吸波材料与微波暗室问题的数学建模

吸波材料与微波暗室问题的数学建模
吸波材料与微波暗室问题的数学建模

2011年全国研究生数学建模竞赛B 题

吸波材料与微波暗室问题的数学建模

新型隐身歼击机歼-20最近试飞成功,标志着我国在隐身技术领域取得了重大进展。所谓飞机隐身,是指在飞机有关部位涂覆或粘贴吸波材料,合理设计飞机外形与布局等使敌方探测系统(如无线电雷达,红外雷达,激光雷达等)只接收到大大减弱后的飞机反射信号,从而降低被发现或跟踪的可能。

隐身技术的基础研究包括探索不同频段上吸波的机理,研制高效吸波的特殊材料,将吸波材料设计成合理的形状使之发挥最大效能等,其成果不仅可以应用到飞机舰船坦克等军用装备,也可以应用到其他科技领域。例如,许多以电磁波,光波或声波的传播为信息载体的仪器设备,都需要功能与性能的测试,甚至还要对其工作过程进行尽可能真实的仿真。早期这类测试常选择在无电磁干扰的偏僻空旷山区进行。在近代各种干扰已无法全部避免,所以近三十多年来这样的测试与仿真(例如本题将要研究的导弹制导系统的仿真),放置在被称为“无回波暗室”的实验室中进行。

无回波暗室能够屏蔽外界干扰信号,通过内墙(包

括地面与天顶面)敷设的吸波体,吸收各类反射信号,使室内反射大为减弱,被测设备接收到的“似乎”只

有测试信号源发出的实验所需信号。这样,它为测试

设备提供了一个几乎没有反射信号的“自由空间”。 图

1给出了二维示意。

由物理学知道,除了真空,没有一种介质对于各

频段的电磁辐射波(甚至包括声波)的传播是绝对透

明的,波从一种介质辐射到另一种介质时,都将发生

不同程度的反射、折射乃至散射,一部分波的能量被 图1 无回波暗室工作示意图 吸收转化为介质的内能。定义反射率为反射波功率r P 与入射波功率i P 之比:/r i P P ρ=,显然1ρ<。

吸波材料一般制成平板形状和特殊形状两大类基本形状。平板形状吸波体的主要性能指标是电磁波从空间向材料表面垂直入射(入射角0i θ=)时的反射率ρ,其值越小,吸波性能越高。当入射角0i θ≠时称为斜入射,斜入射时将出现反射、折射情况,此时反射率的理论计算较复杂,与入射角、两种介质的电参数和波的极化方向等多种因素有关,本题将反射率简化为满足余弦法则,即()cos ραρα=,其中α为入射角大小,其中ρ为垂直入射反射率。 为了提高无回波暗室的吸波性能,一般使用锥体(正四棱锥或正圆锥体等)或尖劈形状的吸波体,大量锥体或尖劈有规律地排列组成的整体粘贴在墙上构成吸波体。采用这些形状的主要理由是它们能使得辐射波在尖形的几何空缺间形成多次反射和透射-反射,降低反射出去的能量,实现高效率吸波。

图2示意了一条想象中的辐射线(实际上是在一个微小立体角内辐射)射入尖劈吸波体后,

经过多次反射以及透射过尖劈后进入相邻尖劈空间形成反射的情况。2α为尖劈角,h 为尖劈

的高,d 为尖劈的底部宽度。理论上还应有多次透射后进入相邻空间的反射,但能量已极小,工程上可以不计。

吸波体的吸波性能计算需要考虑多次反射,微波

暗室的电磁特性分析应研究各个墙面间的相互影响

(即一个墙面既接受其他墙面的辐射又同时反射给其

他墙面)。尽管理论上可通过求解由Maxwell 方程组

和相应的边界条件构成的数学物理问题,来严格地分

析与计算,但模型复杂且计算繁杂量大。工程上处理

此类复杂问题的常用思路是先采用简化模型进行理论分析,再用实验测试数据修正由简化模型得出的分析

结果。若模型较合理、测试数据准确,则这样的处理

图2 尖劈形吸波体吸波功能的示意 对实际研究具有较高的指导价值。

本题要求采用上述工程处理的思路,用较简单直观的几何光学模型,来初步研究分析特殊吸波体和微波暗室的性能这两类问题,后续的实验测试与修正不包括在本题中。

问题1:尖劈形状吸波体的性能分析

设尖劈形状吸波体及其坐标系如图3所示,尖劈的

长度沿x 方向为无限长,其他尺寸记号同图2。由射向

角θ(z 轴正向与入射线负方向的夹角)和方位角?(x

轴正向与射线在xOy 平面上投影的夹角)确定入射波线

的方向,只考虑波在两种不同介质界面处的反射,不考

虑边缘处的绕射。

假设尖劈材料的电性能参数各处均匀,垂直入射的

反射率为ρ,斜入射时的反射率满足前述的余弦法则,

设入射波线的辐射强度为1单位。

试建立入射波线在一个尖劈几何空缺间反射过程

图3 尖劈吸波体吸波示意 的数学模型,即分别刻画最终反射波线的方向,反射次数,反射波的辐射强度与已知反射率、诸几何参数之间的定量关系。

建议:可先从二维问题着手研究起。

问题2:导弹导引仿真实验用的微波暗室的性能研究

自主寻的式导弹的制导系统的核心设备之一是安置在头部、能自动寻找和跟踪目标的导引头。在导弹的研制过程中需要在地面条件下模拟导引头跟踪目标的性能。设导引头的工作波段在微波段(指频率为0.3-300GHz(波长1m-1mm))。一种已经研究成功的仿真系统主要由目标模拟器系统,作为导引头支架的三轴转台和微波暗室组成。

目标模拟器用来模拟目标运动,它由天线阵列子系统及其控制子系统组成。天线阵列是安置在微波暗室靠近一面墙、有规律排列在同一球面的若干个微波天线,各天线的中心轴线对准球心,按某种规律依次发射模拟目标回波的微波信号,模拟自由空间中目标相对于导弹的运动。 需要测试的导引头安装在三轴转台上,转台根据导引头跟踪目标时发出的制导指令作三自由度

微波暗室提供一个微波“自由空间”。 图4中只画出一面墙上的吸波材料,实际上所有6

个墙面均铺设吸波材料。

本题研究一个简化问题。目标模拟器是圆弧形

线阵列,而非球面阵列,它安装在靠近一面墙的中

心水平面内,圆弧线对两边的墙处于对称位置,圆

弧半径R ,各天线轴线对准圆心(即导引头位置)。

设目标模拟器对导引头的总张角45β=?,每3?安装一个天线,共16个天线。设天线属于余弦辐射体 (见附录2),辐射强度cos i N I I i =,N I 为天线轴线

图4 导引仿真实验室示意 方向辐射强度,i I 为与法线成i 角方向的辐射强度。 目标模拟器的工作基于所谓“等价重心原理”:如果两个相邻天线,A B 对导引头O 的张角 AOB ∠小于某个阈值(见图5),,A B 同时发射同频率同相位且相同极化方向、但功率不同的微波信号时,根据导引头

的功能,它将对准,A B 中间的“重心”P ,它满足:

B A P AOP BOP P ∠=∠, (1) 图5 模拟目标运动的原理 其中,A B P P 分别为,A B 发射的微波功率,角度均以弧度计。

OP 就是导引头“感觉”到的目标方向,这个方向称为导引头的视在方向。这等价于,A B 不工作,代之以在P 点存在着一个辐射,A B 两者功率之和的“视在天线”。于是,连续地改变天线,A B 的功率之比,且两者之和为常值时,导引头就“感觉”到视在目标在,A B 之间运动,距离不变。又因为视在目标功率的大小模拟了导弹与目标之间距离的远近,故若两者功率之和变化,功率之比不变,则模拟了目标与导弹间的距离变化,但方向不变。这样,控制两相邻天线的功率比及它们的功率之和,并连续地控制相邻的两两一组的天线的开关,使之时间上前后衔接,对导引头相当于在目标阵列上有一个运动的视在天线,模拟了导弹与目标之间的相对连续的运动。(注:上述原理是产生视在目标的背景介绍,本题的重点宜放在微波暗室的性能分析上)

图6 问题2的诸参数示意图

现在回到问题本身。设暗室的宽B =18,高H =14,长L =15,1b =,线阵列的圆弧半径14R =,单位均为米。所有墙面铺设同一规格的吸波体(上述数据均从吸波体的顶端平面算起)。

图6所示暗室右端中心的s s ?的小方块面积处是安置导引头的部位,称为“静区”。静区小方块的中心点与目标模拟阵列圆弧的圆心重合。静区接收到的电磁能量直接对导弹的导引仿真有重要影响,根据导引仿真要求,静区从诸墙面得到的反射信号的功率之和与从信号源直接得到的微波功率之比γ,始终满足γ≤0.03。 设0.3s =m 。

目标模拟器对导引头的视在目标运动从左端开始,以匀角速运动到右端,前后共4秒,视在天线中心轴线对准静区中心,中心轴线处的发射功率强度随时间线性增大,结束时比初始时增大了一倍。并假设:

(1)视在天线发射功率强度分布满足余弦辐射体(见附录2);

(2)只考虑所有墙面对辐射的反射,不计入墙面的散射;

(3)不计入模拟器的天线及其安装支架,以及导引头本身对辐射的影响;

若暗室铺设平板形吸波材料,其垂直反射率ρ=0.50。试建立合适的数学模型,在上述假设下,根据提供的数据,通过对模型的分析与数值计算,判断这样的微波暗室能否能满足仿真技术要求? 在此弹目相对运动过程中,何时的γ值最小?

进一步,若暗室改为铺设尖劈形吸波材料,由于沿尖劈形吸波体各平面处的吸波效果不是常数,所以常用统计的方法求出其平均值,称此平均值为平均反射率。现设此平均反射率已经求出,为ρ=0.05(相当于尖劈形吸波体被换成另一种吸波性能更好材料的平板形吸波体的垂直反射率),请你再次用模型进行计算,根据结果判断,这样的暗室是否能满足仿真技术要求?何时的γ值最小?

【附录1】 立体角的基本概念

辐射能在立体锥角范围内传播,需要一个描述立体锥角“大小”的数学量——立体角。

平面角的大小是用过一个顶点的两条射线所夹的范围来

衡量,以弧度或度为单位,弧长等于半径的圆弧所对的平面角

的大小定义为一弧度(rad )。圆的平面角为2πrad 。

三维空间里立体角定义:以立体锥角的顶点为球心,作一

半径为R 的球面,用此锥角在球面上所截微元面积d S ,除以

半径R 的平方,来表示此立体角元的大小: 附图1 立体角定义 2

d d S R ω=。 (f1.1) 若微元面积的法向量与辐射方向单位向量n 成α角,则

22d cos d d n S S R R

αω??==, (f1.2) 立体角的单位为立体弧度或球面度(sr ),当截出的球面积等于半径平方时,该立体角的大小为1球面度。

在球坐标系中立体角的计算如下。设辐射源O 位于球坐

标的原点,在球坐标系里辐射方向由方位角?和高低角i 给

出。球面上的一微元面积d S 对原点O 构成的立体角为

附图2 球坐标系中的立体角元 d ω,由于 2d (sin d )(di)sin d d S R i R R i i ??==,

故立体角微元为 2

d d sin d d S i i R ω?==。 (f1.3) 原点周围的全部空间的立体角大小为:

200sin d d 4i i ππω?π==?

?。 (f1.4)

【附录2】 关于辐射的几个描述参量

1. 辐射通量 本身发射辐射能的物体,称为一次辐射源。受到别的辐射源照射后透射或反射辐射能的物体称为二次辐射源。这两种辐射源统称为辐射体。辐射体向周围空间发出辐射能,用辐射功率来描述这些辐射能。以辐射形式发射、传播或接收的辐射功率,定义为辐射通量,记之为Φ,单位是瓦特(W )。点源辐射在立体角内传播,故这里的辐射通量指在某一个立体角范围内传播的能量。

2. 辐射强度 大多数辐射源在不同方向上的辐射通量是不相同的,有的方向强,有的弱。以光辐射为例,若对普通照明灯泡罩上灯罩,光照功率在各个方向是不同的,灯头向上方向很小,而沿灯泡轴线向下为最强,与轴线成一角度方向则随角度增大而减小。容易知道,一定大小的辐射通量,通过给定立体角内辐射时的强度,肯定比在另一个更小的立体角内通过时的强度要小。这就需要引入辐射强度的概念。

辐射强度指在某个指定方向上辐射通量的大小。由于单一方向(一根线内)无法谈论传输的能量,故辐射强度定义为指定方向上的一个微小立体角内所包含的辐射通量,除以这个立体角的大小,所得的商即为辐射源在此方向上的辐射强度。它只刻画指定方向上一个很小空间范围内辐射的强弱。数学上,若在某给定方向上的一个微小立体角d ω内的辐射通量为d Φ,则该方向上的辐射强度I 为 d d I ω

Φ=。 (f2.1) 因此,辐射强度表示为辐射通量关于球面角的导数。辐射强度的单位为瓦特每球面度,(瓦/sr ),定量地表示为单位立体角内的辐射通量,它是辐射的基本单位,其他概念的单位均由这个基本单位导出(如辐射通量,以及下面将要引入的辐射照度,辐射出射度等)。

在球坐标系中,一个方向可由方位角?和高低角i 两个角确定(见附图1),若已知点辐射

I 为方位角?和高低角i 的某个函数(,)I i ?,那么可计算

出此辐射源发出的总辐射通量:02:0i ?ππ→→:

,;立体角2d d sin d d S i i R

ω?==,则 220000=(,)d (,)d (,)sin d d I i I i I i i i π

πππ?ω?ω??Φ==?????。 当辐射强度(,)I i ?轴对称时,(,)=()I i I i ?,只是角i 的函数,

计算可以容易些 0=2()sin d I i i i π

πΦ?。

有时,()I i 与空间方向的关系按下列较简单的规律变化:

cos i N I I i =, 22i π

π

-≤≤。 (f2.2)

其中d S 为辐射微元,N I 为d S 法线方向的辐射强度,i I 为与法线成i 角方向的辐射强度。若用矢径表示辐射强度,则各方向辐射强度矢径的终点轨迹在一球面上。符合这一规律的辐射体称为余弦辐射体。本题的问题2就采用这样的辐射简化模型。

3.辐射照度 当一定量的辐射通量到达一个接受面时,称此面被辐射“照明”了,辐射照明程度的大小,用辐射照度(简称照度)这个量来描述。一定辐射通量的辐射照射到两个大小不同面积的表面,两者的单位面积上接收的辐射通量显然不同。设被照平面垂直于辐射方向,则

照度(E )定义为落到某微元上的辐射通量d Φ与此元面积d S 之比,刻画单位面积上所接收到的辐射通量的密度。数学上有 d d E S

Φ=。 (f2.3) 照度的单位为瓦特每平方米。若较大面积的表面被均匀照射,则平均辐射照度为0/E S =Φ。 用点辐射源与假想球面的方法,容易推出照度的“距离平方反比定律”。记点源的均匀辐射强度为0I ,它在空间发出的总通量为04I π;半径为R 的球面面积为24R π,故辐射源在距离R 处产生的照度为 0022

44I I E R R ππ==。 (f2.4) 若被照平面与辐射方向不垂直(斜交),则辐射照度计算公式要作调整。如附图4所示,点 辐射源O 的发光强度为0I ,被照微元面积为d S ,距离源O 为r ,

对点O 所张的微立体角为d ω,其法线方向与d ω的轴线的夹角

为θ。 由立体角的定义,2cos d d S r θω?=

;通过d ω的辐射通量为 002cos d d d S I I r θωΦ==; 故面积d S 上的辐射照度为

02cos I d E dS r θΦ==。 (f2.5) 附图4 斜交时的照度定律 (f2.5)称为辐射照度的距离平方反比余弦定律。

4. 辐射出射度 从一辐射表面(比如反射面)的单位面积上辐射出的辐射通量,表征其辐射能力的大小,称为辐射出射度,记为M 。辐射出射度与辐射照度是一对相同意义的物理量,只是前者是发出,后者是接收,两者的单位相同。对于非均匀辐射面,有 d d M S

Φ=

。 (f2.6) 若本身不主动辐射,受外来辐照后所得照度为E 。入射能量中一部分被吸收,另一部分被反射,设表面反射率为ρ,那么显然有 M E ρ=。

主要参考文献

1. 刘顺华等,电磁波屏蔽及吸波材料,化学工业出版社,2007.8

2. Bhag Singh Gurn, Huseyin R. Hiziroglu, Electromagnetic Field Theory Foundamentals, 周克定,张肃文等译,机械工业出版社,2000 n

3. 张以漠,应用光学,机械工业出版社,1988

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一 吸波材料简介 在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。 吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。 目前常用的吸波材料可以对付的电磁干扰频段范围从0.72GHz到40GHz。当然应用在更高和更低频段上的吸波材料也是有的。吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。 吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是目前吸波材料研究的一大热点。由于篇幅所限,本文对吸波材料的损耗机制仅做了最为简约的叙述,对其详述及其结构设计及结构对吸波效能的影响等方面将在以后的文章中做出解释。 总之,高速发展的新科技正引领着世界范围内的各行各类电气、电子设备向高频化、小型化方向发展,高频EMI问题必将越发突显,吸波材料必然有越来越广阔的应用空间。

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

热障涂层的制备及其失效的研究现状

收稿日期:2009206201; 修订日期:2009206225 作者简介:邢亚哲(19762 ),陕西岐山人,讲师,博士.研究方向:材料表 面强化及器件制造. Email:x ingyazhe@gm https://www.360docs.net/doc/573723065.html, 热障涂层的制备及其失效的研究现状 邢亚哲,郝建民 (长安大学材料科学与工程学院,陕西西安710064) 摘要:热障涂层作为航空发动机和燃气轮机高温部件的保护涂层,其抗高温失效能力直接决定了部件的工作效率和寿命。回顾热障涂层的发展历史及研究现状,着重介绍了热障涂层的主要制备方法及其相应涂层的结构特征,综述了各类热障涂层失效的影响因素和失效机理。 关键词:热障涂层;电子束物理气相沉积;等离子喷涂;失效机理 中图分类号:TG174.44 文献标识码:A 文章编号:100028365(2009)0720922204 Re se a rc h Stat us in Fa bric at ion and Fa ilure of The rmal Barrie r Co atings XING Ya 2zhe,HAO Jian 2min (School of Mater ials Science and Engineering,Chang p an University,Xi p an 710064,China) Abst ract:Thermal barrier coatings are widely used to protect the components in aircraft and industrial gas 2turbine engines against high temperature damage.The e ne rgy efficiency and lifetime of these components are mainly dominated by the failure resistance of thermal barrier coatings in the high te mperature atmosphere.In this paper,the development and research status of thermal barrie r coatings are reviewe d.Especially,the main fabricating methods and the microstructure fe ature of the coatings,as well as the factors re sulting in the failure of thermal barrier coatings and its failure mechanisms,are summarized in detail. K e y words:Thermal barrier coatings;Electron beam physical vapor deposition;Plasma Spraying; Fa ilure mechanism 随着现代工业的发展,数以百计种类型的涂层被用在各种结构材料表面,以使这些材料表面免受腐蚀、磨损、侵蚀和高温氧化等危害。热障涂层(T BCs:Thermal Barrier Coatings)就是其中的一种,其具有最复杂的结构且工作在高温环境下,常作为航空发动机和燃气轮机受高温零件的保护涂层,以提高设备的工作温度和效能,同时减少温室气体的排放量。典型的TBCs 在结构上包含四个部分 [1] :1基体,即被保护的 零件;o金属结合层(BC:Bond Coat),通常为高温合金MCrA lY(M 代表Ni 、Co 或NiCo 合金);?热生长氧化物层(T GO:Thermally Grown Oxide),TGO 是在高温条件下外部氧通过T C 层到达BC 层表面并使其氧化而形成的,通常为一致密的Al 2O 3薄膜,在随后的工作过程中能够阻止外部氧向BC 层内部和基体的扩散,起到保护基体(零件)的作用;?陶瓷顶层(TC:Top Coat),一般为6%~8%Y 2O 32Zr O 2(YSZ), 正是由于YSZ 低的热传导率和相对较高的热膨胀系数,使其具有优越的热障和耐热冲击性能。目前,TBCs 研究的难点和重点主要为对其失效的控制[1~4]。为此,对TBCs 微观结构的研究显得尤为重要。而作为控制其微观结构的主要因素,即TBCs 的制备工艺就成了国内外学者们关注的热点。1 基于制备工艺的T BCs 的发展历程 早期在航空航天发动机中应用的TBCs(又称第一代T BCs),其BC 层和TC 层均采用大气等离子喷涂(APS:Atmospheric Plasma Spr aying)制备。对于APS BC 层,涂层含氧量较高,特别是有一定量的氧化镍生成,而氧化镍的存在致使难以形成在高温下具有保护性能的致密TGO 氧化膜,BC 层使用过程中容易在其内部也发生显著氧化而使层内结合弱化,裂纹易在BC 层内扩展而造成涂层剥落失效,使得该类T BCs 寿命较低。 随着低压(又称真空)等离子喷涂(LPPS:Low Pressur e Plasma Spraying)技术的进步和发展,逐步采用VPS 制备BC 层,避免了喷涂过程中高温合金BC 层的氧化,并通过热扩散处理,从根本上强化了BC

磁性吸波材料与应用

磁性吸波材料与应用 Magnetic Electromagnetic Wave Absorbing Materials and Applications 余声明 中国西南应用磁学研究所四川绵阳105信箱621000 摘要 本文论述了磁性吸波材料的基本原理、种类、应用及其发展。关键词磁性吸波材料应用发展 1前言 隐身技术是一门新兴边缘科学,涉及多个学科与技术领域,应用十分广泛。从各种武器装备、飞行器的隐身到现代电子信息设备的抗干扰系统都是不可缺少的实用技术和组成部分。 就武器而言,隐身技术是通过降低电器、武器或飞行器的光、电、热可探性而达到隐身目的的一种技术;或者说是采用多种技术措施,降低对外来信号(光、电、磁波、红外线等)的反射,使反射信号与它所处的背景信号难以区别,最大限度地减弱自身的特征信号,以达到自身隐蔽的效果。隐身技术可分为有源隐身技术和无源隐身技术。所谓有源是利用计算机分析外来探测信号,并及时主动发射相应的干扰信号,以达到自身的隐蔽。而无源隐身技术是一种被动隐身技术,它包括隐身结构技术和隐身材料技术。隐身结构技术是在尽量不影响功能的条件下降低自身特征信号,并设法减少雷达反射截面积,这在军事上显得特别重要。可见隐身结构技术和隐身材料技术是隐身技术不可分割的两部分,而隐身材料在实现隐身中起着重要作用,也是研究隐身技术的主要内容之一。 随着电子技术的飞速发展,电子产品特别是移动通讯、计算机、家用电器的普及,人们生存环境遭受到电磁波严重污染,城市高层建筑的增多又引起电子环境的恶化,如何降低电磁波干扰已成为全世界电子行业普遍关注的问题。隐身材料也是解决电子产品抗电磁干扰的有效方法之一。 隐身材料又称之为吸波材料,其作用把外来的电磁波能量转换为热能,降低反射波的强度,达到隐身或抗干扰的效果。按吸波材料损耗机理可分为:电阻型、电介质型和磁介质型。为了达到最佳的隐身效果,常常把多种吸波材料结合起来,构成复合型吸波材料,广泛用于雷达、航天、微波通讯及电子对抗、电子兼容的吸收屏蔽等领域。 本文专门介绍磁性介质主要是铁氧体吸波材料的概貌、应用情况及其发展。2磁性吸波材料 2.1吸波材料工作的基本原理 所谓吸波就是吸收电磁波,吸波材料的工作基本原理是: 对于一般材料,材料的介电常数ε与磁导率μ可写成以下复数形式: μ′′?μ′=με′′?ε′=ε??j ;j (1) 式中:ε′和μ′分别为吸波材料在电场或磁场作用下产生的极化和磁化强度的变量,而ε″为在外加磁场作用下,材料电偶矩产生重排引起损耗的度量,μ″为在外加磁场作用下,材料磁偶矩产生重排引起损耗的度量。对介质而言,承担着对电磁波吸波功能的是ε″和μ″,它们引起能量的损耗,损耗因子为tanδ可由下式表示: μ′ μ′′+ε′ε′′=δ+δ=δμεtan tan tan (2) 可见,tan δ随ε″和μ″的增大而增大。 设计吸波材料除了尽可能提高损耗外,还要考虑另一关键因素,即波阻抗匹配问题,使介质表面对波的反射系数(γ)为0或最小,电磁波入射到介质进而被吸收。反射系数γ的定义如式(3)所示: Zo Z Z Z in o in +?=γ(3)

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

热障涂层材料研究进展_周洪

*2005民口配套项目  周洪:男,1972年生,博士生,讲师,主要从事材料表面技术的研究工作 E -mail :zhouhong @https://www.360docs.net/doc/573723065.html, 热障涂层材料研究进展* 周 洪,李 飞,何 博,王 俊,孙宝德 (上海交通大学金属基复合材料国家重点实验室,上海200030) 摘要 简要概述了热障涂层材料的基本要求,介绍了国内外热障涂层材料近年来的研究状况和发展趋势。目前 广泛使用的是Y 2O 3稳定Z rO 2热障陶瓷材料及其粘结层材料,而稀土锆酸盐和稀土氧化物是非常有前景的隔热材料。 关键词 热障涂层 M C rAlY 二氧化锆  Research Progresses in Materials for Thermal Barrier Coatings ZHO U Hong ,LI Fei ,HE Bo ,WANG Jun ,SUN Baode (T he Sta te K ey Labor atory of M e ta l M at rix Co mpo sitio ns ,Shanghai Jiao tong U niver sity ,Shanghai 200030) A bstract T he rmal bar rie r coating s (T BCs )o ffer the po tential to significantly improve efficiencies of aero en -g ines a s w ell as g as turbine engines fo r po wer generatio n.State -of -the -ar t T BCs ,ty pica lly consisting of an y ttria -stabi -lized zir co nia top coat and a metallic bo nd co at ,hav e bee n widely used to prolong lifetime now adays.In the pape r ,re -sear ch status a nd prog resses o f materials for the rmal bar rie r coating s a re briefly rev iew ed.Except y ttria stabilized zir -co nia ,o ther materials such a s lanthanum zirconate and rar e ear th o xides a re also promising materials for thermal bar rie r co ating s. Key words ther mal bar rier co atings ,M CrA lY ,zir co nia 0 引言 热障涂层(T hermal bar rier coating s ,简称T BCs )通常是指沉积在金属表面、具有良好隔热效果的陶瓷涂层,主要用来降低 基体的工作温度,免受高温氧化、腐蚀、磨损。美国N AS A -Lew is 研究中心为了提高燃气涡轮叶片、火箭发动机的抗高温和耐腐蚀性能,早在20世纪50年代就提出了热障涂层概念。在涂层材料选择和制备工艺上进行较长时间的探索后,80年代初取得了重大突破,为热障涂层的应用奠定了坚实基础。文献表明,目前先进陶瓷热障涂层能在工作环境下降低零件温度170℃左右[1~3]。随着热障涂层在高温发动机热端部件上的应用,人们认识到热障涂层的应用不仅可以达到提高基体抗高温腐蚀能力,进一步提高发动机工作温度的目的,而且可以减少燃油消耗、提高效率、延长热端部件的使用寿命。与开发新型高温合金材料相比,热障涂层的研究成本要低得多,工艺也现实可行[2,4]。 1 热障涂层系统材料体系 高温隔热涂层的研究发展经历了数十年。20世纪60年代研制出β-NiA l 基铝化物涂层,但其脆性大,A l 元素向基体扩散 快,寿命短;之后出现了加入Cr 、Ti 、Si 、Y 、T a 、Pt 等元素改进的铝化物涂层,其中镀Pt 渗Al 形成的铂铝涂层具有较长的寿命。目前普遍使用的热障涂层系统是以M Cr AlY (M =N i ,Co ,Fe ,N i +Co )高温抗氧化合金为中间粘结层,表面覆盖Y 2O 3稳定的Z rO 2陶瓷隔热涂层[5,6]。 1.1 热障涂层陶瓷材料 热障涂层材料需要具有难熔、化学惰性、相稳定和低热导、低密度、高热反射率等重要物理化学特征,同时要考虑其热膨胀 系数与基体材料相匹配。另外,针对高温部件氧化腐蚀的问题,应当考虑低烧结率、界面反应和抗高温氧化腐蚀等因素。 陶瓷材料具有离子键或共价键结构,键能高,因此熔点高、硬度高、化学性能稳定,是热障涂层的理想材料。但韧性、抗疲劳性和抗热震性较差,对应力集中和裂纹敏感。目前使用的热障涂层陶瓷材料多为金属氧化物,这是因为金属氧化物陶瓷的导热以声子传导和光子传导机理为主,热导率较低且其涂层在富氧环境中具有良好的高温稳定性[7]。常用氧化物陶瓷的导热顺序为[8]: BeO >M g O >Al 2O 3>CaO >Z rO 2 常用热障涂层陶瓷材料有Al 2O 3、Z rO 2、SiO 2等,主要性能如表1所示[6,8~10]。 研究表明[1,2,4,9~12],Z rO 2是目前应用广泛、综合性能最好的热障涂层材料。它具有高熔点、耐高温氧化、良好的高温化学稳定性、较低且稳定的热传导率和优良的抗热震性等特性,并且热膨胀系数接近金属材料。纯Zr O 2具有同素异晶转变,常温下稳定相为单斜结构;高温下稳定相则为立方结构: 单斜相(m ) 1170℃950℃ 正方相(t )2370℃ 立方相(c ) 单斜相与四方相间转化因伴有3%~6%的体积分数变化而导致热应力产生,因此,使用纯Z rO 2制备的热障涂层不稳定。为避免这个缺点,可采用M gO 、CaO 、CeO 2、Sc 2O 3、In 2O 3、Y 2O 3等氧化物来稳定Z rO 2,起到相变增韧的效果[8]。最早使用的是22%M gO 完全稳定的Zr O 2,在热循环过程中M gO 会从固溶体中析出,使涂层热导率提高,降低了涂层的隔热性能。CaO 对Zr O 2的稳定也不好,在燃气的硫化作用下,CaO 从涂层

吸波材料

吸波材料的用途与分类 从吸波材料的应用上来分类,它的用途可以分为,军用、商用以及民用,吸波材料的吸波实质是吸收或衰减入射的电磁波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料(黏结剂)与吸收介质(吸收剂)复合而成。吸波材料可以分为电损耗型和磁损耗型,电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围(10-2~10-5eV),从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷

达吸波材料“薄、轻、宽、强”的要求,是一种非常有发展前景的高性能、多功能吸收剂。随着现代军事技术的迅勐发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一般是由尺寸在1~100nm的物质组成的微粉体系。 随着电子化、信息化的高速发展,产业界对电磁干涉屏蔽和吸波材料的民用需求与日俱增,高度集成原件,与高频原件的应用,导致电子兼容性EMC问题难于解决,传统的屏蔽材料已经不能够解决现代电子信息条件下的电磁屏蔽,而且传统的屏蔽材料只能通过反射原理防止被骚扰,在许多特殊电磁环境中显得“无能为力”,那么在电子信息高度发展的今天,有没有什么更高端的产品来彻底解决电磁辐射,和电磁干扰(EMI)的问题?吸波材料的问世肯定的回答了这一问题,在国内来说,深圳市兆荣软磁材料有限公司,通过国防科大、北矿磁材等企事业的通力合作,研发出具有国内领先水平的薄片类,吸波材

3米法暗室和10米法暗室介绍

在屏蔽室的天花板和四面墙贴上吸波材料,地面的吸波材料采用活动式铺设,即构成EMC实验室。该EMC 暗室(实验室)为十米法半电波暗室,在30MHz至18GHz的频率范围内,在3米测量距离拥有2米静区,10米测量距离拥有3米或更大静区,该暗室满足FCC、CE和VCCI对十米法暗室的认证、测量规则。 一.用途: 可对通讯设备、电子、电气设备进行EMC(EMC)测量,即电磁干扰(电磁干扰)和电磁敏感度(EMS)测量。适用频率30MHz-18GHz可延至40GHz。 二.主要规格及性能 1.屏蔽效能,满足EN 50147-1、GB12190-90。 技术参数如下: 频率屏蔽效能 14 kHz >60 dB 磁场 100 kHz > 80 dB 磁场 100 kHz > 100 dB 电场 1 MHz >100 dB 磁场 1 MHz >100 dB 电场 100 MHz > 100 dB 电场 1 GHz >100 dB 平面波10 GHz >100 dB 微波18 GHz >100 dB 微波100 MHz > 100 dB 电场 1 GHz >100 dB &nb 2.按照ANSI C6 3.4-2003的步骤和规定在直径3米的圆柱体静区内所有位置从30MHz至1GHz进行归

一化场衰减测量,按照10米法测量的归一化衰减(NSA)值和理论值偏差优于±4dB;1GHz至18GHz频率范围内使用传输损耗(TL)测量方法进行测量,仅在5GHz、10GHz和18GHz三点进行测量,归一化衰减(NSA)值和理论值偏差优于±4dB。同时满足CISPR16、EN50147-2、CISPR22-1997、GB9254-1998、VCCI V-3/99.05标准对场衰减的规则。 3.按照IEC61000-4-3步骤和规定,符合EN61000-4-3:1996和GB/T 17626.3-1998的规则,在30MHz至1GHz进行场均匀度测量,标准场为转台之上0.8米-2.3米范围内1.5米x1.5米的垂直平面,按照3米测量距离规则16个测量点的75%即12点场均匀性在0-6dB之间;1GHz至18GHz的测量仅在5GHz、10 GHz和18GHz三点以低于3v/m进行测量。 4. 按照CISPR22 Claas B(GB9254-1998)的规定,在30MHz-1GHz的频率范围内,无EUT的情况下,测得的环境电平值,至少低于规定的B级限值10dB。 三.在EMC实验室内,配置的主要附属设备 暗室的基本设施和设备 1. 屏蔽壳体一间:内部尺寸为20m长×12m宽×8m高,采用美国拼装式工艺建造,保证屏蔽效能的同时,也能保证屏蔽室的坚固耐用,并可以整体搬迁或扩建。 2. 屏蔽门:全开尺寸2.5m*2.5m,手动、电动或气动开启。 3. 波导通风口:8个,尺寸为300mm*300mm 4. 电气系统:300瓦卤素灯8盏,220V/单相/插座,380V/3相/插座 ? 5. 电源滤波器:在EUT、照明、天线塔、转台CCTV系统的电源滤波器,可增加电话滤波器、网络滤波器等。 220VAC/50Hz/单相/2*30A 一台

吸波材料

吸波材料 角锥型吸波材料是常见的吸波材料,其几何参数的设计与填充配方的选择是广泛研究的课题。由于吸波材料制作周期较长,数值仿真能有效减少产品的设计周期。 第一步 建立工程文档 选择求解器 运行EastFDTD ,选择菜单“文件”→“新建”→“Wizard ”或单击标准工具栏上的“新建文档”工具,弹出工程创建向导窗口,本例中采用FDTD 算法计算吸波材料的吸收特性,选择“FDTD ”,并为工程文档指定一个合适的名称,具体设置如图 1所示。点击“Next ”进入下一步设置。 图 1选择求解器 —— By EastFDTD 4.0

第二步选择模式 选择“自动计算透反率”计算模式,计算模式选择如图2所示。点击“Next”进入下一步设置。 图2 选择计算模式 注意:本模式默认的单位、网格和边界设置。 第三步设置模式参数 本模式参数设置全部勾选:

图3 设置模式参数 第四步设置频率 设置计算频率范围:100e6-1e9Hz,频率间隔为25e6Hz,如图4所示。下一步给出基本参数设置报告。

图 4设置频率 第五步新建材料 根据同样配方得到的块状吸波材料或同轴件,可以通过测试其S参数反推材料参数,或者矢量网络分析仪直接得到材料的介电常数等参量。这些参量一般是随频率剧烈变化的。在理论计算时,就必须将这些参数拟合为物理上合理的色散模型。 5.1 新建材料库 右击“模型管理器”中的材料,选择“从材料库中选择”。 图5 进入材料库

图6 材料库 用户可以根据需要新建材料库,将自己经常使用的材料归档。点击“从材料 库中选择”界面中的“新材料库”,新建材料库,命名为A,如图7所示。

高温吸波材料研究应用现状

高温吸波材料研究应用现状(转帖) 高温, 转帖, 应用, 研究 隐身技术是通过控制和降低武器系统的特征信号,使其难以被探测、识别、跟踪和攻击的技术。现代及未来战争中,雷达是探测目标最可靠的手段,隐身技术的研究以雷达隐身为重点[1]。武器系统的隐身能力可以通过外形设计和使用隐身材料来实现,但对外形的过多要求会引起空气动力性能的下降,并导致装容空间的减小和其他损失,所以开展吸波材料的研究 成为隐身技术的关键。 按照吸波材料的结构形式,可将它分为涂料型吸波材料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。对于吸波/承载一体化吸波材料即结构吸波材料,兼顾了承载和吸波双重功能,不额外增加重量,且材料本身在力学性能和吸波性能上具有较强的可设计性,从而具有较强的实用价值。按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料3类。在飞机的尾喷管等高温部位,其工作温度往往在700℃以上,大部分磁性吸收剂由于居里温度较低而失去吸波性能,致使高温吸波材料仅依靠电损耗机制来吸收雷达波。国外对耐高温吸波材料虽然已进行了较多的研究,但由于涉及军事应用,没有详细报道。从文献分析可以发现,陶瓷基复合材料是国外研制高温吸波材料的主要方向。本文简述了国外高温结构吸波材料基体和吸收剂的研究应用进展,并展望了高温吸波材料的 发展方向。 高温吸波材料基体 为满足低反射、高吸收以及宽频带吸收的要求,吸波材料往往被设计成双层或多层结构,即吸波材料由阻抗变换层和吸收层组成,并通过优化设计使其具有较好的吸波性能。优化设计结果表明,阻抗变换层具有较低的介电常数时,有利于雷达波进入吸波材料内部,从而表现出较好的吸波性能。另外,吸收层中吸收剂的介电常数往往较大,为了使吸收层介电常数不致太大,基体的介电常数不能太大。作为高温结构吸波材料的基体,还应具有较强的承载能力和易烧结制备性。由于材料在高温和常温下工作,基体还应具有较低的热膨胀系数及较强的耐热冲击性,此外,还应考虑到基体与吸收剂的匹配问题。 当前研究较多的高温吸波材料基体可分为两类:(1)陶瓷基体,如Si3N4、Al2O3、AlN、莫来石、堇青石等;(2)耐高温玻璃基体,如LAS玻璃、磷酸盐玻璃、MAS玻璃等。其性能如 表1所示[3-10]。 高温吸波材料用吸收剂 高温吸波材料主要靠吸收剂对电磁波进行吸收。性能优良的吸收剂要求高效吸收、宽带吸收且密度较小。对于耐高温吸收剂来说,控制其介电常数和损耗是关键。目前,国内外研究和 应用较多的耐高温吸收剂主要有以下几类。 1 碳化硅 碳化硅是当前国外研究最为广泛的耐高温吸收剂,其突出优点是具有优良的力学性能、高强度和良好的电性能。另外,碳化硅具有极其优异的耐高温性能,这是普通吸收剂所不具备的。

先进热障涂层的综述

关于先进热障涂层的综述 摘要:在过去的几十年中,许多陶瓷材料都被作为新型的热障涂层材料,其中很大一部分都是氧化物。由于它独特的性能,这些新型化合物很难与最先进的热障涂层材料YSZ相媲美。另一方面,由于YSZ有一些缺点,尤其是在1200℃以上时它有限的高温性能使得在先进的燃气轮机中YSZ被其他材料所取代。 本篇文献是对不同新型涂层材料的综述,尤其是参杂氧化锆、烧绿石、钙钛矿和氯酸盐等材料。文献的结果还有由我们的研究调查得出的结果都将同我们的要求相比较。最终,我们将讨论双层结构这个概念。它是一种克服新型热障涂层材料冲击韧性的方法 关键词:热障涂层、氧化锆、烧绿石、钙钛矿、氯酸盐、热导率 一、简介 TBC系统是典型的双层式结构,它包括金属粘结层和陶瓷顶层。粘结层是保护基层氧化和腐蚀的并有改善陶瓷层和基层之间结合强度的作用。陶瓷顶层相比金属机体而言拥有很低的热传导率,通过内冷发陶瓷层可以实现一个很大的温差度(几百K)。因此,它既可以降低金属基体的温度以提高部件的使用寿命又可以提高涡轮发动机的点火温度来提高它的工作效率。 自19世纪50年代第一个军用发动机搪瓷涂层的制造起热障涂层开始了工业化发展。在19世纪60年代,第一个带有NiAl粘结层的火焰喷涂陶瓷涂层应用于商业航空发动机上。接下来的几十年中,热障涂层材料和喷涂技术持续的发展。19世纪80年代热障涂层迅猛发展。在这十年中,氧化钇稳定的氧化锆(YSZ)被认为是一种特殊的陶瓷顶层材料,因为它作为一个近30年来的标准而被确立。 根据沉积工艺的不同,已经确立了两种不同的方法。一种是电子束物理气相沉积(EB-PVD),另一种是大气等离子喷涂(APS)。电子束物理气相沉积法制备的涂层拥有柱状显微结构并被广泛应用于航空发动机的高热机械载荷叶片中。同电子束物理气相沉积法相比,大气等离子喷涂以它的操作粗放度及经济可行性为傲,因此现在更多的TBC 采用这种方法。典型静态部件,像燃烧器罐和叶片平台都是用APS进行喷涂。在固定的燃气轮机中,其叶片也常使用热喷涂的方法进行喷涂。 燃气涡轮机效率的进一步提升有赖于燃烧及冷却技术的进步与更高的涡轮机入口温度相结合。这意味着由于在高温下烧结和相转变,标准材料YSZ必然会接近它的极限。 由EB-PVD和APS方法加工的YSZ包含亚稳态的T`相。长时间处于高温下,它能够

电磁屏蔽材料与吸波材料结构与性能的比较

电磁屏蔽材料与吸波材料结构与性能的比较 装置避雷针是避免雷击的有效方法。在房屋最高处竖一金属棒,棒下端连一条足够粗的铜线,铜线下端连一块金属板埋入地下深处潮湿处。金属棒的上端须是一个尖头或分叉为几个尖头。有了这样的装置,当空中有带电的云时。避雷针的尖端因静电感应就集中了异种电荷,发生尖端放电,与云内的电相中和,避免发生激烈的雷电、这就是避雷针能避雷的一方面。但这种作用颇慢,如果云中积电很快,或一块带有大量电荷的云突然飞来,有时来不及按上述方式中和,于是有强烈的放电,加雷电仍会发生。但这时由于避雷针高过周围物体,它的尖端又集中了与云中电异号的电荷,如果雷电是在云和地面物之间发生,放电电流主要通过避雷针流入大地,因此,不会打在房屋或附近人的身上,只会打在避雷针上了。由此可见,避雷针的尖端放电作用会减少地面物与云之间打雷的可能性;到了不可避免时,它自己就负担了雷的打击,房屋与人得到了安全。 2、电磁屏蔽材料与吸波材料结构与性能的比较。 电磁屏蔽材料分电磁屏蔽涂料和电磁屏蔽塑料。电磁屏蔽涂料是由导电填料、树脂黏结剂、溶剂和添加剂组成,根据填料的不同,可分为碳系、银系、铜系和镍系电磁屏蔽涂料等。 电磁屏蔽塑料可分为表层导电型屏蔽塑料和填充型屏蔽塑料。

表层导电型屏蔽塑料是利用贴金属箔、金属熔融喷射和非电解电镀等方法在塑料表面获得很薄的金属层,从而达到屏蔽的目的。它具有导电性好,屏蔽效果佳等特点,但是其金属薄复合层或镀层在使用和加工过程中容易剥离,性能较差,因此使用较少。填充型复合屏蔽塑料是由导电填料和合成树脂通过混炼造粒,并采用注射成型,挤压成型或压塑成型等方法制得。两者相比,后者具有一次成型的特点,从而可降低成本,提高产品的可靠性,使用较多。一般来说,屏蔽塑料的性能取决于导电填料的导电性及它们之间的相互搭接程度。 吸波材料吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。尽管如此,材料的吸波性能还是可以用宏观的电磁理论进行分析,工程上也常常使用材料宏观的介电常数和磁导率来评价吸波材料的反射和传输特性。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 吸波材料有多种分类方法,除了按组成分类外,主要还有下列三种:(1)按材料耗损机理可分为电阻型,电介质型和磁介质型。碳化硅、石墨等属于电阻型,电磁能主要衰减在电阻上;钦

相关文档
最新文档