微波暗室吸波材料的分析和设计

微波暗室吸波材料的分析和设计
微波暗室吸波材料的分析和设计

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一 吸波材料简介 在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。 吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。 目前常用的吸波材料可以对付的电磁干扰频段范围从0.72GHz到40GHz。当然应用在更高和更低频段上的吸波材料也是有的。吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。 吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是目前吸波材料研究的一大热点。由于篇幅所限,本文对吸波材料的损耗机制仅做了最为简约的叙述,对其详述及其结构设计及结构对吸波效能的影响等方面将在以后的文章中做出解释。 总之,高速发展的新科技正引领着世界范围内的各行各类电气、电子设备向高频化、小型化方向发展,高频EMI问题必将越发突显,吸波材料必然有越来越广阔的应用空间。

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

用于EMIRF吸波材料性能比较

用于EMI-RF吸波材料性能比较 用于EMI/RF吸波材料性能比较 中心议题:吸波材料测试装置的构造吸波材料测试方法 解决方案:环天线放置在相互垂直的位置相隔距离为环天线直径的二分之一利用表面电流减少装置测试 随着工程师们需要遵循的辐射电磁干扰(EMI)规范的不断增多,市场上开始出现各种类型的EMI吸波材料。一般而言,市场上所提供的这些吸波材料的厚度很薄并具有很好的外形柔韧性,再加上其背面带有粘合剂的设计使得我们能够很容易地将这些吸波材料应用到一些不符合电磁干扰和射频干扰(EMI/RFI)相关规范的产品表面。因此,选择合适的吸波材料就成为符合EMI/RFI相关规范、维护系统性能完好的一个关键因素。在10MHz到3000MHz的频率范围内,大部分吸波材料都会采用加入有损耗的磁性材料(例如,羰基铁或者铁氧体粉末等)的方式来削弱其表面电流。这些表面电流源于有害EMI和导体的相互作用, 而且它们的出现还会导致电磁场的二次辐射,因此为了保证产品符合相关规范,通常都会设法降低该表面电流。除此之外,这些表面电流还可能会对其它电路造成干扰,妨碍系统的正常运行。比较不同生产厂家提供的吸波材料的性能需要花 费大量的金钱和时间。考虑到EMI测试试验室每天几千美元的费用,试错试验(trialanderrortesting)的次数必须被限制到最少。因此,通过携带若干种可能会使用到的吸波材料到EMI试验室进行测试以确定效果最好的一种材料的方法已经被证明是一种非常昂贵的解决方法。而本文所介绍的这种简单的表面电流减小测试装置(SCRF)则允许我们对各种吸波材料样品的性能进行快速、简单的比较,从而缩小吸波材料的选择范围,确定某频率范围内具体EMI问题所需的性能最好的一种或两种吸波材料。SCRF装置主要由两个经过静电屏蔽的磁场环形天线构成,而且通过将它们小心地放置在相互垂直的位置上可以在相关频率范围内获得70dB甚至更高的隔离度。SCRF中的一个环形天线被连接到射频(RF)扫频源,而另一个环形天线则被连接到RF扫频接收机。如果将一块与产品壳体

3米法暗室和10米法暗室介绍

在屏蔽室的天花板和四面墙贴上吸波材料,地面的吸波材料采用活动式铺设,即构成EMC实验室。该EMC 暗室(实验室)为十米法半电波暗室,在30MHz至18GHz的频率范围内,在3米测量距离拥有2米静区,10米测量距离拥有3米或更大静区,该暗室满足FCC、CE和VCCI对十米法暗室的认证、测量规则。 一.用途: 可对通讯设备、电子、电气设备进行EMC(EMC)测量,即电磁干扰(电磁干扰)和电磁敏感度(EMS)测量。适用频率30MHz-18GHz可延至40GHz。 二.主要规格及性能 1.屏蔽效能,满足EN 50147-1、GB12190-90。 技术参数如下: 频率屏蔽效能 14 kHz >60 dB 磁场 100 kHz > 80 dB 磁场 100 kHz > 100 dB 电场 1 MHz >100 dB 磁场 1 MHz >100 dB 电场 100 MHz > 100 dB 电场 1 GHz >100 dB 平面波10 GHz >100 dB 微波18 GHz >100 dB 微波100 MHz > 100 dB 电场 1 GHz >100 dB &nb 2.按照ANSI C6 3.4-2003的步骤和规定在直径3米的圆柱体静区内所有位置从30MHz至1GHz进行归

一化场衰减测量,按照10米法测量的归一化衰减(NSA)值和理论值偏差优于±4dB;1GHz至18GHz频率范围内使用传输损耗(TL)测量方法进行测量,仅在5GHz、10GHz和18GHz三点进行测量,归一化衰减(NSA)值和理论值偏差优于±4dB。同时满足CISPR16、EN50147-2、CISPR22-1997、GB9254-1998、VCCI V-3/99.05标准对场衰减的规则。 3.按照IEC61000-4-3步骤和规定,符合EN61000-4-3:1996和GB/T 17626.3-1998的规则,在30MHz至1GHz进行场均匀度测量,标准场为转台之上0.8米-2.3米范围内1.5米x1.5米的垂直平面,按照3米测量距离规则16个测量点的75%即12点场均匀性在0-6dB之间;1GHz至18GHz的测量仅在5GHz、10 GHz和18GHz三点以低于3v/m进行测量。 4. 按照CISPR22 Claas B(GB9254-1998)的规定,在30MHz-1GHz的频率范围内,无EUT的情况下,测得的环境电平值,至少低于规定的B级限值10dB。 三.在EMC实验室内,配置的主要附属设备 暗室的基本设施和设备 1. 屏蔽壳体一间:内部尺寸为20m长×12m宽×8m高,采用美国拼装式工艺建造,保证屏蔽效能的同时,也能保证屏蔽室的坚固耐用,并可以整体搬迁或扩建。 2. 屏蔽门:全开尺寸2.5m*2.5m,手动、电动或气动开启。 3. 波导通风口:8个,尺寸为300mm*300mm 4. 电气系统:300瓦卤素灯8盏,220V/单相/插座,380V/3相/插座 ? 5. 电源滤波器:在EUT、照明、天线塔、转台CCTV系统的电源滤波器,可增加电话滤波器、网络滤波器等。 220VAC/50Hz/单相/2*30A 一台

吸波材料

吸波材料 角锥型吸波材料是常见的吸波材料,其几何参数的设计与填充配方的选择是广泛研究的课题。由于吸波材料制作周期较长,数值仿真能有效减少产品的设计周期。 第一步 建立工程文档 选择求解器 运行EastFDTD ,选择菜单“文件”→“新建”→“Wizard ”或单击标准工具栏上的“新建文档”工具,弹出工程创建向导窗口,本例中采用FDTD 算法计算吸波材料的吸收特性,选择“FDTD ”,并为工程文档指定一个合适的名称,具体设置如图 1所示。点击“Next ”进入下一步设置。 图 1选择求解器 —— By EastFDTD 4.0

第二步选择模式 选择“自动计算透反率”计算模式,计算模式选择如图2所示。点击“Next”进入下一步设置。 图2 选择计算模式 注意:本模式默认的单位、网格和边界设置。 第三步设置模式参数 本模式参数设置全部勾选:

图3 设置模式参数 第四步设置频率 设置计算频率范围:100e6-1e9Hz,频率间隔为25e6Hz,如图4所示。下一步给出基本参数设置报告。

图 4设置频率 第五步新建材料 根据同样配方得到的块状吸波材料或同轴件,可以通过测试其S参数反推材料参数,或者矢量网络分析仪直接得到材料的介电常数等参量。这些参量一般是随频率剧烈变化的。在理论计算时,就必须将这些参数拟合为物理上合理的色散模型。 5.1 新建材料库 右击“模型管理器”中的材料,选择“从材料库中选择”。 图5 进入材料库

图6 材料库 用户可以根据需要新建材料库,将自己经常使用的材料归档。点击“从材料 库中选择”界面中的“新材料库”,新建材料库,命名为A,如图7所示。

各种吸波材料的比较

各种吸波材料的比较 Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。在2.4~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为-60dB。然而可使用的频率围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。显然在30MHz的频率上,厚度不可能是几个波长。因此暗室的频率围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率围。一般说来渗碳加载对电-厚和电-薄材料的要不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸

微波暗室运动平台系统设计.

硕士学位论文 微波暗室运动平台系统设计 DESIGN OF THE MOVING PLATFORM SYSTEM IN MICROWAVE ANECHOIC CHAMBER 贡志锋 哈尔滨工业大学 2011年6月 国内图书分类号:TP271.4 学校代码:10213 国际图书分类号:681.5 密级:公开工学硕士学位论文 微波暗室运动平台系统设计 硕士研究生:贡志锋 导师:曹健副教授 申请学位:工学硕士 学科:机械电子工程 所在单位:机电工程学院 答辩日期:2011年6月 授予学位单位:哈尔滨工业大学 Classified Index: TP271.4 U.D.C: 681.5

Dissertation for the Master Degree in Engineering DESIGN OF THE MOVING PLATFORM SYSTEM IN MICROWAVE ANECHOIC CHAMBER Candidate:Gong Zhifeng Supervisor:Associate Prof. Cao Jian Academic Degree Applied for:Master of Engineering Speciality:Mechatronics Engineering Affiliation:School of Mechatronics Engineering Date of Defence:June, 2011 Degree-Conferring-Institution:Harbin Institute of Technology 摘要 摘要 随着信息战争的不断发展,电子战成为当今战争的重要手段。微波暗室运动平台主要用来模拟空间电子战环境下多种目标的运动轨迹。其具有保密、测试简单、可靠方便、节省成本等诸多优点。本文主要介绍了微波暗室运动平台的机械结构、控制系统、软件及通讯系统的设计,并对系统指标进行了实验检验。 在机械结构方面,设计了静音导轨和橡胶轮的搭配方案有效减小了单车的震动,实现了单车的平稳运行。用同步带传动方式取代依靠车轮在导轨上摩擦运行的传统方式,避免了打滑现象。采用伺服电机驱动,光电编码器实现位置检测的闭环控制方式,取代以往的步进电机驱动,开环控制的方式,避免了远距离上步进电机丢步带来的位置误差。 控制系统采用典型上下位机分布式控制方式。IPC作为上位机完成整个系统的设备管理,负责系统监控和控制。基于DSP的单车控制器接收上位机指令完成指定功能,并将单车状态实时反馈给上位机。充分发挥了IPC的多任务处理能力和DSP 可靠高速控制特性。采用多级安全机制,防止单车运动轨迹超出轨道及两车相撞。

天线微波暗室设计方案样本

第一部分: 天线微波暗室设计方案书 一、范围 1、主题内容 微波暗室性能和屏蔽性能总体方案设计书重点是根据微波暗室技术要求, 论证了微波暗室吸波材料的选择、微波暗室性能、暗室屏蔽材料的选用, 暗室屏蔽的关键件: 门、通风窗、电源滤波器、屏蔽接地等主要问题, 并确定最佳方案, 以保证微波暗室屏蔽性能、暗室性能达到贵所提出的性能指标。 2、适用范围 本设计书适用于微波暗室建设工程, 待中标后作为设计依据。 二、引用文件 1. GJBz20219-94中华人民共和国国家军用使用标准 《军用电磁屏蔽室通用技术要求和检验方法》 2.微波暗室技术要求 三、微波暗室设计 微波暗室, 就是从几何上比较对称, 建筑空间满足一定要求的房屋中安装吸波材料, 使室的各内壁、天棚、地板对于所接收到的电磁波反射甚微, 从而较好的模拟自由空间环境, 进行室内天线测试的场所。 1、技术要求 1.1屏蔽效能( 包括所有屏蔽间) 1GHz~20GHz ≥100dB 20GHz~40GHz ≥80dB 1.2暗室性能( 屏蔽暗室) 工作频率范围: 400MHz~40GHz 反射电平: -38dB~-50d B

静区的范围: ?1.2m×1.2m ( 中心位于暗室长轴中轴线,转台上方) 场不均匀性: 横向≤±0.3 dB 纵向≤±2 dB 交叉极化率: -25 dB 2、设计微波暗室的基本思路 随着天线技术的发展, 天线测试技术也随着发展。就天线方向图测试方法来说, 以往人们熟知的方法是室外场地远场测试。但由于微波吸收材料技术和计算机的飞跃发展, 以及其它学科, 如全息照相技术的成熟, 方向图测试技术从室外场地测试发展到相互竞争又相互补充的多种测试方法。由以往的室外测试逐渐转为室内测试为主, 室外测试为辅。近年来大量微波暗室建成使用, 就是鲜明的标志。国内已建成微波暗室80多个, 有些正在筹建中, 而国外建成的微波暗室超过400多个。 3、微波暗室尺寸确定准则 微波暗室的几何尺寸和微波暗室的性能与里面的实验产品类型有关。应用最广泛的微波暗室为矩形室, 因矩形室的结构外形比较简单、通用性强。一般资料中, 设计矩形微波暗室的长度和宽度是按下列原则进行设计的。 3.1 微波暗室长度的确定 一般确定任一暗室的长度的基本因素是被检测的天线( 目标) 的尺寸和它所测的最高频率。一般确定任一暗室的长度的基本因素是被检测的天线( 目标) 的尺寸和它所测的最高频率。这两个因素确定了平面波照射的远场条件。待测天线和波源天线之间的距离由下式给出: R≥ 2 2D

电波暗室性能指标的测试方法

摘要:介绍电波暗室的类型、各种吸波材料的特点,并通过许多实例,阐述电波暗室的材料选型以及电波暗室建造和管理方面的经验。 关键词:电波暗室吸波材料电磁兼容 1 电波暗室的形状和尺寸 电波暗室的主要形状为矩形和锥形。 电磁兼容测试暗室均采用矩形室。其尺寸如下:10m法半电波暗室,室尺寸约为21m×15m×11m。3m法半电波暗室多采用铁氧体和泡沫角锥复合,室尺寸约为9m×6m×5.5m;如果尺寸达到1lm×8m×7m,也可采用1.6m左右大型角锥吸波材料,可节省费用。预测试半暗室采用铁氧体和泡沫角锥复合,室尺寸约为7m×4m×3m。室尺寸还可根据测试件的尺寸适当扩大。 在进行天线测试时,发射天线和试验天线(目标)之间的距离要符合远场条件: L是两天线之间的距离; D是试验天线(目标)口径; λ是波长。 矩形电波暗室的长度比L大一些。宽度应保证电波人射角不超过60。。人射角大干60。,性能明显下降。一般从电性能和经济观点考虑,室宽度和长度之比应在1/2~1/3之间。 锥形电波暗室的低频性能好,又比较经济,但也有局限性,对于多源、动源和双稳态雷达横截面积测试等是不适用的。也不能提供绝对场强的测试。 为了形成远场,还有半开式暗室。接收区域是一个暗室,发射在室外较远位置,这种暗室不能实现屏蔽。紧缩场则用抛物面反射器将电波变成平面波,增加了一些费用但节省了空间。 2 吸波材料的种类 电波暗室用吸波材料较早和较多采用的是软质聚氯酯泡沫浸渍炭黑并进行阻燃处理制成的,它具有良好的电性能,在较宽的频带具有很低的反射、散射和较大的透射衰减,典型的反射率如图1所示

国内外有很多空心或半空心角锥,是采用塑料板、泡沫塑料板、纸板、无纺布等制成,再涂以炭黑、石墨制成的导电漆或包复薄金属膜,表面涂阻燃漆或包阻燃膜满足阻燃要求。锥高2m米左右的空心角锥可克服同高度实心角锥的重量重、价格贵、尖部易下垂等缺点,电性能可满足电磁兼容的要求,但比泡沫实心角锥略差。大型角锥SAH型虽为半空心,但以泡沫塑料为主体。与同高度的实心泡沫角锥相近,可用于电磁兼容和天线测试。

电磁屏蔽材料与吸波材料结构与性能的比较

电磁屏蔽材料与吸波材料结构与性能的比较 装置避雷针是避免雷击的有效方法。在房屋最高处竖一金属棒,棒下端连一条足够粗的铜线,铜线下端连一块金属板埋入地下深处潮湿处。金属棒的上端须是一个尖头或分叉为几个尖头。有了这样的装置,当空中有带电的云时。避雷针的尖端因静电感应就集中了异种电荷,发生尖端放电,与云内的电相中和,避免发生激烈的雷电、这就是避雷针能避雷的一方面。但这种作用颇慢,如果云中积电很快,或一块带有大量电荷的云突然飞来,有时来不及按上述方式中和,于是有强烈的放电,加雷电仍会发生。但这时由于避雷针高过周围物体,它的尖端又集中了与云中电异号的电荷,如果雷电是在云和地面物之间发生,放电电流主要通过避雷针流入大地,因此,不会打在房屋或附近人的身上,只会打在避雷针上了。由此可见,避雷针的尖端放电作用会减少地面物与云之间打雷的可能性;到了不可避免时,它自己就负担了雷的打击,房屋与人得到了安全。 2、电磁屏蔽材料与吸波材料结构与性能的比较。 电磁屏蔽材料分电磁屏蔽涂料和电磁屏蔽塑料。电磁屏蔽涂料是由导电填料、树脂黏结剂、溶剂和添加剂组成,根据填料的不同,可分为碳系、银系、铜系和镍系电磁屏蔽涂料等。 电磁屏蔽塑料可分为表层导电型屏蔽塑料和填充型屏蔽塑料。

表层导电型屏蔽塑料是利用贴金属箔、金属熔融喷射和非电解电镀等方法在塑料表面获得很薄的金属层,从而达到屏蔽的目的。它具有导电性好,屏蔽效果佳等特点,但是其金属薄复合层或镀层在使用和加工过程中容易剥离,性能较差,因此使用较少。填充型复合屏蔽塑料是由导电填料和合成树脂通过混炼造粒,并采用注射成型,挤压成型或压塑成型等方法制得。两者相比,后者具有一次成型的特点,从而可降低成本,提高产品的可靠性,使用较多。一般来说,屏蔽塑料的性能取决于导电填料的导电性及它们之间的相互搭接程度。 吸波材料吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。尽管如此,材料的吸波性能还是可以用宏观的电磁理论进行分析,工程上也常常使用材料宏观的介电常数和磁导率来评价吸波材料的反射和传输特性。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 吸波材料有多种分类方法,除了按组成分类外,主要还有下列三种:(1)按材料耗损机理可分为电阻型,电介质型和磁介质型。碳化硅、石墨等属于电阻型,电磁能主要衰减在电阻上;钦

喇叭天线的设计方案

微波技术与天线课程设计—— 角锥喇叭天线 姓名:吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (11) 6.方向图 (11)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定张角张开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)内虚顶点到口径中点的距离为R E,H 面(xz 面)内虚顶点到口径中点的距离为R H。 1.口径场 角锥喇叭内的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭内的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中

的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x 和 y 两个方向均为平方律变化。 按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H - ==+-) 2(022 )cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ] )cos 1([cos 2] )cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

吸波材料现状和应用__整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

关于吸波材料的市场分析报告

关于吸波材料的市场分析报告 一、引言 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 在日益重要的隐身和电磁兼容(EMC)技术中,电磁波吸收材料的作用和地位十分突出,已成为现代军事中电子对抗的法宝和“秘密武器”,其工程应用主要在以下几个方面:隐身技术、改善整机性能、安全保护、微波暗室。此外,在手机外壳,微波行业也是应用非常广泛。 二、情况介绍 随着电子技术的飞速发展,电子产品正迅速向节能化、智能化、信息化、多系统、多功能及娱乐性等多元化方向发展。这些拥有各种个性化娱乐功能的电子产品的普及,在很大程度上丰富了人们的物质生活需要;但与此同时,也不可避免地带来了一些问题,尤其是电磁兼容(EMC)问题。电磁兼容问题的存在,往往使电子、电气设备或系统不能正常工作,性能降低,甚至受到损坏。为解决这些问题,全球各地区基本都设置了与电磁兼容相关的市场准入认证,用以保护本地区的电磁环境,如:北美的FCC、NEBC认证,欧盟的CE认证,日本的VCCEI认证,澳洲的C-TICK认证,台湾地区的BSMI认证,中国的3C认证等。 此外,由于消费类电子产品集成的功能越来越多,以手机为例,目前市场上一部智能手机,往往同时集成有GSM移动通信、蓝牙、Wi-Fi、摄像头等,另外还具有MP3、MP4等多媒体功能,,这使得手机的工作频率越来越高,系统内部各个子模块之间的互相干扰也变得很突出。 另外,目前国内外吸波涂料民用频段的应用还是空白点,(军用频段吸波涂料的应用美国、法国有先例)利用吸波原理的民用系列产品我们是首创,胶板类的吸波材料可以加工卷材是国内首创,吸波材料、吸波涂料的核心技术是材料的配伍,生产工艺简单,加工设备都是通用设备,一次性投资少。 吸波材料在手机电磁兼容设计中的应用 手机在工作时,会不断往外发射电磁波,最大功率可以达到2w,这对周围环境的影响是很大的。比如,在手机通话的过程中,如果与固定电话距离较近,且固定电话也在通话,那么,我们经常会在固定电话的手柄中听到“滋滋滋”的声音,

吸波材料与微波暗室问题的数学建模

2011年全国研究生数学建模竞赛B 题 吸波材料与微波暗室问题的数学建模 新型隐身歼击机歼-20最近试飞成功,标志着我国在隐身技术领域取得了重大进展。所谓飞机隐身,是指在飞机有关部位涂覆或粘贴吸波材料,合理设计飞机外形与布局等使敌方探测系统(如无线电雷达,红外雷达,激光雷达等)只接收到大大减弱后的飞机反射信号,从而降低被发现或跟踪的可能。 隐身技术的基础研究包括探索不同频段上吸波的机理,研制高效吸波的特殊材料,将吸波材料设计成合理的形状使之发挥最大效能等,其成果不仅可以应用到飞机舰船坦克等军用装备,也可以应用到其他科技领域。例如,许多以电磁波,光波或声波的传播为信息载体的仪器设备,都需要功能与性能的测试,甚至还要对其工作过程进行尽可能真实的仿真。早期这类测试常选择在无电磁干扰的偏僻空旷山区进行。在近代各种干扰已无法全部避免,所以近三十多年来这样的测试与仿真(例如本题将要研究的导弹制导系统的仿真),放置在被称为“无回波暗室”的实验室中进行。 无回波暗室能够屏蔽外界干扰信号,通过内墙(包 括地面与天顶面)敷设的吸波体,吸收各类反射信号,使室内反射大为减弱,被测设备接收到的“似乎”只 有测试信号源发出的实验所需信号。这样,它为测试 设备提供了一个几乎没有反射信号的“自由空间”。 图 1给出了二维示意。 由物理学知道,除了真空,没有一种介质对于各 频段的电磁辐射波(甚至包括声波)的传播是绝对透 明的,波从一种介质辐射到另一种介质时,都将发生 不同程度的反射、折射乃至散射,一部分波的能量被 图1 无回波暗室工作示意图 吸收转化为介质的内能。定义反射率为反射波功率r P 与入射波功率i P 之比:/r i P P ρ=,显然1ρ<。 吸波材料一般制成平板形状和特殊形状两大类基本形状。平板形状吸波体的主要性能指标是电磁波从空间向材料表面垂直入射(入射角0i θ=)时的反射率ρ,其值越小,吸波性能越高。当入射角0i θ≠时称为斜入射,斜入射时将出现反射、折射情况,此时反射率的理论计算较复杂,与入射角、两种介质的电参数和波的极化方向等多种因素有关,本题将反射率简化为满足余弦法则,即()cos ραρα=,其中α为入射角大小,其中ρ为垂直入射反射率。 为了提高无回波暗室的吸波性能,一般使用锥体(正四棱锥或正圆锥体等)或尖劈形状的吸波体,大量锥体或尖劈有规律地排列组成的整体粘贴在墙上构成吸波体。采用这些形状的主要理由是它们能使得辐射波在尖形的几何空缺间形成多次反射和透射-反射,降低反射出去的能量,实现高效率吸波。 图2示意了一条想象中的辐射线(实际上是在一个微小立体角内辐射)射入尖劈吸波体后,

暗室吸波材料反射率与设计考虑因素

暗室吸波材料反射率与设计考虑因素反射率性能是评价吸波材料性能的主要参数计算如下: r r i i E R=20lg10lg E P P (dB)(2-1) 式中i E和 i P分别为入射平面波的场强和功率; r E和 r P吸波材料平板反射波的场强和功率。 因此。r E/ i E和 r P/ i P分别表示电压反射系数和功率反射系数。 同时,频带宽度的定义指的是在某一频率下发射率低于某一给定最小值的频率范围。 吸波材料性能与三种因素有关: (1)物理参数介电常数ε=ε′+jε″和磁导率μ=μ′+jμ″; (2)角锥的高度与夹角大小(锥的数量); (3)内插芯结构。(难燃型高功率及大型空心角锥) 一般讲ε′小(≈1)ε″大和μ′小(≈1)μ″大为好,因为所有的介质ε′和μ′都大于1,而空气介电常数ε=ε′+jε″=1,磁导率μ=μ′+jμ″=1。实际中ε″和μ″大或ε″/ε′或μ″/μ′大的介电材料,它们的ε′和μ′都较大,碳黑是一种较好也是使用最多的材料,它的介电常数8~9左右。 ε′和μ′大有什么不好呢? 因为材料是放在空气中,ε′和μ′大的材料阻抗与空气阻抗不相匹配,产生反射,反射大,电磁波进不到材料内或进入很少,那么材料吸收性能再好也无法吸收。 为解决这个问题,把材料做成锥形以减少反射,像岸边的波浪冲击过来的时候若用一块平板挡住,就很快把波全部反射回去,若用一斜坡,波浪则慢慢向

坡上爬,反射很小。角锥体夹角越小表明角锥的坡度平坦,反射小,同时可增加电磁波在两角锥间反射次数,增加吸收率,有利于性能的改善。内插芯的作用从宏观来讲主要有二方面的作用,一是展宽工作频段,特别是高频段,二是对不同极化波改进,使它们在不同极化电磁波照射下性能接近或一致,改善吸波材料性能。 不同吸波材料其性能与上述因素的关系不同。聚氨酯泡沫吸波材料为固体实心结构,设计时只需考虑(1)和(2)两项因素,高功率难燃型吸波材料及大型空心角锥吸波材料三项因素都均需考虑。

弱电系统设计方案

弱电系统方案 一.监控系统 1、系统应用概述 视频监控系统是安全防范技术体系中的一个重要组成部分,是一种先进的、防范能力极强的综合系统,它可以通过嵌入式硬盘录像机及辅助设备(云台、镜头等)直接观看被监视场所的情况,一目了然;同时它可以把监视场所的图像和声音全部或部分记录下来,这样就为日后对某些事件的处理提供了方便条件及重要依据。 2、项目需求 射频仿真实验室监控系统是将各摄像机的图像接入本地录像设备(即网络硬盘录像机),通过网络硬盘录像机将视频图像传送到显示设备,同时将视频图像存储在硬盘中。通过网络硬盘录像机,可控制各摄像机,查看射频仿真实验室内部情况,并可随时查看已储存的录像。 系统主要实现功能如下: 1) 图像摄取功能 图象质量好、画面质量清晰逼真 对重要部位进行实时远程监控录像 可进行多画面分割和单画面显示。 可对整个场所进行全方位视频监控。 2) 录像功能 单路和多路图像信号同步录入,本地能保持将近15天的录像时间。 录像方式可手动录像(人工操作录像);也可以全天候录像(一天24小时不间断的录像)。 录像的存储介质是硬盘,所有资料都存储在硬盘中,当硬盘存满时,系统会自动覆盖之前的录像,以最新的代替最老的。 3) 显示功能 本地通过网络硬盘录像机将图像送至显示器,通过操作网络硬盘录像机,显示器可多画面分割。可显示单独摄像机画面,也可显示多画面图像。 4) 图像检索功能 对录像能方便检索回放;可指定某个时间段任意回放。 录像存储在硬盘录像机的硬盘里,用户可以在任意时间调查录像,可以选择

任意一个通道、任意一个时间段的录像,再进行回放查看,如果录像存在疑问,还可以通过USB设备将录像直接拷贝下来。 3、系统配置 1)前端配置 根据射频仿真实验室实际使用需求,微波暗室内共设置5套摄像机。 暗室内部配置3套网络高清高速智能球机,位置:转台上方1套、转台侧上方1套、球面屏一侧上方顶角处1套,监控暗示内部情况。第三层维护平台配置1套网络高清半球摄像机,监控平台上设备情况。射频源屏蔽室配置1套网络高清半球摄像机,监控射频源屏蔽室情况。 摄像机均采用网络高清摄像机,不低于200w像素。 2)图像传输 图像传输系统包括视频信号和控制信号的传输。本系统均采用网络高清摄像机,视频及控制信号均可通过网线传送。在通过屏蔽室屏蔽层时配置网络光纤收发器,采用光纤传输过壁。 3)终端显示 显示与记录设备安装在二楼仿真实验室总控室内,主要有监视器、硬盘录像机和一些视频处理设备。操作人员在控制间内可通过操作硬盘录像机实现控制摄像机转动,切换画面,查看录像等功能。 硬盘录像机配置3T容量硬盘,能存储1个月时间的监控录像。监控录像存储时间与摄像机及硬盘配置有关,1080P即200万网络摄像机的码流一般为4.5Mbit/s 经过计算,每个200万网络摄像机1天约占用48G硬盘空间。按平均每天录像8小时计,暗室监控系统保持1月录像时间需配备3T硬盘。 计算方法: (1)计算单个通道每小时所需的存储容量q,单位Mbyte。 q=d÷8×3600÷1024 其中d是码率(即录像设置中的“位率/位率上限”),单位Kbit/s (2)确定录像时间要求后单个通道所需的存储容量m,单位Mbyte m=q×h×D 其中h是每天录像时间(小时) D是需要保存录像的天数 4)监控点分布及选型:

相关文档
最新文档