 B.小于0 C.等于0 D.不能确定 3.??--=+1

1

1

1

)()(dx x f dx x f ( C )

A.大于0

B.小于0

C.等于0

D.不能确定 4.定积分?b

a

dx

x f )(是( D )

A.一个原函数

B.()x f 的一个原函数

C.一个函数族

D.一个常数 5.定积分?b

a

dx

x f )(的值的大小取决于( C )

A.)(x f

B.区间 []b a ,

C.)(x f 和[]b a ,

D.都不正确 6.定积分的值的大小取决于( C )

A. B.区间 C.)(x f 和[]b a , D.无法确定 7.??=-3

2

3

4

)()(dx x f dx x f ( A )

A.?4

2

)(dx

x f B.?2

4

)(dx

x f C.?4

3

)(dx

x f D.?3

2

)(dx

x f

8.下列命题中正确的是( C )(其中)(),(x g x f 均为连续函数) A.在[]b a ,上若)()(x g x f ≠则dx

x g dx x f b

a b

a

??≠)()( B.??≠b

a

b

a

dt

t f dx x f )()( C.若)()(x g x f ≠,则?

?≠dx

x g dx x f )()( D.

?=b

a

dx

x f dx x f d )()(

9.=?dx x f dx d b

a

)(( B ) A.)(x f B.0 C.)(x f ' D.)(x F 10. 若1)(=x f ,则?=b

a dx x f )(( C )

B.b a -

C. a b - 11.定积分?b

a

dx

x f )(是( B )

A.任意的常数

B.确定的常数

C.)(x f 的一个原函数

D.)(x f 的全体原函数 12.若?=+1

2

)2(dx k x ,则=k ( B )

.1 C2 13.=-?dx x 5

042( C )

.12 C

二.判断题

1.函数在某区间上连续是该函数在该区间上可定积分的必要条件. ( × )

2.a b dx b

a -=?0 . ( × )

3.

?='b

a

dx x f 0

))(( . ( × )

4.x xdx dx d b

a sin sin ?=. ( × )

三.填空题

1.设)(x f '在[]b a ,上连续,则)

()()(a f b f dx x f b a

-=

'?.

2.C dx x

x

x +=

??

6

ln 6321

. 3.

4

111

022

π

-

=

+?dx x x .

4.e

e dx x

e x

-=?

2

1

21

.

5.设??==5

2

51

5)(,3)(dx x f dx x f ,则2)(2

1

-=

?dx x f .

6..01

1

3=

?-dx x .

7.若)(x f 在[]b a ,上连续,且?=b

a dx x f 0)(,则[]a

b dx x f b

a

-=

+?1)(.

8.由曲线22+=x y ,直线3,1=-=x x 及x 轴围成曲边梯形的面积3

52)2(312=

+=?-dx x A .

9..0

sin 1

2=?

dx x dx d .

10.

11ln

41

4

1=+-?

-dx x

x

.

11.

1

)

1sin(212=?

dx x

x ππ

. 12.321

12=

?

-dx x .

13.0

cos 1

1

?-=

xdx x .

14.利用定积分的几何意义填写定积分的值

π4

1

11

2=-?

dx x .

15.2

2sin sin x dt t dx d x

?=

.

16..0

sin 2

2

2=

?-xdx x .

17..01

1

3=

?-dx x .

18.

的值为积分.2

1

ln 1

?e

dx x x 19.2

)253(22

2

24??=

++-dx dx x x .

20.1

1

-=

?e dx e x . 21.4

3

1=

?-dx .

22.

?

1

2

12ln xdx

x 的值的符号为 负 .

四.计算题 1.求定积分

?

+4

1

1x

dx 解:原式)3

2

ln 1(2+= 2.求定积分

?

-1

24x dx

. 解:原式6

arcsin 1

=

=x

3.求定积分?-+-0

1

)32)(1(dx

x x . 解:原式2

1

-

=

4.求定积分

dx

x

?

--212

12

11 解:原式3

arcsin 212

=

=-

x

5.求定积分?-+1

2511x dx 解:原式=2ln 5

4)511ln(5

11

2

=??????+-x

6.求定积分

dx x ?+9

411

解:原式[

])2ln 1(2)

1ln(232+-=-+-=t t

7.求定积分dx

e

x

?

-1

. 解:原式e

e x

1

101

-=-=- 8.求定积分dx

x ?

2

1

2 解:原式3

7

12313==x

9.求定积分θ

θπ

d ?

40

2tan 解:原式[]4

10

4tan π

π

θθ-

=-=

10.求定积分.

dx x x ?+402sin 12sin π

解:原式2

32

ln 0

4)sin 1ln(=+=π

x 11.求定积分dx

x x ?-π

π

23sin . 解:原式=0

12.求定积分

()dx

x

x ?

--21

2

12

21arcsin . 解:原式=324)(arcsin 3132

12

1

3π=-x 13.求定积分

dx

x x ?

+9

1

1. 解:原式2ln 21

3)1ln(2=+=x

14.求定积分dx

e x x ?1

2. 解:原式20

1)

22(2-=+-=e x x e x

15.求定积分

?+1

04

)1(x dx 解:原式24

70

1)1(3

1-3=

+=-x 16.求定积分dx

xe x ?

2

. 解:原式10

2)

1(2+=-=e x e x

17.求定积分?

-1

dx

xe x . 解:原式e

x e x

2101)

1(--=+=-

18.求定积分

dx x ????

?

?

ππ3

3sin . 解:原式0)3

cos(3

=+

-=ππ

πx

19.已知??

?≤<-≤≤=3

1,

210,)(2

x x x x x f ,计算?2

0)(dx x f . 解:原式??-=-+=21

1

02

61)2(dx x dx x 20.求定积分()d x x x +?194

. 解:原式6

271

49)213

2

(22

3=

+

=x x

21.求定积分?1

arctan xdx

x . 解:原式=2

14)arctan arctan (211

02-=???

???+-πx x x x

22.求定积分?1

arcsin xdx . 解:原式12

1)

1arcsin (2

-=

-+=π

x x x

23.求定积分

?

2

6

2cos π

π

udu

. 解: 原式836)2sin 21(216

2

-=+=πππ

u u

24.求定积分()dx x x x ?+2

sin π

. 解: 原式18

sin cos 2

12

02+=???

???+-=π

πx

x x x 25.求定积分

dx x x ?

-12

12

2

1. 解: 原式[]4

1cot sin 2

4

π

π

π

-=--=t t t x

26.求定积分

dx x x 1

sin 12

1

2

π

. 解: 原式11

cos

1

2

==π

πx

27.求定积分

dx x ?+1

1210. 解: 原式10

ln 495

0110ln 21012=

=+x 28.求定积分xdx

x ?

2

3cos sin π

解: 原式4

10cos 41-24

==π

x

29.求定积分?1

24dx x

x . 解: 原式10

ln 710ln 81

0=??????=x 30.求定积分dx x x e

?-1ln 1. 解: 原式2

1ln 2

1ln 1

2

=?????

?-=e

x x

31.求定积分

dx

x x ?

+3

1

)

1(1. 解: 原式[]6

arctan 23

1

2

π

=

=t t x

32.求定积分xdx

x cos sin 20

3?

π

. 解: 原式4

1

0sin 4124==πx

33.求定积分?--1

321

dx x . 解: 原式[]

5ln 2ln -13

=-=-x

34.求定积分dx x x x ?

++2

1

222)1(1

2 解: 原式4212arctan 1arctan 2

1π-+=?????

?-=x x 35.求定积分

?

+2

1

ln 1e x x dx

. 解: 原式[]

)13(2ln 122

1

-=+=e x

36.求定积分dx

e x x ?2

2

. 解: 原式)1(2

12142

02-=???

???=e e x

37.求定积分dx

x ?

20

sin π

. 解: 原式10

cos 2

=-=π

x

38.求定积分?++1

0)32)(1(dx x x . 解: 原式2112521

32=??????++=x x x

39.求定积分

dt

te

t ?-

102

2

. 解: 原式21

2

11

2

---=???????

?-=e e t 40.求定积分dx x x ?+1

02

2

12. 解: 原式[]2

2)arctan (210π-=-=x x

41.求定积分?π

sin xdx

x . 解: 原式[]ππ

=+-=0sin cos x x x

42.求定积分

dx x x

e

?

1

2ln . 解: 原式3

11ln 313==e x

43.求定积分?

2

cos sin 3π

xdx

x . 解: 原式2

3

0sin 2322==πx

44.求定积分()

?

ω

π

ωω20

sin 为常数tdt t 解: 原式20

22sin 1cos 12ωπωωωωω

ω

-=??????+-=t t t

45.求定积分dx

x ?

230

cos π

. 解: 原式[][]3sin sin 232

2

=-=πππ

x x

46.求定积分dx

x ?--2

2

21. 解:原式431312312

1

3113123=???

???-+??????-+??????-=---x x x x x x

47.求定积分

?

+3

3

1

2

11

dx x . 解:原式[]6

arctan 33

=

=x

48.求定积分?

+16

1 4

x x dx . 解:原式23ln 2)1ln(2142

1

24+=??????++-=t t t t x

五.应用题

1.已知生产某产品x (百台)时,总收入R 的变化率x R -='8 (万元/百台),求产量从从1(百

台)增加到3(百台)时,总收入的增加量. 解:由已知x R -='8得总收入的增加量为:12218)8(R 3

13

1

3

12=?????

?

-=-='=

?

?x x dx x dx R

2.试描画出定积分?

π

π

2

cos xdx

所表示的图形面积,并计算其面积.

解:[]1sin cos 2

2

=-=-

=?

π

ππ

π

x xdx S . (图形略)

3.试描画出定积分?π

π

2

sin xdx 所表示的面积图形,并计算其面积.

解:[]1cos sin 2

2

=-==

?

π

πππ

x xdx S . (图形略)

4.计算曲线3

x y =,直线3,2=-=x x 及x 轴所围成的曲边梯形面积.

解:49741413

40243

3

2

3

=???

???+??????-=+-

=--?

?

x x dx x dx x S .(图形略) 5.计算抛物线2

4x y -=与x 轴所围成的图形面积. 解: 2

4x y -=与x 轴的交点为(-2,0),(2,0)

3323142)4(2

032

22

=?????

?

-=-=?-x x dx x S

6.已知生产某产品x (百台)时,总成本C 的变化率为x C +='2(万元/百台),求产量从1(百

台)增加到3(百台)时总成本的增加量.

解:.8212)2(3

13

12=?????

?

+=+=?x x dx x C

7.计算函数x y sin 2=在

???

???

2,0π上的平均值. 解:[]π

π

π

π

π

4

cos 22

2

sin 22

02

=

-=

=

?x xdx

y

8.计算函数x y cos 2=在??

???

?2,0π上的平均值.

解:[]π

π

π

π

π

4

sin 22

2

cos 22

020

=

=

=

?x xdx

y

第七章 定积分的应用

一.单选题

1.变力使)(x f 物体由],[b a 内的任一闭区间]d ,[x x x +的左端点x 到右端点x x d +所做功的近似值为( C ).

A.)(x df -

B.)(dx f

C.dx x f )(

D.dx x f )(-

2.一物体受连续的变力)(x F 作用, 沿力的方向作直线运动,则物体从a x =运动到b x =, 变力所做的功为( A ). A.

?b a x x F d )( B.?a b x x F d )( C.?-a

b x x F d )( D.?-b

a x x F d )(

3.将曲线2

x y =与x 轴和直线2=x 所围成的平面图形绕y 轴旋转所得的旋转体的体积可表

示为

=

y V ( C ).

A.

dx x ?20

4π B.

?4

ydy

π C.

()dy

y ?-4

4π D.

()dy

y ?+4

二.判断题 1.定积分?b

a

dx

x f )(反映在几何意义上是一块[a,b]上的面积. ( ╳ )

2.已知边际利润求总利润函数可用定积分方法. ( √ )

三.填空题

1.计算曲线x y sin =与曲线

=

x 及0=y 所围成的平面图形的面积可用定积分表示为

?

=

20

sin π

dx

A .

2.抛物线3

x y =与x 轴和直线2=x 围成的图形面积为

?

2

3dx

x .

3.由曲线2x y =与直线1=x 及x 轴所围成的平面图形,绕x 轴旋转所的旋转体的体积可用定

积分表示为?=1

4dx

x V x π.

四.计算题

1.求抛物线3

x y =与x 轴和直线3=x 围成的图形面积.

2.把抛物线

ax y 42=及直线)0(>=b b x 所围成的图形绕x 轴旋转,计算所得旋转体的体积. 3.一边长为a m 的正方形薄板垂直放入水中,使该薄板的上边距水面1m ,试求该薄板的一侧所受的水的压力(水的密度为, g 取2

m/s 10).

4.计算抛物线2

x y =与直线轴和x x x 3,1=-=所围成的平面图形绕x 轴旋转所得到的旋转体体积.

5.由2

2x y x y ==和所围成的图形绕x 轴旋转而成的旋转体体积.

6.求由曲线

x y 1

=

与直线x y =及2=x 所围成的图形的面积.

7.用定积分求由0,1,0,12

===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积.

8.求曲线2

2)2(,-==x y x y 与x 轴围成的平面图形的面积.

9.用定积分求底圆半径为r ,高为h 的圆锥体的体积.

10.计算曲线3

x y =和x y =

所围成的图形面积.

11.计算抛物线2

4x y -=与x 轴所围成的图形面积.

12.求曲线2

x y =与x y =

所围成的图形的面积。

五.应用题

1.已知某产品总产量的变化率是时间的函数,0,12)(≥+=t t t f ,求第一个五年和第二个五年的总产量分别是多少? 解:第一个五年的总产量:?=+5

30)12(dt t ,

第一个五年的总产量:

?

=+10

5

80)12(dt t .

2.计算抛物线2

x y =与直线4,2=-=x x 和x 轴所围成的平面图形绕x 轴旋转所得到的旋转

体体积.)(4

2

4?

-=dx x V π

3.计算曲线3

x y =和x y =

所围成的图形面积. (dx x x S ?-=

1

3)(

)

4.求抛物线px y 22

=及其在点)

,2(p p

处的法线所围成的图形面积.

解:p x y p p x p y k 2

3

,212+-=?==

'=)处的法线方程:过(切 法线与抛物线的交点为: ),2(p p

和)3,2

9

(p p -

则dy p

y p y S p

p ]2)23[(2

3-

+-=?- 5.把等边双曲线4=xy 及直线0,4,1===x y y 所围成的图形绕y 轴旋转所的旋转体的体积. (dy y

V ?

=4

1

2)4

). 6. 已知某产品生产x 个单位时,总收益R 的变化率(边际收益)为:)0(100

200)(≥-='x x x R

(1)求生产了50个单位时的总收益.

(2)如果已经生产了100个单位,求再生产100个单位时的总收益.

7.把抛物线

ax y 42=及直线()000>=x x x 所围成的图形绕x 轴旋转所的旋转体的体积. 8.求曲线2y x =与直线x y =所围成的图形的面积.

9.计算曲线2

x y =,直线32+=x y 所围成的图形面积.

10.计算椭圆1492

2=+y x 绕x 轴旋转所形成的椭圆的体积.

11.由抛物线2x y =及2

y x =所围成的图形绕y 轴旋转所的旋转体的体积. 12.求曲线x x e y e y -==,与直线1=x 所围成的图形的面积.

13.设平面图形D 由抛物线2

1x y -=和x 轴围成,试求D 绕y 轴旋转所得旋转体的体积.

14.已知某弹簧用2N拉力能伸长2cm,求如果把该弹簧拉长10cm 需做多少功?

15.已知物体的运动速度与时间的函数关系

)/(3)(2

s m t t v =,求在时间段[])(3,1s 上物体的平均速度是多少?

16.求抛物线

342

-+-=x x y 与其在点)3,0(和)0,3(处交线所围成的平面图形的面积.

17.计算曲线3

x y =,直线2,4=-=x x 所围成的曲边梯形面积.

18.计算曲线2x y =,直线32+=x y 所围成的图形面积.

19.某产品的总成本C (万元)的变化率(边际成本)1='C ,总收益R (万元)的变化率(边际收益)为生产量x (百台)的函数x x R -='5)(,

(1)求生产量等于多少时,总利润C R L -=为最大?

(2)从利润最大的生产量又生产了100台,总利润减少了多少?

20.求抛物线x y 22

=将圆822=+y x 分割成两部分的面积.

第八章 常微分方程

一.单选题

1.微分方程0=''y 的通解是( C )

A.C y =

B.Cx y =

C.x C x C y 21+=

D.21C x C y += 2.以下不是微分方程的是( C )

A.0cos =-x x dx dy

B.dy y x dx x )()12(+=-

C.042

=-xy y D.02)(2='-'y x y x 3.以下属可分离变量微分方程的是( D )

A.02

2

=+-'y x y B.33y x dx dy

+= C.0)(=-+ydy dx y x D.

0)2(2

=++dy x xydx 4.微分方程x y y y sin 2='+''是( B )

A.一阶线性方程

B.一阶非线性方程

C.二阶线性方程

D.二阶非线性方程

二.判断题

1.是一阶非齐次线性微分方程. ( ╳ )

2.是二阶微分方程. ( ╳ )

3.是三阶微分方程. ( √ )

三.填空题

1.设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方

程为

y

x

y -

='.

2.微分方程1sin 2=+''-'''x y y 的阶数为 2 .

3.微分方程, 满足已给初始条件的特解是

)1(2

12+=

x

y e e .

4.微分方程的通解是x Ce y 33

2

-+=

.

5.y y x 4='的通解为

4

x

Ce y =.

6.1+=y dx dy

的满足初始条件()10=y 的特解为

1

-=x Ce y . 7.设某微分方程的的解为()x

e x c c y 221+=,且

==x y ,

1

0='=x y 则0

1=

c ,

1

2=

c .

8.微分方程 满足条件的特解为x

x e

y cot csc +=.

9.微分方程

8-=x e dx dy

的通解为

C

x e y x +-=8.

10.微分方程162

2+=x dx y

d 的通解为

212

32

1C x C x x y +++

=.

11.微分方程x dx y

d 62

2=的通解为

2

13C x C x y ++=.

12.微分方程的通解是

C x x y ++=

2

32

151.

13.微分方程n my y =+'(其中n m ,为常数,且0≠m ),则满足条件()00=y 的特解为

)1(mx e m

n

y --=

.

14.微分方程x

e dx dy

=的通解为

C

e y x +=.

四.计算题

1.求微分方程的通解.()2()2(3

-+-=x C x y ) 2.求微分方程e

y

y y x y x =='=

2

,ln sin π的特解. (x

x e

y cot csc +=)

3.求微分方程的通解. (C e

e y

x =+-)

4.求微分方程0sin =+'x y y 的通解.(x

Ce

y cos =)

5.求微分方程by

ax e dx dy

+=的通解. (C ae

be by

ax =+-) 6.求微分方程0ln =-'y y y x 的通解. (Cx

e y =)

7.求微分方程0ln ln =+ydy x xdx y 的通解.(C y x =+2

2ln ln ) 8.求微分方程0cos =+'x y y 的通解. (x

Ce

y sin -=)

9.求微分方程2

211y y x -='

-的通解. (C x y =+arcsin arcsin )

10.求微分方程02=+'xy y 的通解.(2

x Ce y -=)

11.求微分方程

y x dx dy 212-=,0

1==x y 的特解.(x x y -=2

2)

12.求微分方程122

2+='y y y x 的通解.(11

2

-=x Ce y )

13.求微分方程x

x e y y e ='+)1(的通解.

14.求微分方程 0,0)12(12==+-+=x y dx x xy dy x 当时的特解.

15.求微分方程y x e y -='2,

==x y 的特解.

16.求微分方程

y x dx dy 212--,0

1

==x y 的特解.

17.求微分方程2

23x y y =+'的通解.

五.应用题

1.验证函数

22x

x y -

=是微分方程x y y x =-''22

的解.

2.汽车刹车前速度为20m/s,刹车获得的加速度大小为2m/s 2

,用微分方程求解汽车刹车开始到停止的时间与距离.

3.已知曲线),上点(2-0)(x f y =处的切线方程为632=-y x ,函数y 满足x y 6='',求函数y 的解析表达式.

4.列车在直线轨道上匀速行驶,当制动时列车获得加速度2/8.0s m -,求开始制动后列车的运动规律(即制动后发生的位移与时间的关系式).

5.列车在直线轨道上以s m /20的速度行驶,当制动时列车获得加速度2/4.0s m -,问开始制动后列车的运动规律(制动后发生的位移与时间的关系).

6.验证函数x

e c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件

重庆大学高等数学习题3-2

A 组 1.用洛必达法则求下列极限: (1)02lim 1cos x x x e e x -→+-- (2)arctan 2lim 1 x x x π →+∞- (3)0cos lim sin x x e x x x →- (4)011 limcot ( )sin x x x x →- (5)1 0(1)lim x x x e x →+- (6)21 0sin lim ()x x x x +→ (7)011lim()sin x x x →- (8)sin 0lim x x x +→ (9)lim(1)x x a x →∞+ (10 )n 其中n 为正整数 解析:考查洛必达法则的应用,洛必达法则主要应用于00,∞ ∞型极限的求解,当然对于一 些能够化简为00,∞ ∞ 型极限的同样适用,例如00010?∞==∞ 等等,在求解的过程中,同样可以利用前面已经学到的极限的求解方法,例如等价无穷小、两个重要极限 解:(1)本题为 型极限的求解,利用洛必达法则求解得 0002lim lim lim 21cos sin cos x x x x x x x x x e e e e e e x x x ---→→→+--+===- (2)本题为 型极限的求解,利用洛必达法则求解得 2222 1arctan 12lim lim lim 111 1x x x x x x x x x π →+∞→+∞→+∞--+===+- (3)本题为0 型极限的求解,利用洛必达法则求解得 000cos sin 1lim lim lim sin sin cos 0x x x x x e x e x x x x x x →→→-+===∞+ (4)先化简,得 23 00011cos sin sin sin limcot ( )lim lim lim sin sin sin sin x x x x x x x x x x x x x x x x x x x x →→→→----=?== 型极限的求解,利用洛必达法则求解得

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

重庆大学高等数学习题1-5

习题1-5 A 组 1.求参数a 的值,使得函数24 ,2()2,2x x f x x a x ?-≠? =-??=? 在点2x =处连续 解析:考查分段函数的连续性,函数在某一点连续的充要条件可以总结为0 0lim ()()x x f x f x →= 解:本题中2222 4 lim ()lim lim(2)42x x x x f x x x →→→-==+=- 则4a = 2.若函数(sin cos ),0 ()2,0x e x x x f x x a x ?+>=?+≤? 是(,)-∞+∞上的连续函数,求a 解析:考查函数在定义域内的连续性,本题中,当0x >和0x ≤时,函数()f x 都是初等函数的复合,因此都在连续的,则判断函数在上连续只需判断函数在点0x =处连续,即使 00 lim ()lim ()(0)x x f x f x f - + →→== 解:已知(0)f a = lim ()lim(2)x x f x x a a -- →→=+=,00 lim ()lim (sin cos )1x x x f x e x x ++→→=+= 则1a = 3.若函数2,0()sin 0a bx x f x bx x x ?+≤? =?>? ?在0x =点处连续,求a 与b 的关系 解析:考查分段函数在某点上的连续性,和上题类似,只需使0 lim ()lim ()(0)x x f x f x f -+ →→== 解:已知(0)f a = 20 lim ()lim()x x f x a bx a -- →→=+=,0 0sin sin lim ()lim lim x x x bx bx f x b b x bx +++→→→=== 则a b = 4.求下列函数的间断点,并指出其类型 (1)2 sin ()1x f x x = - (2)1 ()1x f x x -=-

大一下学期高等数学考试题

大一下学期高等数学考试 题 This manuscript was revised by the office on December 10, 2020.

一、单项选择题(6×3分) 1、设直线,平面,那么与之间的夹角为() 、二元函数在点处的两个偏导数都存在是在点处可微的() A.充分条件 B.充分必要条件 C.必要条件 D.既非充分又非必要条件 3、设函数,则等于() . C. D. 4、二次积分交换次序后为() . . 5、若幂级数在处收敛,则该级数在处() A.绝对收敛 B.条件收敛 C.发散C.不能确定其敛散性 6、设是方程的一个解,若,则在 处() A.某邻域内单调减少 B.取极小值

C.某邻域内单调增加 D.取极大值 二、填空题(7×3分) 1、设=(4,-3,4),=(2,2,1),则向量在上的投影 = 2、设,,那么 3、D为,时, 4、设是球面,则= 5、函数展开为的幂级数为 6、= 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(4×7分) 1、设,其中具有二阶导数,且其一阶导数不为1,求。 2、求过曲线上一点(1,2,0)的切平面方程。 3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。 5、求级数的和。

四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。 五、证明题(6分) 设收敛,证明级数绝对收敛。 一、单项选择题(6×3分) 1、A 2、C 3、C 4、B 5、A 6、D 二、填空题(7×3分) 1、2 2、 3、 4、 5、6、07、 三、计算题(5×9分) 1、解:令则,故 2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:=== 4、解:令,则 当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则

重庆大学高数(下)期末试题二(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页 重庆大学《高等数学(工学类)》课程试卷 20 — 20 学年 第 学期 开课学院: 数统学院 课程号: 考试日期: 考试方式: 考试时间: 120 分 一、选择题(每小题3分,共18分) 1. 设向量a 与三轴正向夹角依次为,,,αβγ则当cos 0β=时有(). (A) a ⊥xoy 面 (B) a //xoz 面 (C) a ⊥yoz 面 (D) a xoz ⊥面 知识点:向量与坐标的位置关系,难度等级:1. 答案: (B) 分析:cos 0,β=,2 πβ=a 垂直于y 轴,a //xoz 面. 2. 若某个三阶常系数线性齐次微分方程的通解为 212323,y C C x C x =++其中123,,C C C 为独立的任意常数,则该方程 为(). (A)0y y '''+= (B) 30y y '''+'= (C)0y y '''-= (D) 0y '''= 知识点:通过微分方程的通解求微分方程,难度等级:2. 答案: (D) 分析:由通解中的三个独立解21,,x x 知,方程对应的特征方 程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y '''=故应选(D). 3. 设D 由 14122≤+≤y x 确定.若1221,D I d x y σ=+??222(),D I x y d σ=+??223ln(),D I x y d σ=+??则1,I 2,I 3I 之间的大小顺序为( ). (A)321I I I << (B)231I I I << (C)132I I I << (D)123I I I << 知识点:二重积分比较大小,难度等级:1. 答案:(D) 分析:积分区域D 由 221 14 x y ≤+≤确定.在D 内,222222 1 ln(),x y x y x y +<+< +故321.I I I <<只有D 符合. 4.设曲线L 是由(,0)A a 到(0,0)O 的上半圆周22,x y ax +=则曲线积分 命 题人 : 组题人 : 审题人: 命 题时间: 教务处制 学院 专业、班 年级 学号 姓名 考试教室 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

大学高等数学下考试题库(及答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρ ρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

重庆大学高等数学习题2-2

A 组 1.利用导数的四则运算法则求下列函数的导数: (1)(2)tan sin 3 y x x π =+ (3)sinx y x = (4 )y = (5)3cot ln x x y x += (6)223sin 1x x y x x =-+ 解析:考查导数的求解,四则法则就是导数的四种运算法则,包括加减乘除,同时要对初等函数的导数公式非常了解,详细见91P 解:(1)92y x '=- (2)2()tan (tan )(sin )tan sec 3 y x x x x x x x π ''''=++=+ (3)22 (sin )()sin cos sin x x x x x x x y x x ''--'= = (4 )化简y == 已知'= ,则 y '''= == (5) 2 33322 2321(3csc )ln (cot ) (cot )ln (ln )(cot )ln ln (3csc )ln cot )ln x x x x x x x x x x x x y x x x x x x x x x x --?+''+-+'==---=

(6)222222 2 22222 222 ()(1)(1)(sin )()sin 3(1)2(1)2cos sin 3(1)23(cos sin )(1)x x x x x x x x y x x x x x x x x x x x x x x x x x ''''+-+-'=-++-?-=-+-=-+ 2.求下列函数的导数: (1)1 ()21 f x x = -,求(0)f ',(2)f '-; (2)23 51 ()t t f t t -+=,求(1)f '-,(1)f ' 解析:考查函数导数的求解,上面两题都是由基本初等函数构成的,直接利用导数四则法则求解 解:(1)22 (1)(21)(21)2 ()(21)(21)x x f x x x ''----'= =-- 则(0)2f '=-,2 (2)25 f '-=- (2)233232266 4322 64 (51)()(51)(25)3(51)()103103t t t t t t t t t t t f t t t t t t t t t t ''-+--+---+'== -+--+-== 则(1)14f '-=-,(1)6f '= 3.求曲线arctan y x =在横坐标为1的点处的切线方程和法线方程 解析:考查导数的应用,从上节可知,曲线在某点的切线斜率等于该点上导数的值,由此可 以利用点斜式求切线方程,法线与切线垂直,则其斜率相乘为1 解:已知14 x y π == ,21 1 y x '= + 则曲线在点(1, )4 π 上的斜率为1112 x k y ='== 则切线方程为1(1)42y x π - =-,即11242 y x π=+- 设法线方程的斜率为2k ,则121k k ?=-,得22k =-

2019最新高等数学(下册)期末考试试题(含答案)YM

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.已知过去几年产量和利润的数据如下: 解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f (x )=ax +b ,求[] 621()i i i u y ax b ==-+∑的最小值,即求解方程组 6662111661 1,6.i i i i i i i i i i i a x b x y x a x b y =====?+=????+=??∑∑∑∑∑ 把(x i ,y i )代入方程组,得 29834402240034026320a b a b +=??+=? 解得 a =0.884, b =-5.894 即 y =0.884x -5.894, 当x =120时,y =100.186(310元). 2.求下列伯努利方程的通解: 2(1)(cos sin );y y y x x '+=- 解:令121z y y --==,则有

d d (12)(12)(cos sin )sin cos d d z z z x x z x x x x +-=--?-=- (1)d (1)d e (sin cos )e d e e (sin cos )d e sin x x x x x z x x x c x x x c c x ----????=-+???? ??=-+=-???? 1e sin x c x y ?=- 即为原方程通解. 411(2)(12)33 y y x y '+=-. 解:令3d 21d z z y z x x -=?-=-. d d e 21e (21)e d x x x z x c x x c -????==--+-+???? ? 3(e 21)1x y c x ?--= 即为原方程通解. 3.证明:22 d d x x y y x y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数. 证:22x P x y =+,22 y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且. ()2 222??-==??+P Q xy y x x y ,(x ,y )∈G 因此22 d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分. 由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++??==+??++?? 知()()221ln ,2 u x y x y =+. 4.应用格林公式计算下列积分: (1)()()d d 24356+-++-?x y x y x y Γ, 其中 L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界; (2)()()222d d cos 2sin e sin 2e x x L x y x y x xy x y x x y ++--?,其中L 为正向星形线()22 23330x y a a +=>;

重庆大学高等数学总复习题三

A 组 一、填空题: 1.函数lnsin y x =在5[ , ]66ππ 上满足罗尔定理中的____ξ= 解析:考查罗尔定理的应用,要求解ξ,即在区间5(, )66ππ 内,求=0y '的解 解:cos = sin x y x ',令=0y ',则2 x π = 2.函数4()f x x =,2 ()F x x =在[1,2]上满足柯西中值定理中的____ξ= 解析:考查柯西定理的应用,要求解ξ,即在区间(1,2)内,求 (2)(1)() (2)(1)() F F F x f f f x '-='-的解 解:已知 (2)(1)1 (2)(1)5 F F f f -=-,()2F x x '=,3()4f x x = 则即求 321 45 x x =,解得2x =,2x =-(舍去) 则ξ= 3.设函数3 x y e -=,[5,5]x ∈-,则该函数的最大值_____M =,最小值_____m = 解析:考查函数最值的求解,由于函数中存在绝对值,则可以化为分段函数,然后在区间内的最值 解:化为分段函数33,53 35x x e x y e x --?≥>=?≥≥-? 已知x e 和3x +都为恒增函数,则3 x e -也为恒增函数 即当53x ≥>时,最大值为25 x y e ==,3 1x y == 因为3x -为恒减函数,则3 x e -也为恒减函数 当35x ≥≥-时,最大值为8 5 x y e =-=,3 1x y == 综上可知,最大值8 M e =,最小值1m = 4.曲线1ln()y x e x =+(0x >)的渐近线方程为_____ 解析:考查函数渐近线的求解,渐近线包括垂直渐近线、水平渐近线、斜渐近线,前面已经 介绍过各类渐近线的定义,则只需一一验证各类渐近线是 否存在

重庆大学高等数学习题3-1

A 组 1.验证拉格朗日中值定理对函数3 2 452y x x x =-+-在区间[0,1]上的正确性 解析:考查拉格朗日中值定理的应用,只需在[0,1]内找出一点使得=0y ', 证明:已知函数在[0,1]内连续,在(0,1)内可导,则其满足拉格朗日中值定理的两个条件 令()y y x =,则(1)2y =-,(0)2y =- 又因为2 ()12101y x x x '=-+,令[(1)(0)]()(10)y y y x '-=-,即()0y x '=,解得 1,21052412 x ±= = 则存在(0,1)ξ∈,使得(1)(0)()(10)y y y ξ'-=- 2.证明方程32 20x x C -+=在区间[0,1]上不可能有两个不同的实根,其中C 为任意常数 解析:考查罗尔定理的应用,本题可以利用反证法来证明 证明:设3 2 ()2f x x x C =-+,假设存在两点1x ,2x (12x x >),使得12()()0f x f x == 则在12[,]x x 内,满足罗尔定理,即存在12(,)x x ξ∈,使得()0f ξ'= 2()34f x x x '=-,令()0f x '=,解得0x =, x =(不在所设区间内,舍去) 若0ξ=,则1x ,2x 中必有一个不存在,与所设假设不符 则方程32 20x x C -+=在区间[0,1]上不可能有两个不同的实根 3.若方程1 0110n n n a x a x a x --+++=L 有一个正根0x x =,证明:方程 12011(1)0n n n a nx a n x a ---+-++=L 必有一个小于0x 的正根 解析:考查罗尔定理的应用,判断利用哪个中值定理可以通过所得条件得出,设 1011()n n n f x a x a x a x --=+++L ,则由已知条件可得0()(0)0f x f ==,这样满足罗尔定 理的第三个条件 证明:设1 011()n n n f x a x a x a x --=+++L ,0()(0)0f x f == 且12 011()(1)n n n f x a nx a n x a ---'=+-++L 根据罗尔定理可知,存在一点0(0,)x ξ∈,使得()0f ξ'=

高等数学下册试题及答案解析

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 =++?? ∑ ds y x )122 ( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1) 1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??20 20 1 3cos sin π π ???θdr r d d ;

重庆大学出版社高等数学题库参考答案

第五章不定积分1(直接积分法、换元积分法) 一、单选题 1.设)(x f 是可导函数,则?' ))((dx x f 为(A ). A.)(x f B.C x f +)( C.)(x f ' D.C x f +')( 2.函数)(x f 的(B )原函数,称为)(x f 的不定积分. A.任意一个 B.所有 C.唯一 D.某一个 3.? = +=)(,2cos )(x f C x e dx x f x 则(A ). A.)2sin 22(cos x x e x - B.C x x e x +-)2sin 22(cos C.x e x 2cos D.x e x 2sin 4.函数x e x f =)(的不定积分是(B ). A.x e B.c e x + C.x ln D.c x +ln 5.函数x x f cos )(=的原函数是(A ). A.c x +sin B.x cos C.x sin - D.c x +-cos 6.函数2 11)(x x f -=的原函数是(A ). A.c x x ++ 1 B.x x 1- C.32x D.c x x ++1 2 7.设x 2是)(x f 的一个原函数,则[] =' ?dx x f )((B ) A.x 2 B.2 C.2 x D.-2 8.若c e dx e x x +=? ,则? x d e x 22=(A ) A.c e x +2 B.c e x + C.c e x +-2 D.c e x +-2 9.函数x x f sin )(=的原函数是(D ) A.c x +sin B.x cos C.x sin - D.c x +-cos 10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=(B ) A.)(x f B.0 C.)(x F D.)(x f ' 11.函数21 1)(x x f + =的原函数是(A ) A.c x x +-1 B.x x 1- C.32x D.c x x ++12 12.函数2 1 1)(x x f - =的原函数是(A ) A.c x x ++ 1 B.x x 1- C.32x D.c x x ++ 12

2019高数(下)试题及答案

第二学期期末考试试卷 一、 填空题(每空 3 分,共 15 分) 1. 已知向量()1,1,4r a =-,()3,4,0r b =,则以r a ,r b 为边的平行四边形的面积等于. 2. 曲面sin cos z x y =在点1,,442ππ?? ??? 处 的切平面方程是. 3. 交换积分次序()22 0,x dx f x y dy = ??. 4. 对于级数11 n n a ∞ =∑(a >0),当a 满足条件 时收敛. 5. 函数1 2y x =-展开成x 的幂级数为 . 二、 单项选择题 (每小题3分,共15分) 1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面 2. 函数(),z f x y =在点()00,x y 处具有偏导数 ()00,x f x y ',()00,y f x y ',是函数在该点可微分的 ( ) (A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10 x y dz ===( ) (A )e (B )()e dx dy +

(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11n n n a x ∞ =-∑在1x =-处收敛, 则此级数在2x =处( ) (A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )212 1x y e =- (B )212 1x y e -=- (C )212 x y Ce -= (D )212 1x y Ce =- 三、(本题满分8分) 设平面通过点()3,1,2-,而且通过直线43521 x y z -+==, 求该平面方程. 四、(本题满分8分) 设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ??和2z x y ???. 五、(本题满分8分) 计算三重积分y zdxdydz Ω =???, 其中 (){},,01,11,12x y z x y z ≤≤-≤≤≤≤. 六、(本题满分8分) 计算对弧长的曲线积分L ?,

重庆大学高等数学(II-2) ( 第3次 )

第3次作业 一、填空题(本大题共40分,共 10 小题,每小题 4 分) 1. 写出级数的通项为: ______ 。 2. 级数的敛散性为 ______ 。 3. 函数的定义域为 ______ 。 4. 设平面通过点(1,3,-2),且垂直于向量 ,求该平面的方程。 5. 由曲线绕y轴一周所得的旋转面方程为 ______ 。 6. 设,且函数f可微,则 ______ 7. 已知D由及x轴围成,则

______ 。 8. 过点(3,0,-1)且与平面平行的平面方程为 ______ 。 9. 一平面通过两点和且垂直于平面,求它的方程。 10. 设,其中 具有连续的二阶偏导数, ____________。 二、计算题(本大题共40分,共 8 小题,每小题 5 分) 1. 判断级数的敛散性。 2. 利用二重积分的性质估计 (其中是

矩形区域 )的值。 3. 求曲面在点(1,1,2)处的切平面和法线方程。 4. 求两平面, 的夹角。 5. 已知三角形ABC的顶点是A(1,2,3),B(3,4,5), C(2,4,7),求三角形的面积。 6. 求微分方程满足的 特解。 7. 求的所有二阶偏导数。 8. 把对坐标的曲线积分 化成对弧长的曲线积分,其中L为 (1)在 xOy 面内沿直线从点(0,0)到点(1,1); (2)沿抛物线 从点(0,0)到点(1,1); (3)沿上半圆周 从点(0,0)到点(1,1)。

三、证明题(本大题共20分,共 2 小题,每小题 10 分) 1. 证明:若数列收敛于a,则级数 。 2. 设级数和收敛, 证明级数 收敛。 答案: 一、填空题(40分,共 10 题,每小题 4 分) 1. 参考答案: 解题方案: 评分标准: 2. 参考答案: 发散 解题方案:

重庆大学出社高等数学题库参考答案

第五章 不定积分1(直接积分法、换元积分法) 一、单选题 1.设)(x f 是可导函数,则?' ))((dx x f 为( A ). A.)(x f B.C x f +)( C.)(x f ' D.C x f +')( 2.函数)(x f 的( B )原函数,称为)(x f 的不定积分. A.任意一个 B.所有 C.唯一 D.某一个 3.? = +=)(,2cos )(x f C x e dx x f x 则( A ). A.)2sin 22(cos x x e x - B.C x x e x +-)2sin 22(cos C.x e x 2cos D. x e x 2sin 4.函数x e x f =)( 的不定积分是( B ). A.x e B.c e x + C.x ln D.c x +ln 5.函数x x f cos )(=的原函数是 ( A ). A.c x +sin B.x cos C.x sin - D.c x +-cos 6.函数211)(x x f -=的原函数是( A ). A.c x x ++ 1 B.x x 1- C.32 x D.c x x ++12 7.设x 2是)(x f 的一个原函数,则[] =' ?dx x f )(( B ) A. x 2 B.2 C.2 x 8.若 c e dx e x x +=? , 则 ?x d e x 22=( A ) A.c e x +2 B.c e x + C.c e x +-2 D.c e x +-2 9.函数x x f sin )(=的原函数是( D ) A.c x +sin B.x cos C.x sin - D.c x +-cos 10.若)()()()()(x G x F x f x G x F '-'的原函数,则均为、=( B ) A.)(x f B.0 C.)(x F D.)(x f ' 11.函数21 1)(x x f + =的原函数是( A ) A.c x x +-1 B.x x 1- C.32x D.c x x ++12 12. 函数21 1)(x x f - =的原函数是( A )

大学高等数学下考试题库附答案

大学高等数学下考试题库 附答案 This manuscript was revised by the office on December 10, 2020.

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M (). .4 C 向量j i b k j i a +=++-=2,2,则有(). A.a ∥b B.a ⊥b 3,π=b a .4,π =b a 3.函数1 122 2 22-++ --=y x y x y 的定义域是(). (){}21,22 ≤+≤y x y x .(){} 21,22<+p 1≥p 幂级数∑∞ =1n n n x 的收敛域为(). []1,1-()1,1-[)1,1-(]1,1-幂级数n n x ∑∞ =??? ??02在收敛域内的和函数是(). x -11x -22x -12x -21 微分方程0ln =-'y y y x 的通解为(). x ce y =x e y =x cxe y =cx e y =二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________.

重庆大学高等数学(2-1)课程期末试卷2

重 庆 大 学 《 高等数学 》(II-1)期末试卷参考答案 2013~ 2014 学年 第 一 学期 一.单项选择题(每小题3分,共15分) (1 )设()1f x =,则当0x →时,有( C ) 。 (A )()f x 与x 是等价无穷小 (B )()f x 与x 是同价无穷小,但不等价 (C )()f x 是x 的高价无穷小 (D )()f x 是x 的低价无穷小 (2)设()f x 为可导函数,且满足条件0(2)(2)lim 22x f x f x x →+--=-,则曲线()y f x =在点(2,(2))f 处的法线的斜率为( C )。 (A )2 (B )1- (C )1 2 (D )2- (3)设2s ()sin x co x x F x e xdx π += ? ,则()F x ( A )。 (A )恒为零 (B )为负常数 (C )为正常数 (D )不为常数 (4)11 lim 32x x x x →∞ ??- ???为( B )。 (A )2ln 3 (B )3 ln 2 (C )0 (D )不存在 (5)设函数()2 ()ln 1f x x =+,其表示的曲线的拐点个数为( B )。 (A )3 (B )2 (C )1 (D )0 二.填空题(每空3分,共15分) (1)tan 01lim ()1x x x +→=。 (2)设()y x 是由方程1y y xe =-确定的可导函数,则()1y y e y x xe -'= +。 (3)1 ln tan sin cos dx x c x x =+?。 (4)设,则 -10 学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一 .选择题( 3 分10) 1.点M12,3,1到点 M 2 2,7,4的距离 M1M 2() . A.3 B.4 C.5 D.6 2.向量a i2j k ,b2i j ,则有() . A. a∥b B. a⊥b C. a,b 3D. a,b 4 3.函数y2x2y 21的定义域是() . x 2y21 A.x, y 1 x2y 22 B.x, y 1 x 2y22 C.x, y 1 x2y 22D x, y 1 x 2y 22 4.两个向量a与b垂直的充要条件是(). A. a b 0 B. a b 0 C. a b 0 D. a b 0 5.函数z x3y 33xy 的极小值是() . A.2 B.2 C.1 D.1 6.设z xsin y ,则 z =() . y 1,4 A. 2 B. 2 C.2 D.2 22 7.若p级数1收敛,则() . n 1 n p A. p 1 B. p1 C. p1 D. p1 8.幂级数 x n 的收敛域为() . n 1 n A.1,1B1,1 C.1,1 D.1,1 x n 9.幂级数在收敛域内的和函数是() . n 02

A. 1 B. 2 C. 2 D. 1 x x x x 1212 10.微分方程 xy y ln y0 的通解为(). A.y ce x B. y e x C. y cxe x D. y e cx 二 .填空题( 4 分5) 1.一平面过点A 0,0,3且垂直于直线AB ,其中点 B 2, 1,1,则此平面方程为______________________. 2.函数z sin xy 的全微分是______________________________. 3 y23xy3xy 1 ,则2 z 3.设z x_____________________________. x y 4. 1 的麦克劳林级数是 ___________________________. 2 x 三.计算题( 5 分 6) 1.设z e u sin v ,而u xy, v x y ,求z ,z . x y 2.已知隐函数z z x, y由方程 x 2 2 y 2z2 4 x2z 5 0 确定,求z ,z . x y 3.计算sin x2y 2 d,其中 D:2x2y24 2 . D 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四 .应用题( 10 分2) 1.要用铁板做一个体积为 2 m3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?. 试卷 1 参考答案 一.选择题 CBCAD ACCBD 二 .填空题 1. 2x y 2 z 6 0. 2.cos xy ydx xdy . 3.6x 2 y9 y 2 1 . 4. 1 n n . 2n 1 x n 0

大学高等数学下考试题库(附答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ). A.x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4.x +21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00==x y 条件下的特解. 四.应用题(10分?2)

相关文档
最新文档