某连续刚构大桥中跨合拢前顶推力计算

某连续刚构大桥中跨合拢前顶推力计算
某连续刚构大桥中跨合拢前顶推力计算

毛坯子大桥主桥中跨合拢段顶推力计算预应力砼连续刚构桥在完成体系转换后,后期砼收缩徐变与降温效应相组合使两墩之间主梁有缩短的趋势,迫使墩顶向跨中方向发生位移,墩顶、墩底产生较大的弯矩,同时主梁受到砼纤维限制,在结构内部产生拉应力,对结构造成危害。因此,在边跨合拢后、中跨合拢前对中跨悬臂端部施加一个水平推力,使桥墩产生一个预偏位来抵抗上述位移,有利于桥梁后期受力,增加结构的安全度。为此,监控组根据设计图纸要求,通过建立有限元模型,计算分析确定合拢顶推力值。

一墩顶偏位与顶推力关系

在结构有限元计算模型(图1)中,需在最大悬臂工况下(即中跨合拢前)对悬臂端施加纵向的水平推力P,来消除各墩顶产生的水平偏位。

图1 毛坯子大桥主桥有限元模型

在最大悬臂端分别施加0KN、100kN、200kN 、300kN的顶推力,两个主墩墩身对应在0#块中心的节点(25号、71号节点)处的水平位移见表1。

表1 不同顶推力作用下主墩对应节点水平位移(mm)(合拢温差为0)

从表1中可以看出,控制截面节点的水平位移变化基本与顶推力呈线性变化,即每增加100KN的顶推力,8#墩对应0#块中心处水平偏位为4.2mm,9#墩对应0#

块中心处水平偏位为4.1mm。有了上述节点位移量与顶推力的关系,即可开展顶推力优化计算和温度影响的分析。

二顶推力计算

2.1 收缩徐变对顶推力的影响

在确定桥梁在运营一段时间后因收缩徐变影响所需的实际顶推量时,我们需要考虑以下两个因素:

(1)理论上的顶推量为长期收缩徐变后的累积纵向水平位移,结构有限元模型是对桥梁结构理想状态的模拟,而实际桥梁结构的边跨支座位移肯定会受到摩阻力的影响。

(2)从成桥到收缩徐变完成需要很长时间,若预先顶推100% 收缩徐变效应值,这样结构在合龙完成后在运营阶段将会带有由于顶推作用而引起的反向过大位移,并且在这期间还有活荷载的作用,这对运营阶段的桥墩产生很大的不利弯矩,更有可能引起开裂。另外双薄壁墩一般采用柔性墩,设计上原本就容许有一定的纵向位移。

根据工程经验一般只需预顶实际收缩徐变量的60%。考虑桥梁运营十年后,主墩对应0#块中心处节点位移如表2所示。

表2 桥梁运营十年后对应节点水平位移(mm)(未顶推,合拢温差为0)

在顶推力Pi 作用下, 各节点的水平位移量可按式(1) 计算:

δi =δ1-i×P i(1)

δi =60%*δ10(2)

即P i=δi/δ1-i (3)

式中:δi 为各节点顶推产生的水平位移;δ1-i为单位顶推力作用下各节点水平位移;P i为顶推力;δ10为桥梁运营十年后节点累计水平位移。

通过表1,表2及公式(3),可计算出:

P25=δ25/δ1-25=-21.87×0.6/0.042=-313KN;

P71=δ71/δ1-71=20.54×0.6/0.041=301KN;

中跨合拢前对两悬臂端顶推时,为了便于施工,两个中跨合拢段的顶推力应保持相等,即|P25|= P71。因此顶推力P=(|P25|+ P71)/2=307KN。

2.2 温度对顶推力的影响

现实条件下,实际合拢温度往往与设计合拢温度有一定差值,由于桥梁合拢后升温较降温对结构受力有利,故尽量选择低温合拢。为了分析在设计温度合拢后降温对结构的不利影响,计算了10个降温值对主墩对应0#块中心节点水平位移的影响,结果见表3。

表3 合拢后降温作用下对应节点水平位移(mm)

由表3可以看出,温度变化与各节点水平位移成线形比例关系,因此若合拢温度与设计温度温差不为零,就要使各节点产生水平位移,就必须采取预顶推的方法来消除合拢温差产生的效应。由合拢温差产生的合拢变形需优化的顶推力为:

P iΔT =ΔT×δ

iΔT

÷δ

1-i

(4)

式中: P

iΔT

为因合拢温差各节点所需调整的顶推力( kN);

ΔT为设计合拢温度与实际合拢温度的差值( ℃) ;

δiΔT为升温或降温1℃各节点的水平位移(mm)(结构降温效应与升温效应相反);

δ1-i为单位水平顶推力作用下各节点水平位移。

由表3及公式(4)得出

P

25ΔT =ΔT×δ

25ΔT

÷δ

1-25

=0.58×ΔT/0.042=13.8ΔT

P

71ΔT =ΔT×δ

71ΔT

÷δ

1-71

=0.59×ΔT/0.041=14.4ΔT

为方便施工,两个中跨合拢段的顶推力应保持相等,即|P

25ΔT |=|P

71ΔT

|,顶推力

P

ΔT =( P25ΔT+P71ΔT)/2=14.1ΔT。

2.3 最终合拢顶推力计算

综合考虑到体系转换,混凝土收缩徐变及合拢温度等影响因素,最终顶推力计算公式为:

P i顶推= P i±P iΔT(5)

依照设计图纸,设计合拢温度为18°C,毛坯子大桥主桥合拢时间暂定为7、8月份。根据实际合拢温度顶推力由下表所示:

毛坯子大桥施工监控组

2015年03月13日

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

(完整版)梁的内力计算

第四章 梁的内力 第一节 工程实际中的受弯杆 受弯杆件是工程实际中最常见的一种变形杆,通常把以弯曲为主的杆件称为梁。图 4 — i 中列举了例子并画出了它们的计算简图。如图( a 表示的是房屋建筑中的板、梁、柱结 构,其中支撑楼板的大梁 AB 受到由楼板传递来的均布荷载 口;图(b )表示的是一种简易挡 水结构,其支持面板的斜梁 AC 受到由面板传递来的不均匀分布水压力; 图(c )表示的是- 小型公路桥,桥面荷载通过横梁以集中荷载的形式作用到纵梁上;图( d )表示的是机械中 的一种蜗轮杆传动装置,蜗杆受到蜗轮传递来的集中力偶矩 m 的作用。 1.1 梁的受力与变形特点 综合上述杆件受力可以看出: 当杆件受到垂直于其轴线的外力即横向力或受到位于轴线平面 内的外力偶作用时,杆的轴线将由直线变为曲线, 这种变形形式称为弯曲.。在工程实际中受 弯杆件的弯曲变形较为复杂,其中最简单的弯曲为平面弯曲。 1.2 平面弯曲的概念 工程中常见梁的横截面往往至少有一根纵向对称轴, 该对称轴与梁轴线组成一全梁的纵向对.. 称面(如图4 — 2),当梁上所有外力(包括荷载和反力)均作用在此纵向对称面内时,梁轴 线变形后的曲线也在此纵向对称面内, 这种弯曲称为平面弯曲.。它是工程中最常见也最基本 的弯曲问题。 1.3 梁的简化一一计算简图的选取 工程实际中梁的截面、支座与荷载形式多种多样, 较为复杂。为计算方便,必须对实际梁进 行简化,抽象出代表梁几何与受力特征的力学模型,即梁的计算简图...。 选取梁的计算简图时,应注意遵循下列两个原则:(1)尽可能地反映梁的真实受力情况;(2) 尽可能使力学计算简便。 a 房屋建筑中的大梁 c 小跨度公路桥地纵梁 图4-1 b 简易挡水结构中的斜梁

连续刚构桥梁方案比选(原创、优秀)

1.1 方案比选 1.1.1 工程概况 (一) 主要技术指标: (1)孔跨布置:见”分组题目”。 (2)公路等级:一级。 (3)荷载标准:公路I 级,人群荷载3.5kN/m 2 (4)桥面宽度:桥面宽度20.5m ,即净2?7.5m(车行道)+1.5m(中央分隔带)+2 ?2.0m(人行道和栏杆) (5)桥面纵坡:0%(平坡);桥轴平面线型:直线 (6)该地区气温:1月份平均6℃,7月份平均30℃。 (7)桥面铺装:铺装层为10cm 防水混凝土,磨耗层为8cm 沥青混凝土。 (二)材料规格 (1) 梁体混凝土:C50混凝土; (2) 桥面铺装及栏杆混凝土:C40级混凝土; (3) 预应力钢筋及锚具: 主梁纵向预应力钢筋可选用 715.24,915.24,1215.j j j j φφφφ----高强度低松弛钢绞线 (115.24j φ-公称断面面积为2140.00mm ),1860MPa b y R =,1488MPa y R =,对应锚具分别为YM15-7,YM15-9,YM15-12,YM15-19;对应波纹管直径分别为(内径) 70,80,85,100mm φφφφ(外径比同径大7mm )。 主梁竖向预应力钢筋采用32φ冷拉IV 级钢筋,735MPa b y R =(冷拉应力),550MPa y R =;对应锚具为M343?(螺距);对应孔道直径43φ,锚垫板边长140mm a =,相邻锚板中心距离不小于15cm 。 (三)河床横断面 河 床 横 断 面

(四)工程地质条件 大桥位于江心洲西侧及附近水域,其中0+250~0+532地面高程为 3.8~4.20米,低潮时为陆地,高潮时被水淹没;0+542,0+614位于水中,地面高程为-0.18~-3.63米,钻孔揭露表明,桥位覆盖层厚43.00~50.10米,主要为中密细、中砂层,其中0+322~0+614下部分布有厚18.60~21.15米的密实卵石土层。下附基岩全、强分化层均很发育,厚22.75~34.10米,其中0+532,0+614具有不均匀分化现象,全、强风化花岗岩中在高程-64.00~-75.50米间分布有厚0.95~4.70米的微风化花岗岩残留体。微风化基岩面变化很大,在-62.12~-82.03米间,基岩主要为灰白色中粗粒花岗岩、花岗斑岩,微风化基岩岩质坚硬,呈块状~大块状砌体结构,为主墩桩基良好的持力层。基础设计时宜采用微风化基岩作为基础持力层,桩端进入微风化基岩一定深度。 微风化岩面一览表

xxx大桥连续梁0#块施工方案

目录 1、适用范围 (2) 2、工程概况及编制依据 (2) 2.1 工程简介 (2) 2.2设计概况 (2) 2.3 编制依据及验收标准 (3) 3、作业准备 (3) 3.1内业准备 (3) 3.2外业准备 (3) 4、技术要求 (4) 5、施工程序及施工工艺 (4) 5.1 0#块施工程序与工艺流程 (4) 5.1.1施工工艺流程图 (4) 5.1.2支座安装 (5) 5.1.3墩顶临时固结 (8) 5.1.4托架搭设 (10) 5.1.5托架预压 (11) 5.1.6模板工程 (13) 5.1.7钢筋工程 (15) 5.1.8预应力工程 (17) 5.1.9混凝土工程 (22) 5.1.10预埋件工程 (24) 5.2施工要求 (25) 6、劳动组织 (25) 6.1组织机构图 (25) 6.2劳动力组成 (25) 7、材料要求 (26) 8、机械设备配臵 (26) 9、质量控制及检验 (26) 9.1支座安装 (26) 9.2模板安装 (28) 9.3钢筋制作及安装 (28) 9.4其他要求 (28) 10、安全及环水保要求 (28)

xxx大桥连续梁0#块施工方案 1、适用范围 本方案适用于新建铁路西安至成都客运专线XCZQ-3标xxx大桥(48+80+48)m悬臂浇注连续梁0#块施工。 2、工程概况及编制依据 2.1 工程简介 xxx大桥桥址位于秦岭南麓花石村以北,两侧桥台均接隧道,地貌上属秦岭南坡低中山区,地形起伏较大。大桥起讫里程DgK103+986.06~DgK104+224.31,全长238.25m,为双线桥梁。全桥238.25m位于直线上,桥梁纵坡为22.00‰的单面下坡,桥梁孔跨布臵为2-24m+(48+80+48)m。 2.2设计概况 (48+80+48)m悬臂灌注连续梁全长177.5m,中支点处梁高6.65m,跨中2m 直线段及边跨7m直线段梁高3.85m,梁底下缘按二次抛物线变化y=0.002102x2。梁体为单箱单室、变高度、变截面结构。箱梁顶宽12.2m,箱梁底宽6.7m。顶板厚度除梁端附近外均为40cm,底板厚度40到150cm,按直线线性变化,腹板厚度48cm至135cm,按折线变化,全联在端支点、及中支点处共设4个横隔板,横隔板设有孔洞,供检查人员通过。连续梁0#块正面图见图1,剖面图见图2。 该类型连续梁共有2个0#块,0#块沿桥轴线长10m,横桥向底宽6.7m,顶宽12.2m,,截面梁高从665cm~628cm,混凝土方量为306.6m3。 图1 连续箱梁0#块正面图

油缸压力计算公式

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S) 如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少?怎么计算的? 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15××缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15××(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为m 杆径单位为m 行程单位为m 流量单位为L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单: 油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算: 柱塞的受力面积×供油压力=工作压力(吨位) 柱塞的受力面积单位:mm2 供油压力单位:N/mm2 工作压力(吨位)单位:N 1000Kgf=1Tf(吨力) 油缸15到25吨的力要多大的钢径 油缸的吨位和缸径的大小还有系统提供的压力有关。 例如油缸内径是100mm, 系统提供的压力是16MPA 50吨液压油缸内外径是多少 则:

大桥连续梁吊篮施工方案

报告 我方牙同高速公路E标项目部,在古浪堤村隆务峡内修建高速公路,因跨越S203省道给施工带来诸多不便。特申请连续梁挂篮吊篮防护施工,请贵方审批。 年月日

青海省张掖至河南公路牙什尕至同仁段公路工程YTSG-E标段 连续梁吊篮防护措施专项方案 中铁十九局集团第二工程有限公司 牙同公路E标项目部 二○一四年三月九日

目录 一、工程概况 (1) 二、桥梁与公路空间位置关系 (2) 三、挂篮防护目得 (2) 四、挂篮设计 (3) 五、挂篮封闭施工注意事项 (5) 六、高空坠落应急预案 (5) 七、附图 (12)

跨S203省道连续梁挂篮防护措施专项方案 一、工程概况 牙同省道(牙什尕至同仁省道公路)全长近63公里、建设工期为5年。牙同省道就是连接京藏、连霍两条国家省道公路、张掖至河南公路中得一段,采用双向四车道设计标准,行车时速达80公里。作为又一条通州省道公路,牙同省道得建设将成为带动青海与甘肃、成渝经济区之间协同发展得纽带。牙同省道得建设, 海省境内国省道主干线得省道化,构筑青海连接西藏、四川两省区快速通道,完善公路路网结构,提升交通通行能力,优化投资环境,加强民族团结与加快区域政治、经济、文化交流具有十分重要得意义。本标为牙同省道E标段,工程范围为牙什尕隆务峡口~东当村至古浪堤,起止里程为YK37+000(ZK37+000)~D合同段终点YK44+250(ZK44+250)。正线长度7、25km。 隆务峡3#大桥桥址位于尖扎县隆务峡内,本桥上部构造采用(60+2×100+60)m连续梁,分为2联。右线中心里程为YK42+753,右线起止里程为YK42+563~YK42+913,桥全长350m(含30T梁);左线中心里程为ZK42+770,左线起止里程为ZK42+610~ZK42+930,桥全长320m。本桥主墩采用钻孔桩基础、承台、方形型空心墩;上部箱梁为单箱单室变截面连续箱梁,采用挂篮悬臂浇筑法施工,每个主墩两侧分别设有11个悬浇块段。本桥梁得主要技术标准及技术条件如下: ①公路等级:I级; ②线路数目:双线4车道; 设计速度目标值:80km/h,本桥平面位于R= ∞得直线上;纵面位于 R=160000m,i1=-0、50%、i2=1、200%得纵坡上。 ④设计荷载:公路-I级; ⑤施工方法:悬臂灌注法。 二、桥梁与公路空间位置关系 跨省道跨中40米共有10个节段位于省道公路上方,其中左线1#墩4#块—8#块,右线2#墩1#块—5#位于S203省道行车道投影范围内(如图1)桥下净空大于9米。(见跨中截面标高统计表)

浅谈连续刚构桥的发展及主要存在的问题

浅谈连续刚构桥的发展及主要存在的问题 摘要::随着我国交通建设的迅速发展,连续刚构桥施工技术趋于成熟,但连续刚构桥成桥后也普遍存在“跨中挠度过大”、“混凝土开裂”等质量问题,综合分析研究我国连续刚构桥发展现状,探讨连续刚构桥建设的优化和更新,并提出相应的对策。 关键词:连续刚构桥;发展;问题 一、连续刚构桥的发展 随着我国科学技术的发展,传统的工业水平的提高,桥梁建筑技术发展很快。一座座跨江大桥,现代公路天桥,城市高架桥,以及更长的跨海大桥和轻轨交通高架桥,像一条条的“彩虹”使得天堑变通途。并逐步建成了一个综合运输网络,大大提高了交通现状,拉动了我国国民经济的发展,方便了人们的生活。在这些桥梁中不仅有华丽富贵的斜拉桥;华丽富贵气势雄伟的悬索桥;体形优美,历史悠久的拱桥;也有简洁美观的外表,且适应性强、施工方便、投资小、效率高的大跨度连续刚构桥。 刚构桥是什么呢?传统的桥梁施工多用费时、费工的满堂支架法,这种方法对于中、小跨径的桥梁尚能适应,但对于大跨径及特大高度、水深较深的桥梁施工显然不适应。1953年原联邦德国建成的沃伦姆斯桥,主跨114.2米,施工时引进了悬臂施工法,基本解决了施工中的难题,而且发展了预应力混凝土结构T 形刚构,对其他桥梁产生了深远的影响。1964年联邦德国又建成了主跨为208m的本道夫桥,不仅显示出悬臂施工法的优越性,而且在结构上又有创新,形成了连续刚构体系。80年代后世界各国建造了多座不带铰的连续刚构体系,发展了连续刚构体系,其中以1985年澳大利亚建成的主跨260m的门道桥,挪威1998年底建成的主跨为298m的Ralf Sundet桥最为著名。 在我国,1988年由我国设计的第一座主跨180m大跨径连续刚构桥—广东洛溪大桥建成通车后,连续刚构的突出优点使得这种桥型在我国得到了广泛应用与推广。1997年我国建成了主跨为270m的虎门大桥辅航道桥将连续刚构—连续体的跨越能力体现到极致。 二、连续刚构桥要解决的常见问题 在我国连续刚构桥的数量日趋增多,目前部分桥梁设计师对连续刚构桥设计思想、连续刚构桥施工质量的制约及长期处于超限运输状态等原因,导致连续刚构桥出现问题数量较多,通过对国内已建成的大跨径连续刚构桥梁调查的来看,我国建成的大跨径连续刚构桥梁中,出现的问题主要有以下几种:(1) 箱梁腹板、底板产生裂缝;(2) 墩顶0 # 梁段开裂;(3) 桥墩墩身裂缝;(4) 跨中挠度过大。

大桥连续梁施工方案(doc 117页)

大桥连续梁施工方案(doc 117页)

目录 1.编制说明 (1) 1.1编制依据 (1) 1.2编制范围 (1) 2.工程概况 (1) 2.1线路概况 (1) 2.2技术标准 (2) 2.3主要工程项目概况 (2) 2.4工程特点 (3) 2.4.1工程要求标准高 (3) 3.建设项目所在地区特征 (4) 3.1地质、水文情况 (5) 3.2交通运输条件 (5) 3.3气象特征 (5) 3.4沿线水源、电源、燃料情况 (5) 3.5通讯条件 (5) 4.施工组织安排 (5) 4.1施工总体目标 (5) 4.1.1总体目标 (5) 4.1.2安全目标 (6) 4.1.3质量目标 (6) 4.1.4工期目标 (6) 4.1.5文明施工目标 (6) 4.1.6环境保护目标 (7) 4.1.7职业健康目标 (7) 4.2施工组织机构及职责分工 (7) 4.2.1施工组织机构 (7) 4.2.2施工队伍部署和任务划分 (7) 4.2.3施工进度指标 (8) 4.3工程接口及配合 (8) 4.4施工进度计划 (9) 4.5.施工机械设备使用计划 (9) 5.施工方案及方法 (10) 5.1.总体施工方案 (10) 5.2主要施工工艺及方法 (10) 5.2.1 0#梁段施工 (10) 5.2.2 悬臂浇筑梁段施工 (39) 5.2.3 直线现浇段施工 (46) 5.2.4 合拢段施工 (51) 5.2.5 挂篮拆除 (58)

5.2.6 预应力施工 (58) 5.2.7 线形控制 (60) 5.2.9 梁体冬季施工 (66) 6.资源配置方案 (68) 6.1主要工程材料设备采购供应方案 (68) 6.1.1组织机构 (68) 6.1.2材料管理制度 (68) 6.2关键施工装备的数量及进场计划 (71) 6.3劳动力计划 (71) 6.3.1劳动力组织设计 (71) 6.3.2劳动力组织措施 (71) 7.四化支撑手段 (72) 7.1工厂化 (72) 7.2机械化 (72) 7.3专业化 (72) 7.4信息化 (72) 8.风险管理 (73) 8.1安全风险管理 (73) 8.2工期风险管理 (73) 8.3质量风险管理 (73) 8.3.1施工管理防范风险措施 (73) 8.3.2风险管理措施 (74) 8.4环保风险管理 (74) 9.保证措施 (78) 9.1标准化管理 (78) 9.1.1人员配置标准化 (79) 9.1.2施工场地标准化 (80) 9.1.3过程控制标准化 (80) 9.2创优规划和质量管理措施 (81) 9.2.1质量目标 (81) 9.2.2创优保证措施 (81) 9.2.3质量保证体系 (82) 9.2.4质量管理措施 (85) 9.2.5混凝土质量控制技术措施 (86) 9.2.6防止大体积混凝土开裂的施工技术措施 (88) 10.安全管理措施 (90) 10.1安全保证体系 (90) 10.1.1建立健全安全保证体系,成立安全生产领导小组 (90) 10.1.2各级人员安全生产职责 (92) 10.2安全生产保证体系 (94)

悬挑梁的受力计算

悬挑梁的受力计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

附件三:钢梁B的抗弯强度验算: 一、悬挑梁A的受力计算: 悬挑脚手架按照带悬臂的单跨梁计算。 悬出端C受脚手架荷载N的作用,里端B为与楼板的锚固点,A为墙支点。 悬臂单跨梁计算简图 支座反力计算公式 支座弯矩计算公式 C点最大挠度计算公式 其中 k = m/l,k l = m l/l,k2 = m2/l。 本算例中各参数为: m=1580mm,l=2920mm,m1=630mm,m2=1480mm; 水平支撑梁的截面惯性矩I = 1130.00cm4,截面模量(抵抗矩) W = 141.00cm3。受脚手架作用集中强度计算荷载 N=(不考虑风载) 水平钢梁自重强度计算荷载 q=××××10=m k=m/l== k1= m1/l== k2= m2/l== 代入公式,经过计算得到 支座反力 RA= 支座反力 RB= 最大弯矩 MA= 抗弯计算强度 f=×106/×= mm2 水平支撑梁的抗弯计算强度小于mm2,满足要求!

二、钢梁B的内力计算: 内力按照集中荷载P与均布荷载q作用下的简支梁计算: L=2840mm,a1=630mm,b1=2210mm,a2=300mm,b2=2540mm F1=,F2= 最大弯矩的计算公式为:M=ql2/8+F1a1b1(1+a1/b1)/l+ F2a2b2(1+a2/b2)/l+ F2 l/4 水平钢梁自重荷载 q=×××10=m 则代入公式:M=抗弯强度计算: = M/r x w x ≤[f] = ×106/×141000 = mm2 该钢梁的抗弯强度计算 < [f]=215N/mm2,满足要求!

桥连续梁施工方案

晋陕黄河特大桥(54+2×90+54)m连续梁施工方案 1.编制依据及原则 1.1.编制依据 1)晋陕黄河特大桥(54+2×90+54)m连续梁梁部设计图; 2)《客运专线铁路桥涵工程施工技术指南(TZ213-2005)》; 3)《客运专线高性能混凝土暂行技术条件》; 4)《铁路客运专线桥涵工程质量检查与控制》; 5)《客运专线铁路桥涵工程施工质量验收暂行标准》(铁建设〔2005〕160号); 6)《大同至西安客运专线桥墩墩身检查及其它相关设备参考图》(大西运西施桥参07); 7)根据ISO9001--2008质量标准、ISO14001环境管理和OHSAS18001职业健康安全标准建立的中铁四局质量、环境和职业健康管理体系; 8)大西铁路客运专线工程11标段实施性施工组织设计。 9)我单位积累的成熟技术,施工方法以及多年来所从事同类工程的施工经验,并结合本项目现有的施工管理水平。 1.2.编制范围 此方案仅适用于大西铁路客运专线晋陕黄河特大桥31#-35#桥墩(54+2×90+54)m连续梁施工。 2.工程概况 2.1.桥址情况 (54+2×90+54)m连续梁位于小樊村二级泵站处黄河阶地上,跨越抽黄渠道及一条乡村公路。桥梁毗邻1#混凝土拌合站及1#钢筋加工场,原材、半成品等供应方便。 2.2.桥梁设计情况 1)、(54+2×90+54)m连续梁为预应力混凝土结构全长289.5m,梁面宽度12m,底板宽度6.7m。 全桥共4跨,5个桥墩。全桥位于直线上,连续梁顶面为平坡。桥梁共14个节段,0#块高6.852~7m,长10m,混凝土方量350m3,重约927.5t。悬臂段最大重量为1#块,混凝土方量约64m3,重约169.6t。 全桥顶板厚度为0.4m,腹板厚度50cm~90cm呈线性变化;0#块腹板厚260cm。 2)、梁体在支座处设横隔板,全联共设置5道横隔板,横隔板中部设孔洞,以利检查人员通过。 3)、连续梁支座采用DLQZ球型钢支座。31号墩及35号墩连续梁侧每墩分别设一个DLQZ-7000-ZX-e100-0.2g和DLQZ-7000-DX-e100-0.2g型支座;32号墩与34号墩每墩分别设一个DLQZ-37500-ZX-e100-0.2g和DLQZ-37500-DX-e100-0.2g型支座;33号墩设一个DLQZ-37500-HX-e10-0.2g 和DLQZ-37500-GD-0.2g型支座。梁体中支墩在设支座处腹板外侧局部加宽。 2.3.设计标准 铁路等级:客运专线; 设计速度: 350km/h; 设计线路:双线; 地震烈度:地震动峰值加速度小于0.2g; 牵引种类:电力 列车类型:动车组 列车运行方式:自动控制 行车指挥方式:综合调度集中。

液压油缸设计计算公式 (2)

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

高铁连续梁施工方案

250#~253#墩连续梁实施性方案 一、概述 新海口高架双线特大桥为满足地方交通要求,在250#~253#采用32+48+32m连续梁,连续梁中心里程DIK12+900。本连续梁处于南海大道中央绿化带上,跨越永万西路(规划中),施工时对交通影响较小。梁体全长113.1米,支墩处梁高3.4m,跨中及边跨梁端处梁高2.8m。梁底下缘按二次抛物线变化。箱梁顶宽11.4m,底宽随梁高而变化。除梁端、中支点附近顶板厚由30cm渐变至65cm外均为30cm,底板厚为30-60cm,按曲线线性变化,处于半径为1800m的曲线上,施工采用曲线曲做。腹板厚为50~90cm,按折线变化。梁体采用C55混凝土,共1275.5m3。采用满堂支架施工,支架采用碗扣式脚手架。 二、工期安排 为保障连续梁按预期完工,我们对250#~253#连续梁做了以下工期安排。 下部结构完成:已完成。 地基处理:2008.10.10~2008.10.26 支架搭设:2008.10.27~2008.11.18 支架预压:2008.11.19~2008.12.3 调整底模及安装边模:2008.12.4~2008.12.9 绑扎底板及腹板钢筋,安装波纹管等:2008.12.6~2008.12.25 安装內模:2008.12.23~2008.12.28 浇注第一次混凝土:2008.12.29

凿毛及绑扎顶板钢筋,安装波纹管等:2008.12.30~2009.1.9 浇注第二次混凝土:2009.1.10 养护:2009.1.11~2009.1.20 张拉:2009.1.21~2009.1.24 压浆:2009.1.22~2009.1.25 具体的工期横道图见附表1 三、劳动力、机具安排 1、劳动力安排 为了保障施工的顺利进行,以项目经理为施工负责人,项目总工为技术负责人,对需要的人员进行了统计。具体如下表: 主要管理人员及技术人员工种配备表

油缸设计计算公式

液压油缸的主要技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配

非标液压、机电、试验、工控设备开发研制。 液压缸无杆腔面积A=*40*40/ (平方米)=(平方米) 泵的理论流量Q=排量*转速=32*1430/1000000 (立方米/分)=(立方米/ 分) 液压缸运动速度约为V=*Q/A= m/min 所用时间约为T=缸的行程/速度=L/V==8 (秒) 上面的计算是在系统正常工作状态时计算的,如果溢流阀的安全压力调得较低,负载过大,液压缸的速度就没有上面计算的大,时间T就会增大. 楼主应把系统工作状态说得更清楚一些.其实这是个很简单的问题:你先求出油缸的体积,会求吧,等于:4021238立方毫米;然后再求出泵的每分钟

流量,需按实际计算,效率取92%(国家标准),得出流量 为:32X1430X1000X92%=立方毫米;两数一除就得出时间:分钟,也就是秒,至于管道什么流速什么的东西根本不要考虑,影响比较少. 油缸主要尺寸的确定方法 1.油缸的主要尺寸 油缸的主要尺寸包括:缸筒内径、活塞缸直径、缸筒长度以及缸筒壁厚等。 2.主要尺寸的确定 (1)缸筒直径的确定 根据公式:F=P×A,由活塞所需要的推力F和工作压力P可求得活塞的有效面积A,进一步根据油缸的不同结构形式,计算缸筒的直径D。 (2)活塞杆尺寸的选取 活塞杆的直径d,按工作时的受力情况来确定。根据表4-2来确定。 (3)油缸长度的确定 油缸筒长度=活塞行程+活塞长度+活塞导向长度+活塞杆密封及导向 长度+其它长度。活塞长度=—1)D;活塞杆导向长度=(—)d。其它长度指一些特殊的需要长度,如:两端的缓冲装置长度等。某些单活塞杆油缸油时提出最小导向程度的要求,如: H≥L/20+D/2。 液压设计常用资料 时间:2010-8-27 14:17:02 径向密封沟槽尺寸 O形密封圈截面直径d 2 沟槽宽度b 气动动密封液压动密封 和 静密封 b b 1 b 2

梁受力计算

第5章 受弯构件斜截面承载力计算 1.何谓无腹筋梁?简述无腹筋梁斜裂缝形成的过程。 答:不配置腹筋或不按计算配置腹筋的梁称为无腹筋梁。 无腹筋梁的斜截面破坏发生在剪力和弯矩共同作用的区段。只配置受拉主筋的混凝土简支梁在集中荷载作用下。当荷载较小,裂缝出现以前,可以把钢筋混凝土梁看作匀质弹性体,按材料力学的方法进行分析。随着荷载增加,当主拉应力值超过复合受力下混凝土抗拉极限强度时,首先在梁的剪拉区底部出现垂直裂缝,而后在垂直裂缝的顶部沿着与主拉应力垂直的方向向集中荷载作用点发展并形成几条斜裂缝,当荷载增加到一定程度时,在几条斜裂缝中形成一条主斜裂缝。此后,随荷载继续增加,剪压区高度不断减小,剪压区的混凝土在剪应力和压应力的共同作用下达到复合应力状态下的极限强度,导致梁失去承载能力而破坏。 2.无腹筋梁斜截面受剪破坏的主要形态有哪几种?破坏发生的条件及特点如何? 答:无腹筋梁斜截面受剪破坏的主要形态有斜压破坏、剪压破坏和斜拉破坏三种类型。如图题2所示。 (1)斜压破坏 这种破坏多发生在集中荷载距支座较近,且剪力大而弯矩小的区段,即剪跨比比较小(1<λ)时,或者剪跨比适中,但腹筋配置量过多,以及腹板宽度较窄的T 形或I 形梁。由于剪应力起主要作用,破坏过程中,先是在梁腹部出现多条密集而大体平行的斜裂缝(称为腹剪裂缝)。随着荷载增加,梁腹部被这些斜裂缝分割成若干个斜向短柱,当混凝土中的压应力超过其抗压强度时,发生类似受压短柱的破坏,此时箍筋应力一般达不到屈服强度。 (2)剪压破坏 这种破坏常发生在剪跨比适中(31<<λ),且腹筋配置量适当时,是最典型的斜截面受剪破坏。这种破坏过程是,首先在剪弯区出现弯曲垂直裂缝,然后斜向延伸,形成较宽的主裂缝—临界斜裂缝,随着荷载的增大,斜裂缝向荷载作用点缓慢发展,剪压区高度不断减小,斜裂缝的宽度逐渐加宽,与斜裂缝相交的箍筋应力也随之增大,破坏时,受压区混凝土在正应力和剪应力的共同作用下被压碎,且受压区混凝土有明显的压坏现象,此时箍筋的应力到达屈服强度。 (3)斜拉破坏 题图2(a) 破坏形态(b) 荷载-挠度曲线

jx贝雷片 钢木组合梁法施工连续刚构箱梁桥0 段托架工法_secret

贝雷片+钢木组合梁法 施工连续刚构箱梁桥0#段托架工法 一、前言 连续刚构箱梁桥0#段由于其梁段高度最高、一次性砼浇注方量最大,而且由下构施工转为上构施工,需将施工作业面积扩展数倍,施工难度极大。托架作为承受全部荷载的工作平台,必须保证足够的强度和刚度。 我公司在总结和吸收各种施工方法的基础上,采用贝雷片+钢木组合梁法施工0#段托架。该方法利用制式器材贝雷片和工字钢组合成承重平台,并通过预埋件锚固在墩身上;底板模板则通过加强弦杆+方木组合结构以伸臂梁的型式支承在工字钢上;梁段标高通过楔块调整。每个0#段只需一次性投入预埋件,其它构件均可重复使用。 该技术应用于京福高速公路福建段层溪Ⅲ号特大桥施工中,取得了良好的经济效益;施工技术的先进性受到业主和社会各界的广泛好评,我们将该技术进行总结整理,形成本工法。 本工法叙述时以层溪Ⅲ号特大桥0#段托架为例。 二、工法特点 1、采用贝雷片代替传统三角形型钢或万能杆件桁架,一方面充分利用了高强材料,保证了工程质量;另一方面,降低了施工难度。工字钢则以伸臂梁的形式承受翼缘板相对较小荷载的同时,部分抵消了主跨内的正弯矩。 2、通过预埋构件安装贝雷片,取消了支架,解决了高墩和水上作业的施工难题。 3、肋木以伸臂梁的型式代替传统简支梁承受上部荷载,减小了跨径,降低了主跨正弯距,从而降低了材料性能要求。并通过模板、钢材和方木三种材料的有效组合,充分发挥了材料的各自性能。 三、适用范围 适用于铁路、公路悬臂浇筑梁桥的0#段和现浇段施工,尤其在高墩、水上作业或地势陡峭、地基软弱等情况下,具有广泛的适用性。 四、施工工艺 (一)工艺原理 根据荷载最大工程部位的受力分析,布置悬臂梁的间距和伸臂梁的跨径,在此基础上合

连续刚构桥毕业设计(1)

目录 1 方案拟定及比选 (1) 1.1工程建设背景介绍 (1) 1.2工程主要技术标准 (1) 1.3设计方案介绍 (1) 1.3.1 设计方案一——预应力混凝土连续刚构桥 (1) 1.3.1 设计方案二——独塔斜拉桥 (2) 1.4比选结果 (2) 2 桥梁结构主要尺寸拟定 (3) 2.1主跨跨径及截面尺寸的拟定 (3) 2.1.1 主跨跨径拟定 (3) 2.1.2 顺桥向梁的尺寸拟定 (3) 2.1.3 横桥向的尺寸拟定 (3) 2.2材料规格 (4) 3 模型建立 (5) 3.1结构单元划分 (5) 3.1.1 划分原则 (5) 3.1.2 划分结果 (5) 3.2施工过程模拟 (5) 3.3毛截面几何特性计算 (11) 4 全桥内力计算 (14) 4.1计算参数 (14) 4.2内力计算 (14) 4.2.1 自重作用下的内力计算 (14) 4.2.2 二期恒载作用下的内力计算 (15) 4.2.3 墩台不均匀沉降引起的次内力计算 (17) 4.2.4 温度对结构的影响 (18) 4.2.5 混凝土徐变、收缩对结构的影响 (23) 4.2.6 活载内力计算 (25) 4.3作用效应组合 (31) 4.3.1 作用 (31) 4.3.2 组合原理及规律 (31) 4.4施工阶段分析 (35) 5 预应力钢束设计及截面特性计算 (38)

5.1按构件正截面抗裂性要求估算预应力钢筋数量 (38) 5.2预应力筋估算结果 (39) 5.3换算截面几何特性值计算 (41) 6 预应力损失计算 (44) σ......... 错误!未定义书签。 6.1预应力筋与孔道壁之间摩擦引起的应力损失 1l σ.错误!未定义书签。 6.2.锚具变形、预应力筋回缩和接缝压缩引起的应力损失2l σ错误!未定义书签。 6.3.混凝土加热养护时,预应力筋和台座之间温差引起的应力损失3l σ................... 错误!未定义书签。 6.4.混凝土弹性压缩引起的应力损失4l σ............... 错误!未定义书签。 6.5由钢筋松弛引起的应力损失的终极值 5l σ............. 错误!未定义书签。 6.6由混凝土收缩和徐变引起的预应力损失6l 6.7有效预应力计算 (49) 7 截面验算 (51) 7.1承载能力极限状态验算 (51) 7.1.1 使用阶段正截面抗弯验算 (51) 7.1.2 使用阶段斜截面抗剪验算 (57) 7.2正常使用极限状态验算 (62) 7.2.1 使用阶段正截面压应力验算: (62) 7.2.2 施工阶段正截面法向应力验算 (63) 7.2.3 使用阶段正截面抗裂验算 (64) 7.2.4 使用阶段斜截面抗裂验算 (64) 7.2.5 变形验算 (64) 参考文献 (65) 致谢 (67) 附表 (68) 附件 (87) 开题报告 (87) 外文文献原文及译文 (87)

连续梁施工方案

现浇预应力连续梁施工方案 1、施工方法 石浦互通立交主线大桥、匝道桥及车行天桥均为预应力砼连续箱梁,采用支架法现浇施工,按每一自然联分段施工浇筑成型。底模、侧模采用贴塑胶合板,内模采用普通胶合板(或组合钢模)。砼采用 泵车纵向分段水平分层全断面一次浇注成型。 2、施工工艺 (1)基础与支架 本桥支架设计原则:支架经济合理,各部位允许荷载能满足实际使用荷载的要求;减小基底非弹性变形,底模拼装及其标高控制容易,落架方便的结构形式;跨路现浇段需满足通车要求。为此支架采用碗扣式脚手架及工字钢组合而成的门架形式。 满堂支架间距按90cm步距按90cm考虑。支架立杆上下设可调托撑,以调整底模标高和方便落架。托顶纵向放置15cm< 20cm的方木,其上再横向布设10X 10cm方木,净间距为20cm其上再铺设贴塑胶合板底模。基础在原地面清理平整后换填30cm厚灰土(河塘部分视其深度而定),并用机械压实,并在其上浇注一层厚15cm的素混凝土垫层。 跨路部分支架为确保净空满足通车要求通车要求,采用贝雷梁作 支墩、130工字钢作支架梁,跨径按路宽考虑,支墩采用条形混凝土基础;跨河孔跨采用六五墩做支墩,梁部用贝雷梁,跨径按18m考虑。工字钢梁或贝雷梁顶放置15cmx 20cm方木作横向分配梁,方木与工字钢之间设置楔形木以调整底模标高和落架,底模板铺设于方木之上。支架在设计施工中要进行详细的荷载分析、检算、以确保安全。 施工中还要对支架的弹性变形和非弹性变形进行分析,以确定施工预拱度,施工中为消除支架的非弹性变形,采用砂袋进行预压。

支架布置具体形式详见图 (2)预压及线形控制 a、支架预压 预压重量为箱梁自重的125%以消除支架的非弹性变形和不均匀沉降。预压采用砂袋,预压时不铺设胶合板,先铺设钢模板,人工装砂,汽车吊上砂袋,人工堆码砂袋,待连续7天预压沉降在不超过2mm/d时卸载、拆除钢模板,每跨在支架顶部根据预压卸载前后监测点测量值之差按二次抛物线设置上拱度,调整好模底高程后再铺设胶合板底模。 b、梁体线形控制 平面轴线控制:采用三角网法与偏角法双重控制,确认无误后,进行加密放线,加密点的间距为2m 梁底中线标高控制:标高控制点沿梁底模中线设置,每2m—点,控制点的标高为梁底设计标高与支架预拱度之和。 梁体外形线形控制:梁体线形外形主要由模板控制,因此应确保模板的制作和安装质量,特别是底模和侧模。底模曲面采用加密网点控制法控制,即根据设计提供的竖曲线即模板参数计算曲面纵横2m 网点的标高,再分别加上支架变形及张拉起拱度,作为各网点的标高。安装时,在工字钢与垫木上设置可调对口楔木,并用钢钉钉牢。施工中侧模采用木框架胶合模板,其板块大,柔性好,对翘曲面和弧形成形有利。梁体整体模板支撑结构为侧模包底模的形式,螺栓紧固后,可有效避免混凝土表面的蜂窝、麻面及表面漏浆等现象,使拆模后的箱梁底板边线线条圆顺,表面 光洁,颜色均匀。 (3) 支座安装 支座安装严格按厂家和设计标准进行,特别注意要保持水平,梁

第6章 混凝土梁承载力计算原理

6 混凝土梁承载力计算原理 6.1 概述 本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。抗拉强度又远小于抗压强度,因而其受力性能有很大不同。研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。建筑工程中梁常用的截面形式如图6-1所示。 6.2 正截面受弯承载力 6.2.1 材料的选择与一般构造 1)截面尺寸 为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸: 梁宽一般为100m m、120m m、 150m m、180m m、 200m m、220m m、250和300m m,以上按 b/,50m m模数递增。梁高200~800m m,模数为50m m,800m m以上模数为100m m。梁高与跨度只比l h/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b 在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。 2)混凝土保护层厚度 为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。具体应符合下表规定。 表6-1 混凝土保护层最小厚度 注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。 (2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。 (3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。 (5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。

相关文档
最新文档