一种经验模式预报东亚夏季风

一种经验模式预报东亚夏季风
一种经验模式预报东亚夏季风

An empirical seasonal prediction model of the east Asian

summer monsoon using ENSO and NAO

Zhiwei Wu,1,2Bin Wang,2Jianping Li,1and Fei-Fei Jin2

Received8January2009;revised2July2009;accepted13July2009;published29September2009.

[1]How to predict the year-to-year variation of the east Asian summer monsoon(EASM)

is one of the most challenging and important tasks in climate prediction.It has been

recognized that the EASM variations are intimately but not exclusively linked to the

development and decay of El Nin?o or La Nin?a.Here we present observed evidence and

numerical experiment results to show that anomalous North Atlantic Oscillation(NAO)in

spring(April–May)can induce a tripole sea surface temperature pattern in the North

Atlantic that persists into ensuing summer and excite downstream development of

subpolar teleconnections across the northern Eurasia,which raises(or lowers)the pressure

over the Ural Mountain and the Okhotsk Sea.The latter strengthens(or weakens)the east

Asian subtropical front(Meiyu-Baiu-Changma),leading to a strong(or weak)EASM.

An empirical model is established to predict the EASM strength by combination of the

El Nin?o–Southern Oscillation(ENSO)and spring NAO.Hindcast is performed for the

1979–2006period,which shows a hindcast prediction skill that is comparable to the

14state-of-the-art multimodel ensemble hindcast.Since all these predictors can be readily

monitored in real time,this empirical model provides a real time forecast tool.

Citation:Wu,Z.,B.Wang,J.Li,and F.-F.Jin(2009),An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO,J.Geophys.Res.,114,D18120,doi:10.1029/2009JD011733.

1.Introduction

[2]The poor simulation of the Indian monsoon was noted by many previous studies[e.g.,Sperber and Palmer,1996; Gadgil and Sajani,1998;Wang et al.,2004],yet the east Asian summer monsoon(EASM)has only recently been revealed as a major challenge in numerical simulation[Kang et al.,2002;Wang et al.,2004]and seasonal prediction [e.g.,Chang,2004;Wang et al.,2005;Wu and Li,2008]. The multimodel ensemble(MME)is generally better than any single model prediction[Doblas-Reyes et al.,2000; Palmer et al.,2000;Krishnamurti et al.,1999],providing an effective way to aggregate and synthesize multimodel forecasts[Wang et al.,2008a].However,examination of the ensemble of five state-of-the-art atmospheric general circu-lation models’(AGCMs)20-year(1979–1998)hindcast experiment indicates that the ensemble skill of these models remains very low in forecasting the EASM[Wang et al., 2005].Therefore,determination of the predictability of the EASM and identification of the sources of predictability are of central importance to seasonal prediction of the EASM and associated uncertainties[Wang et al.,2008b].

[3]It has been generally recognized that the EASM experiences strong interannual variations associated with the El Nin?o–Southern Oscillation(ENSO)[e.g.,Fu and Teng,1988;Weng et al.,1999,Wang et al.,2000,2008c; Chang et al.,2000a,2000b;Yang and Lau,2006].In the last30years,the dominant empirical orthogonal function mode indicates that an enhanced east Asian subtropical front and abundant Meiyu occur during the summer when El Nin?o decays[Wang et al.,2008c].Why is there a ‘‘delayed’’response of the EASM to ENSO in the ensuing summer when sea surface temperature(SST)anomalies disappear in the tropical eastern central Pacific?Wang et al.[2000]pointed out that the interaction between the off-equatorial moist atmospheric Rossby waves and the under-lying SST anomalies in the western Pacific warm pool region can‘‘prolong’’the impacts of ENSO from its mature phase to decaying phase and causes a‘‘delayed’’response of the EASM to ENSO.Nevertheless,since the EASM has complex spatial and temporal structures that encompass tropics,subtropics,and midlatitudes,its variability is influ-enced not only by the variations originated from the tropics (i.e.,ENSO)[e.g.,Chen and Chang,1980;Huang and Lu, 1989;Wu et al.,2000;Ding,2004;Ninomiya,2004;Wu et al.,2006],but also by those from the midlatitudes to high latitudes[e.g.,Enomoto et al.,2003;Wu et al.,2006;He et al.,2006;Ding and Wang,2007].

[4]North Atlantic Oscillation(NAO)is a large-scale seesaw in atmospheric mass between the subtropical high and the polar low[e.g.,Walker and Bliss,1932;Bjerknes, 1964;van Loon and Rogers,1978;Wallace and Gutzler, 1981;Barnston and Livezey,1987;Li and Wang,2003]. Trenberth et al.[2005]suggested that the Northern Hemi-sphere annual mode and associated NAO is the third most

JOURNAL OF GEOPHYSICAL RESEARCH,VOL.114,D18120,doi:10.1029/2009JD011733,2009 Click

Here

for

Full

Article

1State Key Laboratory of Numerical Modeling for Atmospheric

Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric

Physics,Chinese Academy of Sciences,Beijing,China.

2Department of Meteorology and IPRC,University of Hawai’i at

M a noa,Honolulu,Hawaii,USA.

Copyright2009by the American Geophysical Union.

0148-0227/09/2009JD011733$09.00

important pattern of global atmospheric mass interannual variability.A few studies have already noticed that NAO may affect Asian climate.Chang et al.[2001]suggested that the weakening Indian monsoon rainfall–ENSO rela-tionship since1970s is most likely due to strengthened NAO on the interdecadal time scale.Watanabe[2004] found that NAO signals are relatively confined to the Euro-Atlantic sector in December while it extends toward east Asia and the North Pacific in February on the interannual time scale.

[5]Although NAO signals associated with the North Atlantic storm track tend to be weakened from spring to summer[Lau and Nath,1991;Jin et al.,2006a,2006b],it is still not clear whether spring(April–May)NAO can affect variations of the EASM or not.If so,how does it work and to what extent does it contribute to the seasonal prediction of the EASM?In this paper we attempt to answer these questions.

[6]In section2,we describe the data sets and the numerical model used in this study.The distinctive rainfall and circulation structures of a strong EASM is briefly described in section3as background information.The statistical relationship among spring NAO,North Atlantic SSTs,and the EASM is manifested in section4.Section5 investigates the possible physical mechanism on how spring NAO affects the EASM variations.In section6,an empir-ical model is established to forecast the strength of the EASM based on ENSO and spring NAO,and a hindcast is performed for the1979–2006period.In section7,the main conclusions are summarized,and some outstanding issues are discussed.

2.Data and Model

[7]The main data sets employed in this study include (1)monthly precipitation data from the global land pre-cipitation reconstruction over land(PREC/L)data for the 1979–2006period gridded at1.0°?1.0°resolution[Chen et al.,2002];(2)monthly circulation data,gridded at2.5°?2.5°resolution,taken from the National Centers for Envi-ronmental Prediction–Department of Energy reanalysis [Kanamitsu et al.,2002];and(3)the Nin?o3.4SST index calculated from the improved Extended Reconstructed SST Version2(ERSST V2)[Smith and Reynolds,2004].In this study,summer(June,July,and August(JJA))mean anoma-lies are defined by the deviation of JJA mean from the long-term(1979–2006)mean climatology,and spring refers to April–May.

[8]All the numerical experiments presented in this paper are based on a dry spectral primitive equation model developed by Hoskins and Simmons[1975].The version used here differs from the original in some details[Simmons and Burridge,1981;Roads,1987;Lin and Derome,1996; Marshall and Molteni,1993;Hall,2000].The resolution used here is triangular31,with10equally spaced sigma levels.An important feature of this model is that it uses a time-averaged forcing calculated empirically from observed daily data.By computing the dynamical terms of the model, together with a linear damping,with daily global analyses and averaging in time,the residual term for each time tendency equation is obtained as the forcing.This forcing, thus,includes all processes that are not resolved by the model’s dynamics such as diabatic heating(including latent heat release related to the transient eddies)and the deviation of dissipative processes from linear damping.The model has no orography,so the forcing also mimics the time mean orographic forcing.Because of its simplicity in physics,it is referred to as a‘‘simple general circulation model’’(SGCM).The advantage of this SGCM model is that dynamical mechanisms are more easily isolated,and since the model used is computationally cheap,many experiments can be performed.The limitation of this approach is that the physical parameterizations present in general circulation models are replaced by empirically derived terms,so some potentially important physical feedback mechanisms may be absent from our analysis.As shown by Hall[2000],this model is able to reproduce remarkably realistic stationary planetary waves and the broad climatological characteristics of the transients are in general agreement with observations.

3.Structure of Rainfall and Circulations Associated With a Strong EASM

[9]The EASM is a distinctive component of the Asian climate system[Zhu,1934;Tu and Huang,1944;Chen and Chang,1980;Tao and Chen,1987;Lau et al.,1988;Ding, 1992;Wang et al.,2001;Li and Zeng,2002;Wang and Li, 2004]because of unique tectonic forcing,including the huge thermal contrasts between the world’s largest conti-nent,Eurasia,and the largest ocean basin,the Pacific,and strong dynamic and thermodynamic influence of the world’s highest land feature,the Tibetan Plateau.The EASM has characteristic features in both rainfall distribution and asso-ciated large-scale circulation systems[e.g.,Wang et al., 2008c].

[10]To quantitatively measure the strength of the EASM,

a unified index,namely,the reversed Wang and Fan[1999] index(EASMI),is employed in this study.Wang et al. [2008c]compared25existing EASM indices and found this index has the best performance in capturing the total variance of the precipitation and three-dimensional circula-tion over east Asia,and it is nearly identical to the leading principal component of the EASM.The EASMI is defined by the U850averaged in(22.5–32.5°N,110–140°E)minus U850in(5–15°N,90–130°E)(red boxes in Figure1), where U850denotes the zonal wind at850hPa.

[11]Figure1presents JJA regressed precipitation to the EASMI.The rainfall distribution associated with the EASM shows a meridional tripole pattern with dry anomalies over the northern South China Sea(SCS)and Philippine Sea(the intertropical convergence zone or monsoon trough)and enhanced precipitation along the Yangtze River valley to southern Japan(the prevailing subtropical front)and over the Maritime Continent.Note that the EASMI highlights the significance of the Meiyu-Baiu-Changma rainfall in gauging the strength of the EASM because the Meiyu-Baiu-Changma rainfall,which is produced in the primary rain-bearing system,the east Asian subtropical front,better represents the variability of the EASM circulation system [Wang et al.,2008c].As such,the EASMI reverses the traditional Chinese meaning of a strong EASM which corresponds to a deficient Meiyu.The new definition is consistent with the meaning used in other monsoon regions worldwide where abundant rainfall within the major local

rain-bearing monsoon system is considered to be a strong monsoon [Wang et al.,2008c].

[12]Figure 2displays the anomalous global circulation structure accompanying a strong EASM.At 850hPa,a prominent feature over east Asia is the anomalous subtrop-ical high with enhanced southwesterly winds on its north-west flank prevailing from South China to the middle and lower reaches of the Yangtze River and southern Japan and strengthened easterly anomalies between 5°and 20°N (Figure 2a).A negative geopotential high anomaly belt controls the Meiyu-Baiu-Changma frontal area,which implies a strengthened east Asian subtropical front.A similar feature exists at 500hPa over east Asia (Figure 2b),which is consistent with the suppressed rainfall anomaly over the northern SCS and Philippine Sea and abundant subtropical frontal rainfall (Figure 1).At 200hPa,a large-scale anti-cyclone anomaly covers south China and expands eastward,and a cyclonic anomaly is over the Philippines and extending eastward (Figure 2c).The western Pacific subtropical high basically exhibits a baroclinic structure.

[13]It should be emphasized that in Figure 2,an Atlantic-Eurasian wave train of a barotropic structure controls the midlatitudes to high latitudes north of 50°N,extending from the North Atlantic to the Okhotsk Sea.Associated with this wave train pattern,three positive geopotential height anomaly centers are located at the North Atlantic,the Ural Mountains,and the Okhotsk Sea.Many previous studies already noticed that the blocking highs near the Ural

Mountain and the Okhotsk Sea can have important effects on the EASM [e.g.,National Climate Center of China (NCC ),1998;Yang ,2001;Li and Ding ,2004;Ding and Sikka ,2006].This wave train pattern is different from the circumglobal teleconnection wave train pattern documented by Ding and Wang [2005].The latter is associated with Indian summer monsoon.What triggers the Atlantic-Eurasian wave train?We will address this issue in section 5.[14]On the basis of the above results,the EASM may be influenced not only by climate anomalies originated from the tropics but also by those from the midlatitudes to high latitudes in the Northern Hemisphere.

4.Spring NAO,North Atlantic SSTs,and EASM

[15]To further investigate the relationship between the EASM and spring NAO,we calculated correlation coeffi-cients between the EASMI and the NAO index (NAOI)

in

Figure 1.Anomalous summer (JJA)mean precipitation rate (color shading,see scale at right)that is regressed to the EASM index (EASMI).The precipitation data used are derived from PREC/L [Chen et al.,2002]for the period of 1979–2006.The EASMI is an inverse Wang-Fan index [Wang and Fan ,1999;Wang et al.,2008c]and is defined as the 850hPa area-averaged zonal wind difference between the two red boxes (the north box minus the south

box).

Figure 2.Anomalous summer (JJA)mean geopotential high (H)(contours in units of m),and winds (arrows,see scale at bottom right)that are regressed to the EASMI at (a)850hPa,(b)500hPa,and (c)200hPa,respectively.Only the winds significant at the 95%confidence level are plotted.

the six preceding months.The NAOI used in this study is defined as the difference in the normalized monthly sea level pressure (SLP)zonal-averaged over the North Atlantic sector from 80°W to 30°E between 35°N and 65°N [Li and Wang ,2003].Through a systematic comparison of NAO indices,Li and Wang [2003]recommended that this NAOI provides a much more faithful and optimal representation of the spatial-temporal variability associated with the NAO,and it is also very simple.

[16]We found that the spring (April–May)NAOI has best correlation with the EASM.Figure 3shows time series of the EASMI and the spring NAOI.The correlation coefficient reaches 0.56for the period of 1979–2006,which is statistically significant at 99%confidence level based on a Student’s t test.Note that for comparison,the sign of the spring NAOI in Figure 3was reversed.The correlation

coefficients between the two indices reach 0.7and 0.52on decadal trend and interannual time scales,respectively,all exceeding 95%confidence level.It indicates that the spring NAO is highly related to the EASM not only on a decadal trend time scale but also on an interannual time scale.[17]Figure 4a displays the correlation pattern between the EASMI and spring SLP,which resembles a similar pattern with that between the spring NAOI and spring SLP (Figure 4b).Their pattern correlation coefficient reaches 0.81,beyond 99%confidence level.Significant negative correlation values are centered along the southeastern coast of North America,extending eastward,while significant positive values prevail in the high latitudes around Iceland.It suggests that anomalously weak spring NAO usually yields a precursory signal for a high EASMI summer and vice

versa.

Figure 3.Time series of the EASMI and the spring (April–May)North Atlantic Oscillation (NAO)index (NAOI)[Li and Wang ,2003]for the 1979–2006period.For convenience of comparison,the sign of NAOI is reversed.The correlation coefficient (R)between the EASMI and the spring NAOI is

0.56.

Figure 4.Correlation maps between sea level pressure (SLP)during the preceding spring (April–May)and (a)the JJA EASMI and (b)the spring NAOI.The dark (light)shading areas represent statistically significant positive (negative)correlation at 95%confidence interval.

[18]Since the atmosphere (or NAO),on its own,lacks the mechanisms to generate predictable variations,potential predictability of such fluctuations can only arise from coupled mechanisms that involve low boundary forcing such as SST [Namias ,1959,1965;Charney and Shukla ,1981;Shukla ,1998].Figure 5shows SST correlation patterns with the EASMI and the spring NAOI from the preceding spring through the following summer.A pro-nounced feature is that the EASM and the spring NAO share a similar set of SST correlation patterns in the North Atlantic,i.e.,a tripole pattern,which persists from the preceding spring through the following summer.Watanabe et al.[1999]and Pan [2005]found that such a North Atlantic tripole SST pattern is induced by anomalous NAO in boreal winter.According to the result in Figure 5,the tripole pattern is also likely to emerge in boreal spring if NAO anomalies occur.Furthermore,such a pattern is a relevant precursor for the EASM anomalies,which implies that it might contribute to the EASM variations.To quan-titatively depict the tripole pattern during boreal summer,a simple tripole SST index (SSTI)is defined as the difference between the sum of averaged SST in two positive correla-tion boxes and averaged SST in the negative correlation box (positive domain minus negative domain).The tripole SSTI

exhibits a nearly consistent variability with the EASMI,their correlation coefficient reaching 0.62beyond 99%confidence level.

[19]From the above statistical analysis,the linkage among spring NAO,the North Atlantic SST anomalies,and the EASM may be summarized as the following:spring NAO anomalies are usually associated with a tripole SST anomaly pattern in the North Atlantic which can persist from spring through summer;the summer tripole SST anomalies are significantly correlated to the EASM variations.However,the correlations do not warrant any cause and effect.

5.Physical Mechanisms

[20]How can spring NAO affect the EASM?To figure out this question,first we need to understand why spring NAO can induce a tripole SST pattern in the North Atlantic.Then,it should be asked what is responsible for the persistence of the tripole SST pattern through summer,in light of the crucial ‘‘bridge’’role the tripole pattern plays in the linkage between spring NAO and the EASM.The last and most important issue is how the tripole SST anomaly pattern in the North Atlantic exerts effects on the EASM.[21]It is generally recognized that NAO is of a baro-tropical structure and a most distinguished feature

associated

Figure 5.(a–c)Correlation maps between the JJA EASMI and North Atlantic sea surface temperature (SST)anomalies from the preceding April through the following JJA.The dark (light)shadings are significant positive (negative)correlation areas exceeding 95%confidence level.(d–f)The same as top except for the spring (April–May)NAOI.For comparison,the sign of NAOI is reversed.

with a strong (weak)NAO phase is the poleward (equa-torward)displacement of the North Atlantic storm track [e.g.,Thompson and Wallace ,2000a,2000b;Trenberth et al.,2005].The surface wind speed varies in phase with the high-level jet stream (not shown);weak spring NAO phases are usually associated with high surface wind speed within (30–45°N)and low wind speed within the areas south of 30°N and north of 45°N and vice versa.For high (low)sea surface wind speed often favors cold (warm)SST anomalies by latent heat flux exchange,SST exhibits a similar pattern (positive correlations within poleward and equatorward areas and negative correlations in the middle latitudes)as a response to this tripole surface wind speed pattern.Therefore,the poleward (equatorward)displace-ment of the North Atlantic storm track associated with a strong (weak)NAO phase can account for the North Atlantic tripole SST pattern in spring just the same as it does in winter.

[22]Although previous studies found that positive feed-backs between NAO and tripole SST anomalies can sustain a tripole SST pattern in the North Atlantic during winter [Watanabe et al.,1999;Pan ,2005],it is still not clear how the tripole SST pattern can persist from spring through summer.To investigate the relevant mechanism,we take the summer tripole SSTI as a reference and compute the lead-lag correlation with SLP fields.The results are shown in Figure 6.The absolute values of the correlation coefficients reach a maximum at a à2-month lead (Figure 6b),and then it continuously decreases from a 0-month lead (Figure 6d),to a 2-month lead (Figure 6f).The correlated SLP field from a à3-month through a à1-month lead (Figures 6a–6c)shows a NAO-like pattern [e.g.,Thompson and Wallace ,2000a,2000b;Li and Wang ,2003].It indicates that NAO-like atmospheric anomalies are driving the ocean and producing a tripole-like SST anomaly pattern.This is similar to the results in winter [e.g.,Deser and Timlin ,1997;Pan ,2005].However,the NAO-like pattern weakens from a 0-month through a 2-month lead (Figures 6d–6f),illustrating that the tripole SST anomalies do not have a significant positive feedback to summer NAO-like atmosphere anomalies.This is different from the wintertime situation and has not been noticed before.It also implies that the persistence of the tripole SST pattern in summer may be due to the ocean memory effect.

[23]The assumption that the ocean memory effect plays a major role in the maintenance of the tripole SST pattern from spring to summer can be further confirmed by com-parison of regressed SST patterns with reference to the summer tripole SSTI between the SST persistent component and the total SST.The persistent component of the

SST,

Figure 6.The lead-lag correlation patterns between the SLP and the summer tripole SSTI.The tripole SSTI leads the SLP by (a)à3,(b)à2,(c)à1,(d)0,(e)1,and (f)2months.The dark (light)shaded areas denote significant positive (negative)correlation exceeding 95%confidence level.Note that à3months correspond to March–May,à2months correspond to April–June,and so on.

SST p ,at time t +1can be calculated according to the following formula [Pan ,2005]:

SST p ?SST t eTCov SST t t1eT;SST t eT? =Var SST t eT? ;

e1T

where t +1and t denote summer and spring,respectively.Cov and Var represent the covariance and variance,respec-tively.The regressed SST patterns with reference to the summer tripole SSTI for the SST persistent component and the total SST are shown in Figure 7.The dominant pattern of the SST persistent component (Figure 7a)does not change

much compared to that of the total SST (Figure 7b),with the signal only decreasing slightly by about 10–20%.Thus,the ocean memory effect should be regarded as the crucial factor responsible for the persistence of the tripole SST anomaly pattern from spring to summer.This is different from the wintertime during which the positive feedbacks between the NAO and the underneath tripole SST anomalies are essential for sustaining the tripole SST pattern [e.g.,Pan ,2005].[24]To better understand large-scale circulation features coupled with the North Atlantic tripole SST anomalies during summer,Figure 8presents JJA 200hPa

westerly

Figure 7.JJA mean SST anomaly patterns regressed to the tripole SSTI for (a)the persistence component of SST and (b)the total SST.The dark (light)shaded areas represent significant positive (negative)correlation exceeding 95%confidence

level.

Figure 8.The 200hPa westerly jet (color shadings in units of m/s)and H anomalies (contours in units of m)regressed to the tripole SSTI.The westerly jet is obtained through climatological JJA westerlies plus westerly anomalies regressed to the tripole SSTI.

jet (color shadings)associated with the tripole SST anoma-lies (the calculation method is shown in Figure 8)and geopotential high anomalies (contours)regressed to the tripole SSTI.A noticeable feature is that a systematic wave train pattern,characterized by three positive height anoma-lies over the North Atlantic,the Ural Mountain and the Okhotsk Sea,and two negative ones over western Europe and Mongolia,prevails along the poleward flank of the westerly jet.This feature is highly consistent with the wave train pattern associated the EASM discussed in section 3(Figure 2c).Such a consistence allows us to interpret it as the impact of the anomalous tripole SST steady forcing on the EASM by inducing downstream development of sub-polar teleconnections across the northern Eurasia.

[25]To further elucidate the effects of an anomalous North Atlantic tripole SST forcing on the EASM,we performed numerical experiments with the SGCM described in section 2.To mimic the diabatic heating effects of a high tripole SSTI forcing,we imposed two heating sources and one cooling source;each has an elliptical squared cosine distribution in latitude and longitude with a vertically integrated heating rate of 2.5K/d (Figure 9,right).The vertical heating profile over the extratropical area is distin-guished from that over the tropics as shown in Figure 9(left)[Hall et al.,2001a,2001b;Lin and Derome ,1996].Mimicking a low tripole SSTI forcing is the same as mimicking a high tripole SSTI forcing except for a reversed sign.To do the sensitivity study,we randomly changed the profile within the range between the two red (blue)dashed curves and did 10integrations,with the average profile to be the same as the solid curves with empty circles (Figure 9,left).To make the numerical results more robust,the control run was integrated for 12years and the last 10years’integration was used to derive a reference state.The two sensitivity tests were integrated for 10years each.The

10-year integrations were used to construct a 10-member ensemble (arithmetic)mean to reduce the uncertainties arising from differing initial conditions.

[26]Under the North Atlantic tripole SST anomaly forc-ing,the simulation basically captures the downstream development of subpolar teleconnections across northern Eurasia,with the pattern correlation coefficient between the observation and the simulation reaching 0.25over the region north of 50°N and exceeding 99.9%confidence level (Figure 10).The downstream development of subpolar teleconnections across northern Eurasia raises (or lowers)the pressure over the Ural Mountain and the Okhotsk Sea.When the North Atlantic is in a high (low)tripole SSTI phase,the corresponding wave train across the northern Eurasia favors enhancement (weakening)of the blocking highs over the Ural Mountain and the Okhotsk Sea.As noted in many previous studies [e.g.,NCC ,1998;Yang ,2001;Li and Ding ,2004;Ding and Sikka ,2006],the blocking highs near the Ural Mountain and the Okhotsk Sea usually facilitate a strengthened (weakened)east Asian subtropical front during summer,leading to a strong (weak)EASM.In such cases,the North Atlantic tripole SST anomalies are tied to the EASM variations.Note that the simulation has large discrepancies in the midlatitudes to low latitudes (south of 50°N),which implies that North Atlantic tripole SST anomalies cannot well interpret the circulation variations in the low latitudes and some other factors may dominate the low-latitude circulations.In fact,circulation variations over the east Asian low-latitude domain are more relevant to ENSO,as documented in details by Wang et al.[2008c].It should be pointed out that we tried to add ENSO heating profiles to see whether the whole circulation can be realistically reproduced,but unfortunately this model has difficulty in depicting the prolonged influence of ENSO in the preceding winter (not shown).However,Wang et

al.

Figure 9.(left)Specified diabatic heating profiles (curves)and (right)SST anomaly pattern (color shadings)associated with a high tripole SSTI forcing in the numerical experiment with the SGCM.Note that the sign of a vertical profile is reversed for a negative SST anomaly.Maps for a low tripole SSTI forcing are mirror images of the plot shown here.TSST stands for the tripole SST.

[2000]suggested that the interaction between the off-equatorial moist atmospheric Rossby waves and the under-lying SST anomalies in the western Pacific warm pool region can ‘‘prolong’’the impacts of ENSO from its mature phase to decaying phase and causes a ‘‘delayed’’response of the EASM to ENSO.This mechanism is also further verified by the numerical experiments by Lau and Nath [2006].Therefore,we do not focus too much on how the preceding ENSO can influence the EASM variations.

[27]To summarize,anomalous spring NAO can induce a tripole SST pattern in the North Atlantic which sustains from spring through summer.The summer tripole SST anomalies contribute to the downstream development of subpolar teleconnections across the northern Eurasia,which enhances (weakens)the high pressure over the Ural Moun-tain and the Okhotsk Sea.These favor a strengthened

(weakened)east Asian subtropical front,namely,a strong (weak)EASM.

6.Seasonal Prediction

[28]It has been generally accepted that ENSO is the dominant predictor for the EASM [e.g.,Fu and Teng ,1988;Weng et al.,1999,Wang et al.,2000,2008c;Chang et al.,2000a,2000b;Yang and Lau ,2006].ENSO affects the EASM not only on its decay phases but also on the development phases [Wang et al.,2009].The results in this study manifest that the spring NAO provides an additional physically based predictor for the EASM besides ENSO.To verify how well the spring NAO contributes to the prediction skill of the EASM,an empirical seasonal prediction model is developed using a linear

regression

Figure https://www.360docs.net/doc/574822605.html,parison between the (a)observed 200hPa H difference (contours in units of m)and the (b)simulated 150hPa H difference (contours in units of m)regarding the high and low tripole SSTI forcing in summer (high minus low SSTI).

method based on spring NAO and ENSO for the period of 1979–2006:

y ?7:52t0:65NAOI eTt0:25ENSO develop àáà0:3ENSO decay

àá

e2T

where NAOI and ENSO decay denote the NAO index value for April–May and Nin ?o3.4index for winter (December–February (DJF)),respectively.Here,we use ENSO develop ,the Nin ?o3.4index difference between April–May and February –March (the former minus the latter),and

ENSO decay ,the Nin

?o3.4index in the preceding DJF to quantitatively measure the ENSO development and decay,respectively.The relative importance of the predictors to the overall model is ordered by ENSO develop (à0.62),ENSO decay (0.58),and NAOI (à0.56)in terms of the partial correlations in parentheses.The correlation between the simulation and the observation of the EASMI is 0.79.

[29]Note that we tried just using the change in the Nin ?o3.4index in (April–May)minus (February–March)(or March–May minus DJF,etc.)to quantify both ENSO decay and development,and the established empirical model had lower prediction skill than the current one.Although there is a significant correlation between the Nin ?o3.4index in December–February and the change in the index in (April–May)minus (February–March),they are not exactly same.Figure 3of Wang et al.[2008c]may explain the reason.The Nin ?o3.4index in December–February has the highest correlation with the first leading mode of the EASM,but poorly correlated with the second mode,while the change in the Nin ?o3.4index in (April–May)minus (February–March)correlated well with both modes.Therefore,the change in the Nin ?o3.4index (April–May)minus (February–March)and the Nin ?o3.4index in DJF are complementary to each other.Nevertheless,there might be a better way to quantify the ENSO decay and development.[30]To test the predictive capability of the empirical model,the cross-validation method [Michaelsen ,1987]is performed to hindcast the EASMI (1979–2006).To warrant

the hindcast result robust,we choose a leaving-seven-out strategy [Blockeel and Struyf ,2002].The relevant proce-dures are as follows:the cross-validation method systemat-ically deletes 7year from the period 1979–2006,derives a forecast model from the remaining years,and tests it on the deleted cases.Note that the choice of leaving seven out is not random.Blockeel and Struyf [2002]suggested that randomly choosing 20–30%of the data to be in a test data and the remainder as a training set for performing regression can prevent over fitting or wasting data.In our paper,25%of the whole hindcast period (28years)equals to 7years.That is why we choose a leaving-seven-out strategy.The cross-validated estimates of the EASMI are shown in Figure 11.The correlation coefficient between the observa-tion (black line in Figure 11)and the 28-year cross-validated estimates of the empirical model (red line in Figure 11)is 0.69.If we established the prediction model without the NAO included and did the same hindcast (green line in Figure 11),the correlation coefficient between the observa-tion and the 28-year cross-validated estimates would be 0.5.It indicates that the NAO does significantly improve the seasonal prediction skill of the empirical model.For com-parison,we also presented the observation and the MME hindcast (1980–2001)of the 14state-of-the-art dynamic models participated in the Climate Prediction and Its Application to Society project.The hindcast of the new empirical model and that of the MME (blue line in Figure 11)are both in general agreement with the observation.The correlation coefficient between the observation and the 22-year MME hindcast is 0.74.The root-mean-square errors for the empirical model and the MME are 0.74and 1.5,both comparable to the observed variance (being 1.0)and the empirical model better than the MME.

[31]It has been generally recognized that the MME is better than any single model prediction and increasing ensemble number of AGCMs can produce a better predic-tion skill [Doblas-Reyes et al.,2000;Palmer et al.,2000;Krishnamurti et al.,1999].Although the empirical model is very simple,it can generate a comparative skill with the 14state-of-the-art dynamic models MME.Since the

predictors

Figure https://www.360docs.net/doc/574822605.html,parison of the hindcast EASMI made by the empirical model (with and without NAO)and by the multimodel ensemble mean of the 14state-of-the-art models.

can be easily monitored in real time,this empirical model can be applied in practical forecast without relying on preforecasted SST.

7.Summary and Discussion

[32]The seasonal prediction of the EASM rainfall is of central importance,as it affects a quarter of world’s popu-lation.The attempt to predict the east Asian monsoon variation started75years ago[e.g.,Zhu,1934;Tu and Huang,1944],and it has become a focal issue in recent years[Wang et al.,2004,2005;Wu and Li,2008].Previous research works point out that the EASM variations are intimately linked to the development and decay of El Nin?o or La Nin?a[e.g.,Wang et al.,2008c,2009].Nevertheless, since the EASM encompasses tropics,subtropics,and midlatitudes,it is not only influenced by the climate and weather systems originated from the tropics but also those from midlatitudes to high latitudes[e.g.,Enomoto et al., 2003;Wu et al.,2006;He et al.,2006;Ding and Wang, 2007].

[33]This paper presents observed evidence and numerical experiment results to show that spring NAO can exert effects on the EASM,which has never been noticed before. Anomalous spring NAO can induce a tripole SST pattern in the North Atlantic which sustains from spring through summer.No significant feedbacks have been observed in summer between the tripole SST pattern and NAO-like atmosphere anomalies and the persistence of the tripole SST pattern is basically due to the ocean memory effect. Numerical experiments with the SGCM[e.g.,Hoskins and Simmons,1975;Lin and Derome,1996]further reveal that the North Atlantic tripole SST anomalies in summer may contribute to the downstream development of subpolar teleconnections across the northern Eurasia,which enhances (weakens)the high over the Ural Mountain and the Okhotsk Sea.These favor a strengthened(weakened)east Asian subtropical front,resulting in a strong(weak)EASM.In such cases,variability of the spring NAO is tied to the EASM variability.

[34]The intimate linkage between spring NAO and the EASM provides another physical background to facilitate seasonal prediction of the EASM.On the basis of the above results,an empirical model is established to predict the EASM strength by the combination of ENSO and spring NAO.Hindcast is performed for the1979–2006period, which shows a comparative prediction skill with the MME hindcast of14start-of-the-art models.Since all these predictors are monitored in real time before the summer monsoon,this empirical model can be readily applied in practical forecast.

[35]How to quantify the ENSO impacts might need further investigations.In this study,we used the change in the Nin?o3.4index in(April–May)minus(February–March)and the DJF Nin?o3.4index to quantify ENSO development and decay,respectively.However,there might be a better way to quantify the ENSO phases.If so,the prediction skill of the empirical model might get even better.

[36]This seasonal prediction scenario is based on the seasonal mean time scale and the EASM dominant mode is assumed to be stable.However,many climate extreme events occur on a subseasonal time scale.Can this scenario predict the subseasonal events?If not,what are the sources of predictability for the subseasonal extreme events? Moreover,if the EASM leading mode changes over time, the predictors and relevant mechanisms may change, correspondingly.These are still open questions for future investigations.

[37]Acknowledgments.The authors thank the reviewers for helpful comments.The authors are also thankful for stimulating discussions with Tim Li,Shangping Xie,Pao-Shin Chu,and Q.-H.Ding.Bin Wang and Zhiwei Wu are supported by NSF climate dynamics program(ATM03–29531)and in part by IPRC,which is in part sponsored by FRCGC/ JAMSTEC,NASA,and NOAA.Zhiwei Wu and Jianping Li acknowledge the support of the National Basic Research Program‘‘973’’(grant 2006CB403600)and the National Natural Science Foundation of China (grant40605022).

References

Barnston,A.G.,and R.E.Livezey(1987),Classification,seasonality and persistence of low-frequency atmospheric circulation patterns,Mon. Weather Rev.,115,1083–1126,doi:10.1175/1520-0493(1987)115< 1083:CSAPOL>2.0.CO;2.

Bjerknes,J.(1964),Atlantic air-sea interaction,Adv.Geophys.,10,1–82. Blockeel,H.,and J.Struyf(2002),Efficient algorithms for decision tree cross-validation,J.Mach.Learning Res.,3,621–650,doi:10.1162/ jmlr.2003.3.4-5.621.

Chang,C.-P.(2004),Preface,in East Asian Monsoon,edited by C.-P. Chang,pp.v–vi,World Sci.,Singapore.

Chang,C.-P.,Y.Zhang,and T.Li(2000a),Interannual and interdecadal variation of the east Asian summer monsoon rainfall and tropical SSTs. Part1:Roles of the subtropical ridge,J.Clim.,13,4310–4325, doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

Chang,C.-P.,Y.Zhang,and T.Li(2000b),Interannual and interdecadal variation of the east Asian summer monsoon rainfall and tropical SSTs. Part2:Meridional structure of the monsoon,J.Clim.,13,4326–4340, doi:10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

Chang,C.-P.,P.Harr,and J.Ju(2001),Possible roles of Atlantic circula-tions on the weakening Indian monsoon–ENSO relationship,J.Clim., 14,2376–2380,doi:10.1175/1520-0442(2001)014<2376:PROACO> 2.0.CO;2.

Charney,J.G.,and J.Shukla(1981),Predictability of monsoons,in Mon-soon Dynamics,edited by J.Lighthill and R.P.Pearce,pp.99–109, Cambridge Univ.Press,New York.

Chen,G.T.J.,and C.-P.Chang(1980),Structure and vorticity budget of early summer monsoon trough(Mei-yu)over southeastern China and Japan,Mon.Weather Rev.,108,942–953,doi:10.1175/1520-0493(1980)108<0942:TSA VBO>2.0.CO;2.

Chen,M.,P.Xie,J.E.Janowiak,and P.A.Arkin(2002),Global land precipitation:A50-yr monthly analysis based on gauge observations, J.Hydrometeorol.,3,249–266,doi:10.1175/1525-7541(2002)003< 0249:GLPAYM>2.0.CO;2.

Deser,C.,and M.Timlin(1997),Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific,J.Clim.,10,393–408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

Ding,Y.H.(1992),Summer monsoon rainfalls in China,J.Meteorol.Soc. Jpn.,70,397–421.

Ding,Y.H.(2004),Seasonal march of the east Asian summer monsoon,in East Asian Monsoon,edited by C.-P.Chang,pp.3–53,World Sci., Singapore.

Ding,Y.H.,and D.R.Sikka(2006),Synoptic systems and weather,in The Asian Monsoon,edited by B.Wang,pp.131–201,Springer,New York. Ding,Q.,and B.Wang(2005),Circumglobal teleconnection in the North-ern Hemisphere summer,J.Clim.,18,3483–3505,doi:10.1175/ JCLI3473.1.

Ding,Q.,and B.Wang(2007),Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon,J.Clim.,20, 3751–3767,doi:10.1175/JCLI4221.1.

Doblas-Reyes,F.J.,M.Deque,and J.-P.Piedelievre(2000),Multi-model spread and probabilistic seasonal forecasts in PROVOST,Q.J.R. Meteorol.Soc.,126,2069–2088,doi:10.1256/smsqj.56704. Enomoto,T.,B.J.Hoskins,and Y.Matsuda(2003),The formation mechan-ism of the Bonin high in August,Q.J.R.Meteorol.Soc.,129,157–178, doi:10.1256/qj.01.211.

Fu,C.B.,and X.L.Teng(1988),Relationship between summer climate in China and El Nin?o/Southern Oscillation phenomenon(in Chinese),Chin. J.Atmos.Sci.,12,133–141.

Gadgil,S.,and S.Sajani(1998),Monsoon precipitation in the AMIP runs, Clim.Dyn.,14,659–689,doi:10.1007/s003820050248.

Hall,N.M.J.(2000),A simple GCM based on dry dynamics and constant forcing,J.Atmos.Sci.,57,1557–1572,doi:10.1175/1520-0469(2000) 057<1557:ASGBOD>2.0.CO;2.

Hall,N.M.J.,J.Derome,and H.Lin(2001a),The extratropical signal generated by a midlatitude SST anomaly.Part I:Sensitivity at equili-brium,J.Clim.,14,2035–2053,doi:10.1175/1520-0442(2001)014< 2035:TESGBA>2.0.CO;2.

Hall,N.M.J.,J.Derome,and H.Lin(2001b),The extratropical signal generated by a midlatitude SST anomaly.Part II:Influence on seasonal forecasts,J.Clim.,14,2696–2709,doi:10.1175/1520-0442(2001) 014<2696:TESGBA>2.0.CO;2.

He,J.H.,Z.W.Wu,Z.H.Jiang,C.S.Miao,and G.R.Han(2006),‘‘Climate effect’’of the northeast cold vortex and its influences on Meiyu,Chin.Sci.Bull.,51,2803–2809.

Hoskins,B.J.,and A.J.Simmons(1975),A multi-layer spectral model and the semi-implicit method,Q.J.R.Meteorol.Soc.,101,637–655, doi:10.1002/qj.49710142918.

Huang,R.H.,and L.Lu(1989),Numerical simulation of the relationship between the anomaly of subtropical high over east Asia and the convec-tive activities in the western tropical Pacific,Adv.Atmos.Sci.,6,202–214,doi:10.1007/BF02658016.

Jin,F.-F.,L.Pan,and M.Watanabe(2006a),Dynamics of synoptic eddy and low-frequency flow interaction.Part1:A linear closure,J.Atmos. Sci.,63,1677–1694,doi:10.1175/JAS3715.1.

Jin,F.-F.,L.Pan,and M.Watanabe(2006b),Dynamics of synoptic eddy and low-frequency flow interaction.Part2:A theory for low-frequency modes,J.Atmos.Sci.,63,1695–1708,doi:10.1175/JAS3716.1. Kanamitsu,M.,W.Ebisuzaki,J.Woollen,S.-K.Yang,J.J.Sling, M.Fiorino,and G.L.Potter(2002),NCEP-DOE AMIP-II reanalysis (R-2),Bull.Am.Meteorol.Soc.,83,1631–1643,doi:10.1175/BAMS-83-11-1631(2002)083<1631:NAR>2.3.CO;2.

Kang,I.-S.,et al.(2002),Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by10GCMs,Clim. Dyn.,19,383–395,doi:10.1007/s00382-002-0245-9. Krishnamurti,T.N.,C.M.Kishtawal,https://www.360docs.net/doc/574822605.html,Row,D.R.Bachiochi, Z.Zhang,C.E.Williford,S.Gadgil,and S.Surendran(1999),Improved weather and seasonal climate forecasts from multi-model superensemble, Science,285,1548–1550,doi:10.1126/science.285.5433.1548.

Lau,N.-C.,and M.J.Nath(1991),Variability of the baroclinic and baro-tropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks,J.Atmos.Sci.,48,2589–2613,doi:10.1175/ 1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

Lau,N.-C.,and M.J.Nath(2006),ENSO modulation of the interannual and intraseasonal variability of the East Asian Monsoon—A model study, J.Clim.,19,4508–4530,doi:10.1175/JCLI3878.1.

Lau,K.-M.,G.-J.Yang,and S.-H.Shen(1988),Seasonal and intraseasonal climatology of summer monsoon rainfall over east Asia,Mon.Weather Rev.,116,18–37,doi:10.1175/1520-0493(1988)116<0018:SAICOS> 2.0.CO;2.

Li,F.,and Y.H.Ding(2004),A statistical study of blocking highs in Eurasia in summer by using30-yr NCEP datasets(in Chinese),Acta Meteorol.Sin.,62,347–354.

Li,J.,and J.Wang(2003),A new North Atlantic Oscillation index and its variability,Adv.Atmos.Sci.,20,661–676,doi:10.1007/BF02690792. Li,J.,and Q.C.Zeng(2002),A unified monsoon index,Geophys.Res. Lett.,29(8),1274,doi:10.1029/2001GL013874.

Lin,H.,and J.Derome(1996),Changes in predictability associated with the PNA pattern,Tellus,Ser.A,48,553–571.

Marshall,J.M.,and F.Molteni(1993),Toward a dynamical understanding of planetary-scale flow regimes,J.Atmos.Sci.,50,1792–1818, doi:10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2. Michaelsen,J.(1987),Cross-validation in statistical climate forecast model, J.Clim.Appl.Meteorol.,26,1589–1600,doi:10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

Namias,J.(1959),Recent seasonal interaction between North Pacific waters and the overlying atmospheric circulation,J.Geophys.Res.,64, 631–646,doi:10.1029/JZ064i006p00631.

Namias,J.(1965),Macroscopic association between monthly mean sea-surface temperature and overlying winds,J.Geophys.Res.,70,2307–2318,doi:10.1029/JZ070i010p02307.

National Climate Center of China(NCC)(1998),Heavy Flooding and Climate Anomalies in China in1998,139pp.,Chin.Meteorol.Press, Beijing.

Ninomiya,K.(2004),Large-and mesoscale features of the Meiyu-baiu front associated with intense rainfalls,in East Asian Monsoon,edited by C.-P.Chang,pp.404–435,World Sci.,Singapore.

Palmer,T.N.,C.Brankovic,and D.S.Richardson(2000),A probability and decision-model analysis of PROBOST seasonal multi-model ensem-

ble integrations,Q.J.R.Meteorol.Soc.,126,2013–2034,doi:10.1256/ smsqj.56702.

Pan,L.(2005),Observed positive feedback between the NAO and the North Atlantic SSTA tripole,Geophys.Res.Lett.,32,L06707, doi:10.1029/2005GL022427.

Roads,J.O.(1987),Predictability in the extended range,J.Atmos.Sci.,44, 3495–3527,doi:10.1175/1520-0469(1987)044<3495:PITER>2.0.CO;2. Shukla,J.(1998),Predictability in the midst of chaos:A scientific basis for climate forecasting,Science,282,728–731,doi:10.1126/science. 282.5389.728.

Simmons,A.J.,and D.M.Burridge(1981),An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates,Mon.Weather Rev.,109,758–766,doi:10.1175/ 1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

Smith,T.M.,and R.W.Reynolds(2004),Improved extended reconstruc-tion of SST(1854–1997),J.Clim.,17,2466–2477,doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

Sperber,K.R.,and T.N.Palmer(1996),Interannual tropical rainfall varia-bility in general circulation model simulations associated with the Atmo-spheric Model Intercomparison Project,J.Clim.,9,2727–2750, doi:10.1175/1520-0442(1996)009<2727:ITRVIG>2.0.CO;2.

Tao,S.,and L.-X.Chen(1987),A review of recent research on the east Asian summer monsoon in China,in Monsoon Meteorology,edited by C.-P.Chang and T.N.Krishnamurti,pp.60–92,Oxford Univ.Press, New York.

Thompson,D.W.J.,and J.M.Wallace(2000a),Annular modes in the extratropical circulation.Part I:Month-to-month variability,J.Clim.,13, 1000–1016,doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0. CO;2.

Thompson,D.W.J.,and J.M.Wallace(2000b),Annular modes in the extratropical circulation.Part II:Trends,J.Clim.,13,1018–1036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2. Trenberth,K.E.,D.P.Stepaniak,and L.Smith(2005),Interannual varia-bility of patterns of atmospheric mass distribution,J.Clim.,18,2812–2825,doi:10.1175/JCLI3333.1.

Tu,C.W.,and S.S.Huang(1944),The advance and withdrawal of Chinese summer monsoon(in Chinese),Acta Meteorol.Sin.,18,1–20.

van Loon,H.,and J.C.Rogers(1978),The seesaw in winter temperatures between Greenland and northern Europe.Part I:General description, Mon.Weather Rev.,106,296–310,doi:10.1175/1520-0493(1978) 106<0296:TSIWTB>2.0.CO;2.

Walker,G.T.,and E.W.Bliss(1932),World weather V,Mem.R.Meteorol. Soc.,4,53–84.

Wallace,J.M.,and D.S.Gutzler(1981),Teleconnections in the geopoten-tial height field during the Northern Hemisphere winter,Mon.Weather Rev.,109,784–812,doi:10.1175/1520-0493(1981)109<0784: TITGHF>2.0.CO;2.

Wang,B.,et al.(2008a),Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS14-model ensemble retroperspective seasonal prediction(1980–2004),Clim.Dyn.,33,93–117, doi:10.1007/s00382-008-0460-0.

Wang,B.,and Z.Fan(1999),Choice of South Asian summer monsoon indices,Bull.Am.Meteorol.Soc.,80,629–638,doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

Wang,B.,and T.Li(2004),East Asian monsoon and ENSO interaction,in East Asian Monsoon,edited by C.-P.Chang,pp.172–212,World Sci., Singapore.

Wang,B.,R.Wu,and X.Fu(2000),Pacific–east Asian teleconnection: How does ENSO affect east Asian climate?,J.Clim.,13,1517–1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

Wang,B.,R.Wu,and https://www.360docs.net/doc/574822605.html,u(2001),Interannual variability of Asian summer monsoon:Contrast between the Indian and western North Pacific–east Asian monsoons,J.Clim.,14,4073–4090,doi:10.1175/ 1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

Wang,B.,I.-S.Kang,and J.-Y.Lee(2004),Ensemble simulations of Asian-Australian monsoon variability by11AGCMs,J.Clim.,17,803–818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2. Wang,B.,Q.Ding,X.Fu,I.-S.Kang,K.Jin,J.Shukla,and F.Doblas-Reyes(2005),Fundamental challenge in simulation and prediction of summer monsoon rainfall,Geophys.Res.Lett.,32,L15711, doi:10.1029/2005GL022734.

Wang,B.,J.-Y.Lee,I.-S.Kang,J.Shukla,J.-S.Kug,A.Kumar,J.Schemm, J.-J.Luo,T.Yamagata,and C.-K.Park(2008b),How accurately do coupled climate models predict the Asian-Australian monsoon inter-annual variability?,Clim.Dyn.,30,605–619,doi:10.1007/s00382-007-0310-5.

Wang,B.,Z.Wu,J.Li,J.Liu,C.-P.Chang,Y.Ding,and G.Wu(2008c), How to measure the strength of the east Asian summer monsoon?, J.Clim.,21,4449–4463,doi:10.1175/2008JCLI2183.1.

Wang,B.,J.Liu,J.Yang,T.Zhou,and Z.Wu(2009),Distinct principal modes of early and late summer rainfall anomalies in east Asia,J.Clim., 22,3864–3875,doi:10.1175/2009JCLI2850.1.

Watanabe,M.(2004),Asian jet waveguide and a downstream extension of the North Atlantic Oscillation,J.Clim.,17,4674–4691,doi:10.1175/ JCLI-3228.1.

Watanabe,M.,M.Kimoto,and T.Nitta(1999),A comparison of decadal climate oscillations in the North Atlantic detected in observations and a coupled GCM,J.Clim.,12,2920–2940,doi:10.1175/1520-0442(1999)012<2920:ACODCO>2.0.CO;2.

Weng,H.-Y.,https://www.360docs.net/doc/574822605.html,u,and Y.Xue(1999),Multi-scale summer rainfall variability over China and its long-term link to global sea surface tem-perature variability,J.Meteorol.Soc.Jpn.,77,845–857.

Wu,Z.,and J.Li(2008),Prediction of the Asian-Australian monsoon interannual variations with the grid-point atmospheric model of IAP LASG(GAMIL),Adv.Atmos.Sci.,25,387–394,doi:10.1007/s00376-008-0387-8.

Wu,G.-X.,P.Liu,Y.Liu,and W.Li(2000),Impacts of sea surface tem-perature anomaly in the Indian Ocean on the subtropical cyclone over the western Pacific—Two-stage thermal adaptation in the atmosphere(in Chinese),Acta Meteorol.Sin.,58,513–522.Wu,Z.W.,Z.H.Jiang,and J.H.He(2006),Comparison analysis of flood and drought features among the first flood period in south China,Meiyu period in the Yangtze River and Huaihe River valleys and rainy season in north China in the last50years(in Chinese),J.Atmos.Sci.,30,391–401. Yang,Y.W.(2001),The different effect of two types of blocking situation on major seasonal rain belt in China in July(in Chinese),Acta Meteorol. Sin.,59,759–767.

Yang,S.,and https://www.360docs.net/doc/574822605.html,u(2006),Interannual variability of the Asian mon-soon,in The Asian Monsoon,edited by B.Wang,pp.259–293,Springer, New York.

Zhu,K.Z.(1934),Southeastern monsoon and precipitation in China (in Chinese),Acta Geogr.Sin.,1,1–27.

àààààààààààààààààààààà

F.-F.Jin,Department of Meteorology,University of Hawai’i at M a noa, 2525Correa Road,Building HIG350,Honolulu,HI96822,USA.

J.Li and Z.Wu,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,P.O.Box9804, Beijing100029,China.

B.Wang,IPRC,University of Hawai’i at M a noa,1680East-West Road, POST Building401,Honolulu,HI96822,USA.

东亚_创造经济奇迹的成功经验及其借鉴意义

●东亚模式与浙江现代化 [ 编者按] 近20 多年来, 现代化问题一直是社会科学研究的一个重点和焦点。在一个多极化发展的世界上, 各国通往现代化的道路与方式既有共性又有特性, 形成了各具特色的现代化模式。其中较有代表性的是所谓美国模式、北欧模式和东亚模式。东亚模式就是在东方儒家文化传统与西方现代文明交互作用下形成的以市场经济为主导的资本主义现代化方式、经验和道路。它所包括的国家和地区,主要指日本、韩国、新加坡、台湾和香港,它们在文化传统上属于儒家文化圈,但在现代化过程中学习并消化了西方现代科学技术、市场经济体制和以民主、法治为核心的人文主义价值观, 从而形成一个多元文化互动互补的社会。 浙江在历史上即与东亚国家和地区有着千丝万缕的经济与文化联系。浙江的经济、人文环境与日本和四小龙也有某些近似之处。因此,东亚模式的许多成功经验是值得我们借鉴和汲取的。 下面四篇论文系本院“东亚模式与浙江现代化的比较研究”课题组的研究成果, 分别从经济策略、社会保障、教育规划和人文精神诸层面探讨了“东亚模式”的经验、教训及其对浙江现代化的启示。 东亚:创造经济奇迹的成功经验及其借鉴意义 张仁寿 张仁寿,男,1956 年生,浙江省社会科学院副院长、研究员。(杭州310025) 东亚经济持续高速增长及其成功经验令世人瞩目。浙江不仅与东亚有着相近的文化传统和历史背景, 处于同一地缘带, 而且比之于东亚模式中日本及随其后的“四小龙”, 属于走上现代化发展道路的后来者, 现在正处在经济起飞时期。他山之石, 可以攻玉。我们要重视研究借鉴东亚模式特别是“四小龙” 经济起飞的成功经验。本文着重考察分析东亚成功地实行政府干预和促进出口这样两个事关经济体制和发展战略的重大问题, 其中的成功经验, 对于加快浙江经济现代化有着非同寻常的借鉴意义。兴工业化国家增加了一倍多。“如果高速增长的分布是随机的, 那么, 如此集中的区域性高增长是极为罕见的, 大约只有万分之一的可能性”。按亚洲开发银行统计, 过去20 多年东亚地区经济年均增长率高达8 % , 远远超过世界发展中国家的413 %和工业发达国家的3 %的增长水平。东亚在全世界的GD P 中所占比例从1960 年的4 %猛增到1990 年的25 % 。到2000 年,这一比例将达到30 % 。与此同时,外贸规模也迅速扩大。1965 年,东亚地区的出口额在世界贸易中的比重为10 % ,1993 年已占到2518 % 。据预测,到本世纪末, 东亚贸易增长幅度将占世界贸易增长幅度的的1/ 3 。 进入90 年代, 西方经济景气低迷, 回升乏力, 而东亚经济一枝独秀, 仍然生机勃勃。在1993 —1995 年间, 东亚连续三年GD P 增长率超过9 % , 而且所有国家和地区都超过1986 - 1995 年期间的经济增长幅度。据世界银行1996 年发表的《全球经济前景与发展中国家》报告预测, 在1996 —2005 年10 年里, 东亚地区GD P 年均增幅仍将达到719 % , 人均GD P 有望保持过去10 年平均619 %的增长速度。 ·65 · 一、东亚奇迹 东亚的崛起, 已成为二战后世界经济发展史上的最大奇迹。世界银行自1991 年下半年开始, 组织有关专家对日本、香港、韩国、新加坡、中国台湾、印度尼西亚、马来西亚和泰国等8 个东亚国家和地区进行了系统研究, 并在此基础上于1993 年出版了题为《东亚奇迹: 经济增长与公共政策》的政策调研报告。该报告指出, 在1960 年到1985 年之间, 日本和“四小龙”的实际人均收入增加了4 倍多, 东南亚新

1873-2000年东亚夏季风变化的研究

2002211227收到,2003202220收到修改稿 3中国科学院知识创新工程项目KZCX22314资助 ① 国家自然科学基金项目49635190成果,参加工作的有北京大学王绍武、朱锦红、蔡静宁、陈振华和国家气候中心赵振国、陈国珍、徐良炎等. 第28卷第2期 2004年3月大气科学Chinese Journal of Atmospheric Sciences Vol 128 No 12Mar 1 2004 1873~2000年东亚夏季风变化的研究 郭其蕴1) 蔡静宁2) 邵雪梅1) 沙万英1) 1)(中国科学院地理科学与资源研究所,北京100101) 2)(北京大学物理学院大气科学系,北京100871) 摘 要 根据英国的海平面气压(SL P )资料计算了1873~1950年东亚夏季风指数(I SM ) 与用NCEP 的SL P 资料计算的1951~2000年I SM 衔接,构成128年的I SM 序列。用功率谱 及子波变换方法分析了I SM 的变化,指出80年周期最突出,其次尚有40年周期,8~10年周 期及准2年周期。分析表明,夏季风弱时中国东部夏季气温低,降水自北向南为负、正、负分 布。夏季风强时,气温偏高,降水异常为正、负、正分布。对年际变化而言,降水与夏季风的 关系要复杂一些,至少副热带高压的变化对降水也有重要作用。 关键词:东亚夏季风;年代际变化;年际变化 文章编号 100629895(2004)022******* 中图分类号 P467 文献标识码 A 1 引言 季风是影响中国气候的一个十分重要的因素,甚至人们认为中国气候是季风气候,也就是说气候有着显著的季风色彩。比如夏季雨带的位置的变化即受控于夏季风的活动[1]。为了描述夏季风的总体强度,过去曾采用陆(110°E )海(160°E )气压差作指标,建立了1951~1980年夏季风指数(I SM )序列[2]。分析表明这个指数与中国夏季降水的变化有密切的关系。后来,不同作者引用并延长了I SM 序列[3~6]。这些研究表明,1951年以后到20世纪60年代中期处于强夏季风时期,以后夏季风减弱,1976年之后夏季风强度再次减弱,以至在此后的20多年中没有再出现强夏季风年[7]。并且发现夏季风的这种年代际变化在中国东部降水变化中有明显的反映。近20多年华北的持续性干旱就是一个明显的例子[8,9]。 美国NCEP 的再分析资料是一个比较完整的资料体系[10],有1948~2000年的SL P 资料,我们根据这份资料建立了1951~2000年的I SM 序列[11]。然而,仅仅利用1951年以后的SL P 资料,不可能知道近40~50年夏季风的减弱是一种长期趋势,还是一种周期性的变化?也不可能知道如果是周期性变化,其时间尺度如何?英国整理了1873年以来逐月北半球SL P 资料[12],据此,我们建立了1951年以前的I SM 序列,与1951年以后用NCEP 资料建立的序列同化,组成一个统一的128年I SM 序列。又利用1880年以来季降水量及气温距平图①,研究了I SM 与中国夏季气候的关系。

东亚季风和南亚季风的区别

文章摘要:季风是广大地区范围内近地面的盛行风向随季节明显改变的风。它在东亚及南亚地区最为盛行.并形成了较为典型的季风气候.这两种季风各具特点,也是中学地理教学中的重点及难点,不妨加以对比一下,便于学生更容易理解、掌握。(共1页) 文章关键词:季风气候风向东亚形成南亚对比地区中学地理教学学生理解 文章快照:、西伯制亚 低压,太平洋上形成了夏威夷高压,产生了太平洋向亚欧大陆运莉的气流,在摩擦、地转偏向力作用下形成了东亚地区的夏季风。2、南亚季且的形成既与海陆之间热力性质差异有关,又与气压带风带移动有关:南亚地区1O月到坎年5月盛行的东北季风与东亚季风成目相同,印由亚欧太陆与太平洋之间热,性质差异形成的。6月至9月的西南季风则是由气压带风带移动所致,6到9月正是北半球夏半年.太阳直射点在北半球.地球上的气压带与风带向北移动。赤道以南的东南信凤带越过寿道,在地转偏向作用下向右俯转,形成了南亚地区的西南风,即西南季风。二、特点比较东亚季风和南亚季风在特点上有相似之赴.即东亚的r 土季风和南亚的东北季风都来自干亚醢_陆.既干又斗。东亚的夏季及南亚的西南季风又都来自海洋,所毗既温暖又湿润.不同的是前者来自干太平洋.而后者来源印度洋。三、分布比较东亚季风分布范围鞍广,包括中国、俄罗斯东都、蒙古、日本半岛及朝鲜半岛。南亚季风分布地区略小,包括南亚半岛、中南半岛及中国的云南、广西等地。四、对天气影响比较亚洲东部天气的变化与季风密切相关.井形成了一些寅害性的天气.如:冬季的寒潮、霜冻、大风等,夏季的洪涝灾害。南亚季风中的东北季风盛行对.印度、巴基斯坦等国一般出现非常干旱的天气.致使河流中断,生活用水困难。西南季风的强弱、到来的早晚、持续时间长短也台使南亚出现旱涝灾害.如95年夏季孟加拉国遭受洪水灾害,造成众多员伤亡和严重的财产损失,就是由于强动的西南季风从印度洋带来大量潮湿空气降雨所致。五、比较后取得的教学效果1、避免学生产生同是季风成固相同的错误认识。在多年的教学实践中学生提出过这样相似的问题。2、当讲授南亚气候时.对东亚季风扣南亚季风进行全面的比较。一方面把新教材联系起来进一步系统化,有利于南亚季风这一新知识的学习.另一方面又复习了旧知识东亚季风.起到对旧知识进一步巩固的作用。(作者单位:山东省枣庄师范学校邮政编码:277300)种是类发晨切靳形成的有共同体质特点的人群。这些具有遗传性的悻质特点.包括肤色、发色与发型、眼色、熹型、鼻型、胜型、血型、骨骷等。早在类发晨的韧期,其身体外表上的重大差别就巳形成.这种差尉是由于人粪吝集团在很长一段时期内.相当J 罱离地生活在不同的地理环境条件下的缘故。固此.地球上的类可分为三个主要种:自种、黄种、黑种三个人种。那幺,印度人属哪一种呢?关于这一问题.学生经常提出质疑。下面就从人类发展初期所形成的共同体质特点加以认识。首先.从身体外表特征看.印度凡肤色表现黝黑。从这一表象看.锟多认为印度是黑种人。拣而划分种的外表特征睬肤色、头发形状、面部荨特征外,还有其他许多主要依据,如骨髂。骨骼不同,种不同。以头颅骨为列.头颅骨周边近椭圆形的是白种;头颅骨周边呈三角彤的是黄种人;头颅骨周迫近似方形的为黑种。而印-18·●毛恒禄度的头颅骨罔边近似椭圆形。从这一主要区舟依据看,印度人肤色虽然表现黝黑.但不是黑种人,而是自种。其次.从印度原居地看.印度原是居住在里海和黑海附近的雅利安人.大约在距夸4O00多年前迁往夸日的印度半岛。印度半岛大部分在北纬10。一30~之闻,地处热带.热带强烈的太阳辐射,使今天的印度皮肤变得黝黑。可见印度白种人的皮肤黝黑,是通过类迁秽后.在新的环境影响下表现出来的所以说争日印度太部分是白种.只有印度南部分布着少量黑种。可见.认识人种.既要看外表特征.更要看内在特证及原居地。不菲我们将告简单地从外表肤色说印度是黑种人。同样.非洲北部、亚洲西部的阿拉伯虽然肤色较黑,却都是自种。■{作者单位:甘肃省甘答一中74l加

谈苏联社会主义模式经验、教训及意义

谈苏联社会主义模式经验、教训及意义 在进行探讨苏联社会主义模式经验、教训及意义之前,首先我们需要明确的是的问题是:什么是苏联模式? 苏联社会主义模式是指苏联社会主义革命和建设的道路,指苏联的社会主义实践。在其社会主义革命和建设的道路过程中,如果仅就其内涵本身而言主要指的是社会主义制度,可以从经济、政治、对外关系三个方面来讲。 首先,从经济上来看,苏联模式表现为一个高度集中的计划经济体制。它以国家政权为核心,以党中央为领导者,以各级党组织为执行者,以国家工业发展为唯一目的,以行政命令为经济政策,以行政手段为运作方式。总之,这是一个有鲜明特点的经济体制,它限制商品货币关系,否定价值规律和市场机制的作用,用行政命令甚至暴力手段管理经济,把一切经济活动置于指令性计划之下。它片面发展重工业,用剥夺农民和限制居民改善生活的手段,达到高积累多投资的目的。 其次,从政治上来看,苏联模式又表现为一个高度集权的行政命令体制。对内,它将权力高度集中于党中央,而党从中央到地方的各级组织,大多数情况下又是由个人意志所操纵的。这就造成了党政不分,共产党领导一切,直接发布政令,管理国家事务,民主集中制有名无实,社会主义法制被忽视甚至遭到践踏。干部由上级委派,领导终身任职,基本上不受群众监督,最后形成个人高度集权,并由此衍生出个人崇拜、官僚主义和形形色色的特权现象,从而严重损害了党和国家的正常民主生活。 再次,从对外关系看,苏联模式又是集中了严重的官僚主义、主观主义、沙文主义和专制主义即封建农奴主式的作风于一体的大国强权体制。它不顾别国的国情,以社会主义阵营的老大哥自居,到处指手画脚,发号施令,对违反其意志的国家则严惩不贷,从舆论声讨、经济制裁直到外交孤立,甚至实行军事干预或占领,无所不用其极。结果造成了社会主义阵营的分裂,削弱了国际共产主义运动的力量。 总之,苏联模式就是采用高度集中的经济政治体制进行社会主义建设的模式,它的要害关键则在于树立个人崇拜。它无情践踏了社会主义的民主和法制,以长官意志取代民主集中制,形成了自下而上的金字塔式的个人崇拜网,高踞塔

日本泡沫经济的经验与教训

日本泡沫经济的经验与教训 (根据日文资料整理) 一、泡沫的形成(80年代后期) (一)由「广场协议」引发的快速日元升值和「内需扩大」 ●「日元升值经济衰退」、「产业空洞化」对策 + 美国施加的「条件放宽」、「内需扩大」的要求(「日美构造问题协议」)→财政扩大、金融缓和政策。 ●大幅度的金融缓和政策(低利率、货币供给同比超过10% )→股市投资、地产投资成为了资金的流向地。 ●由金融自由化(特别是大额存款的自由化)引起的金融资产的收益率上升→企业的「资金管理」。 ●快速日元升值引发的错觉→对美元过度评价(日本是「世界最大的债权国」,美元将升值)、 对日元过低评价(缺乏「富裕」的生活实感,日元将贬值)。 (二)资产价格的快速上升 ●剩余钱财+资产价格上升→企业、个人的「资金管理」、土地投机→资产价格进一步上升。 ●企业的资金调集转移到「直接金融」[←平衡金融(=伴随新股发行的资金调集)变得容易]→大企业的「脱离银行」进行→银行需要发展新的融资对象→向中小企业、房地产融资倾斜。●「双边建立交易」(B/S表上的资产、负债两边扩大):把土地A作为担保进行融资(期待土地A的升值)→买入土地B→(期待土地B的升值)→买入土地C→。 ●资产价格的上升不是泡沫,而是为了从资产中获得收益的上升(例如:「国际金融中心—TOKYO」)。 ●沉迷于「资产效果」的有利之处→造成对勤劳的观念,对企业伦理等的不良影响。 ●批发物价(←日元升值)、消费者物价安定→否定了对通胀的担忧,政策性的疏忽。 二、泡沫的破裂和归结(90年代=「失去的十年」) (一)泡沫破裂的经过 ●股价1989年末达到顶峰,进入1990年后下落。 ●1990年,大蔵省作为地价对策引入了房地产关联融资的总量限制机制→地价下落的诱因 →1992年更是引入了地价税(1998年实际废止)

东亚夏季风年际变化特征及其与热带太平洋次表层海温的联系

东亚夏季风年际变化特征及其与热带太平洋次表层海温的联系本文利用日本气象厅次表层海温资料、NCEP/NCAR再分析资料、国家气象中心160站降水、温度资料,分析了东亚夏季风区气候年际变化特征,在此基础上,揭示了东亚夏季风与热带太平洋次表层海温之间的联系,探讨年代际背景下次表层海温对东亚夏季风的影响及其可能影响途径。得到如下主要结论:(1)东亚夏季风具有明显的年际变化特征,强夏季风年,西北太平洋海平面气压场偏低,副热带高压偏弱,30。N以南的热带西北太平洋,包括我国华南沿海为异常的气旋型环流,我国北方、朝鲜半岛到日本为反气旋型环流,有利于夏季风向北推进,对于弱夏季风年,反之亦然。 中国东部夏季降水、气温与东亚夏季风强度有显著的相关关系,强夏季风年易导致长江流域降水偏少,夏季气温普遍偏高,而对于弱夏季风年,长江流域降水偏多,夏季气温偏低。(2)热带太平洋次表层海温季节EOF第一模态是ENSO循环在次表层的体现,反映了ENSO事件发展、演变的过程,而第二模态时间序列是超前Nino3.4指数的前期信号。热带太平洋次表层海温与东亚夏季风指数有很好的超前相关,前期西太平洋暖池次表层异常海温的东传引起的类ENSO事件衰减是次年夏季风强弱的显著信号,当前期秋冬季西太平洋暖池次表层海温偏暖(冷)并有明显向东传播的趋势,它将使赤道中东太平洋冷(暖)海温变暖(冷),当年东亚夏季风偏强(弱)。 (3)次表层海温有显著的年代际变化特征,主要表现为1970年代末期的年代际突变,不同年代际背景下东亚夏季大气环流发生了明显改变,气候突变之后,东亚夏季风与次表层海温之间的存在显著相关。冬季次表层海温呈现类El Nino 分布型时,夏季副热带高压偏强,西北太平洋地区受反气旋型环流控制,能将大量

数值天气预报习题

1. 试证明球坐标系中单位矢量i 的个别变化率为。 () k j r u dt di ???cos sin cos -= 2. 试说明局地直角坐标系(即z 坐标系)中的运动方程与球坐标系中的运动方程有何异同? 3. 在等压面p 与p p δ-之间有一气柱,其横截面积为y x δδ,气柱内的空气质量为M δ。试根据该气柱在运动过程中其质量守恒的原理导出P 坐标系中的连续方程为 =??+??+??p w y v x u 4. 应用()t z y x ,,,、()t p y x ,,,两坐标系因变量F 偏微商的转换关系式(1.69)和(1.78)证明 p z dt dF dt dF ? ?? ??=??? ?? 5. 应用()t p y x ,,,、()t y x ,,,σ两坐标系因变量偏微商的转换关系式(1.113)和(1.117)把P 坐标系中的连续方程 =??+??+??p w y v x u 转换到σ坐标系中去。 6. 应用σ坐标系中的连续方程(1.126)把该坐标系中分量形式的水平运动方程写成通量形式。 7. 已知小尺度运动系统龙卷的物理变量特征尺度为:L ~210米,D ~410米,U ~50米?秒1-,W ~1米?秒1-,p h ?~40百帕。应用尺度分析方法简化运动方程(1.132)~(1.134),使其适用于龙卷尺度的运动。对于这种小尺度运动,流体静力近似是否成立? 8. 已知中尺度运动系统台风的物理变量特征尺度为:L ~510米,D ~410米,U ~100米?秒1-,W ~10米?秒1-,p h ?~40百帕。应用尺度分析方法简化运动方程(1.123)~(1.134),使其适用于台风尺度的运动。对于这种中尺度运动,流体静力近似是否成立? 9. 试说明涡度方程(1.149)中辐散项、倾斜项和力管项引起涡度局地变化的物理机制。 10. 涡度方程(1.170)有哪几种简化形式,它们各有什么特点? 11. 散度方程(1.175)有哪几种简化形式?它们各有什么特点?它们描述了哪些物理量场之间的平衡关系?

东亚季风对我们的影响

东亚季风对我们的影响 一、季风的简介 1、季风的形成原因 地球由于冷热不均和自转,使得全球形成三圈环流,并产生7个气压带和6个风带,地球在自转的同时也在围绕太阳的公转,所有气压带和风带也会随着季节的移动而发生移动。假设地球表面上是均匀的话,全球的气压带和风带成带状分布。 但是地球表面并不是均匀分布的,是海陆相间分布的。因此根据海洋和陆地的热力性质的差异,夏季陆地升温快于海洋,因此陆地上形成了低气压,在北半球北纬30度附近形成一个低压中心,被称为印度低压。本来这个区域是由副热带高气压控制,但是由于印度低压的存在将这个高压带切断了,使其只保留在海洋上。风由高压吹向低压,凡是水平运动的物体都要受到地转偏向力的影响,北半球向右偏转。风由海洋吹向陆地,称为东南风。冬季时,陆地气温低于海洋,因此陆地上形成低气压,在北半球北纬60度附近形成一个高压中心,称为蒙古—西伯利亚高压。本来这个区域是由副极地低气压控制的,由于蒙古高压的存在,使得低气压带只保留在海洋上,此时由陆地吹向海洋的风称为西北风。一年中不同的季节,吹不同方向的风,称为季风。季风在全球都有分布,但是在东亚地区最为典型。因为东亚地区位于最大的大陆——亚欧大陆,最大的海洋——太平洋,所以冬夏季之间海陆热力性质相差很大。 2、东亚季风的特点 夏季吹东南风,风由海洋吹来,比较凉爽,比较能带来大量的降水我国位于东亚地区,是季风最典型的地区。冬季时吹西北风,风由大陆吹来,比较寒冷而且很干燥。 二、季风的影响 1、大尺度的影响——回归线上的绿洲 我国位于东亚地区,特别是我国重要的粮仓(长江中下游平原和珠江三角洲地区)就位于季风区。这块区域是由副热带高气压控制,在其控制下盛行下沉气流,比较干燥,全球同纬度地区,大多形成沙漠,例如全球最大的沙漠——撒哈拉沙漠。但是我国的长三角和珠三角却是形成粮仓,就是在季风的影响下,夏季吹东

成功经验与失败教训

成功经验与失败教训 张海迪说过"一百次跌倒就要一百零一次的站起来"。失败只是暂时的,我们只要能做到不屈不挠就可以最终取得成功。下面就由为大家推荐成功经验与失败教训的范文,欢迎阅读。 成功经验与失败教训篇1 如果说失败是一个雪人,那么坚持就是一轮烈日,用火般的温暖融解冰冷的无情;如果说失败是漫漫黑夜中的路,那么坚持就是那照亮夜行道路的明灯;如果说失败是人世间的龌龊,那么坚持就是神圣的救命水,洗涤被玷污的麻木心灵。 那一次,奥语竞赛,原本很有夺冠希望的我,出乎大家的意料,只得了一个三等奖。我听到这个消息,无异于晴天霹雳——我是可以得一等奖的呀!我呆呆的站在教室里,同学招呼我也不出去玩。我一个趔趄跌坐在椅子上。我一遍一遍地自责,自己为什么只考了这么点分数,为什么不多复习一下,为什么不仔细一点…… 放学后,我低着头走回家,妈妈一见我的神情,便知道了奥语竞赛分数考得不好。她语重心长地对我说:"杰杰,这次考得不好没关系,关键是你有没有努力过。只要你不放弃,坚持努力下去,下次就一定能考一等奖,甚至第一名!我相信你!!"我听了妈妈的话,沉闷的心豁然开朗。走回房间,我久久沉思:妈妈说的对,重要的不是结果,而是过程。你努力过了,就算你没有得奖,也不会后悔,因为我努力过了,我发挥出了我的实力。我笑了。一次小小的失败算什么?成功固然高兴,失败更不用悲伤。一次次的失败,也许会成为我迈向成功

的坚实基石…… 不久,家中出现了与以往截然不同的景象:我一回到家就开始读书,而不是跑出去玩;吃完饭乖乖呆在家中看作文,而不是看电视。我每天勤奋刻苦地学习,渐渐发现了学习的乐趣,畅游在神秘的书本中学到十点也不肯放下书。从每天大人催读书,变成了催睡觉。彻底从要我学转变到了我要学。 终于,在五年级的奥语竞赛中,我获得了一等奖,全年级第五名。我怀着激动的心情蹦回家向妈妈汇报了成绩。妈妈脸上露出了久违的笑容。可是过了一会儿,妈妈的脸又严肃起来,说:"不能因为一次考好了就骄傲,反而要更加努力,争取取得下次语奥竞赛第一名,要记住,学无止境。" 失败只代,表昨天,只能意味着过去,过去的一切只能化作零,我要重新开始,以新的姿态面对失败,迎接下次挑战。 所以,当失败来临,我们就应该坚信上帝已为我们打开了另一扇通向成功的门,怀着失败给予我们的箴言上路吧!成功已不远。 成功经验与失败教训篇2 成功如蜜甜,失败如药苦。当我们没有经过坎坷,就轻而易举地尝到成功时,成功的甜味也会入口即逝;可当我们历经千辛万苦才尝到成功的甜味时,那甜味就回渗入我们的血液,在口中回味无穷。只有这样才能品尝出成功的甜味的精髓所在。 成功是每一个人梦寐以求的,失败是每个人不屑一顾的,可是失败为了引起人们的重视,就三番四次的出现在我们面前,百般阻挠我

论-中期数值天气预报的集合预报试验

第4卷 第4期 1999年12月气 候 与 环 境 研 究Climatic and Environmental Research Vol.4, No.4Dec . 1999 中期数值天气预报的集合预报试验 蔡其发 张立凤 张 铭 (空军气象学院,南京 211101) 摘 要 利用中国科学院大气物理研究所研制的T42L9谱模式,在中期数值预报领域中引 入集合预报的概念和方法,初始扰动场取为T42L9谱模式24小时预报误差的平均均方差乘 随机数,再综合利用蒙特卡洛预报(MCF)和落后平均预报(LAF)两种方法作集合预报试 验,试验结果表明:各成员预报的等权平均或不等权平均的集合预报明显优于单一的控制预 报;不等权平均与等权平均的集合预报结果相比较,不等权平均的集合预报优势较明显;在 不等权平均的集合预报中,区域性不等权平均又比全球性不等权平均的预报稍好。 关键词 中期数值天气预报 集合预报 试验 1 引言 数值预报是以某个初始场为基础,通过逐日积分来做预报的,因而初始场具有极端重要的意义。但是初始场又不可避免地带有一定的误差,即有某种不确定性,因此数值预报就有一定的随机性,特别是对短期气侯预测而言。为了克服这个问题,Leith [1]提出了一种随机动力预报方法,建议用多个预报的集合来计算统计平均。集合预报方法从提出至今,主要是用于短期气侯预测领域,如:Miyakoda 等[2] 首先用大气环流模式做了30天平均的有意义的动力预报。Murphy 等[3]也证实了用大气环流模式能较好的制作经过时间或空间滤波的具有使用价值的预报。胡增臻等[4]利用动力、统计方法相结合,建立了一个带随机初值和随机强迫的简单动力模式作集合预报试验,获得了比单纯的动力模式或随机模式更好的结果。Baumhefner [5]利用低分辨率的气候模式,应用集合预报技巧制作10~30天的动力延伸预报,获得了与高分辨率气候模式预报质量相当的预报结果。1992年美国国家气象中心在中期数值业务预报中引进了集合预报方法[6],但目前的中国尚未见到将集合预报方法引入中期数值预报领域的报道。 集合预报的常用做法有两种:一种是在某个时刻的观测初始状态(初始场)上叠加或扣除不同的随机扰动场,从而得到多个带有不同的随机扰动的初始场,再由这些不同的初始场分别作预报,然后把这些不同的预报结果求平均,这种方法称为蒙特卡洛预报(Monte Carlo Forecast ,简写为M CF),也有人称做随机扰动预报(Random Perturbation Prediction);另一种集合预报方法是Hoffman 和Kalnay [7]提出来的,这种方法是用相距6小时或12小时的不同时刻初始场分别作预报,然后把相同时刻的预报结果求平均,称为落后平均预报(Lagged Average Forecast ,简写为LAF )。具体做法又可分为两种,即不加权(L F)和加权(L F),加权时权重系数根据预报误差 35收到,56收到修改稿 本工作得到国家重点基础研究发展规划项目“我国重大气候灾害的形成机理和预测理论的研究”的资助a A t A 1998-0-21998-0-2

东亚模式对中国经济发展的启示

……………………………………………………………最新资料推荐………………………………………………… 东亚模式这个概念属于历史学与社会学、经济学等多学科范畴,旨在探究东亚后进国家与地区,特别是“亚洲四小龙”实现现代化的历程。东弧模式特指“亚洲四小龙”在相类似的历史、宗教以及文化背景条件下,釜底依托政府干预手段,重视教育与人力资源发展,通过经济社会生活各方面的超越发展战略实现现代化的一种模式。本文站在促进中国经济发展的角度,尝试东亚模式与中国经济发展内在关联的探究。一、东亚模式的基本特征及其局限性分析(一)东亚模式的基本特征东亚模式的特征可有不同的表述,概括起来主要体现在以下三个方面:1、在经济上,主张国家对经济进行适度干预,市场调节与政府干预有机结合,倡导经济立国,通过实施出口导向型的外向经济发展战略,实现经济的高速增长。2、在政治上,实行集权主义和精英治国。严厉的压制性体制成功地维持了一种稳定的政治环境和社会环境,而训练有素的技术精英则可以保证决策的合理化和科学化,获得经济增长。3、在文化上,倡导儒家传统文化。儒家传统文化被称为东亚发展的“文化影响模式”,又称“东方情感型模式”,与被称为“现代型模式”的西方型文化迥异。根植于西方文化的现代型模式追求效率,强调个性。而东方型情感模式则强调人际关系的重要性;崇尚集体意识,强调个人利益服从集体利益;宣扬和谐精神,主张用伦理道德信条来规范人的行为和协调人际关系。(二)东亚模式的缺陷东亚模式与“亚洲四小龙”的崛起紧密相关,它的历史成就客观存在,但东亚模式自身也有其难以克服的缺陷:1、东亚模式本质上是一种赶超模式。为实现赶超发达国家的目标,不少国家政策上片面追求经济增长速度和经济规模的扩张,而忽视宏观经济的稳定和协调发展;重视物质的增长,而忽视社会、环境和资源的可持续发展。2、东亚国家发展基本上都实行外向型战略。由于以出口为导向,以外资为增长动力,常常导致对同外资本、技术和市场的过度依赖而忽视内部资本积累和国内市场的开发;一旦外资进入减少或国际市场萎缩,经济增长就失去动力,甚至会出现经济衰退现象。3、东亚各经济体的工业化进程一般从发展劳动密集型的消费品产业入手,这种产业的比较优势是难以持久的。随着经济的发展和国际竞争的加剧,劳动密集型产业必将实现向资本密集型产业,而后向技术知识密集型产业转变。4、政府对经济干预过多。政府对经济的过分干预容易导致政府包办一切,忽视甚至违背市场经济规律。政府的决策失误必将带来经济的非正常发展,不利于市场主体的公平竞争,也极易滋生腐败现象。二、东亚模式对当代中国经济发展的启示(一)它山之石,可资中国经济发展借鉴东亚经济增长的魅力体现在很多方面,值得一提的是其在经济体制上的独特属性,这些独特属性对中国经济发展不乏借鉴意义:1、跨越性特征。许多东亚国家、地区自摆脱殖民地经济、依附经济,建立自己的民族经济以来,到东亚金融危机爆发前,基本上没有经历过严重的市场失灵危机和政府失灵危机的发展阶段。从总体上看,东亚模式的形成,跨越了市场经济的古典体制”。而且政府采取的符合市场经济发展规律的干预活动,无形中创造了政府和市场的合力,创造了政府和市场二元机制优化组合的新体制。下一页2、兼容性特征。这里主要谈经济体制上的兼容:“东亚模式”是对传统的无政府的市场经济、政府刺激有效需求的膨胀型的市场经济及完全由政府直接支配的计划经济的扬弃。它是有政府管理的非财政金融膨胀型的非单一计划调节的经济,承袭了无政府经济中的市场竞争制度、有效需求管理型经济中的政府宏观调控职能、计划经济中的政府计划指导机制。3、多元性、差别性特征。东亚国家、地区间及国家范围内的地区间的生产力发展水平参差不齐,在较长的时期内,电子计算机与算盘并存,高科技与原始的农耕技术并存。这里有最富裕的人口和地区,也有最贫穷的人口和地区。由于经济体制改革的时间不同,经济起飞的时间各异,形成了阶梯多样性特征。我国经济发展也存在着很大的地区性差异,东部沿海地区经济、科技等各方而发展迅速,而中西部地区则相对落后。所以,中国应借鉴东亚模式在多元性、差别性的背景下发挥差异性的优势,充分发挥各地区的优势,促进整个经济的发展。

一种经验模式预报东亚夏季风

An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO Zhiwei Wu,1,2Bin Wang,2Jianping Li,1and Fei-Fei Jin2 Received8January2009;revised2July2009;accepted13July2009;published29September2009. [1]How to predict the year-to-year variation of the east Asian summer monsoon(EASM) is one of the most challenging and important tasks in climate prediction.It has been recognized that the EASM variations are intimately but not exclusively linked to the development and decay of El Nin?o or La Nin?a.Here we present observed evidence and numerical experiment results to show that anomalous North Atlantic Oscillation(NAO)in spring(April–May)can induce a tripole sea surface temperature pattern in the North Atlantic that persists into ensuing summer and excite downstream development of subpolar teleconnections across the northern Eurasia,which raises(or lowers)the pressure over the Ural Mountain and the Okhotsk Sea.The latter strengthens(or weakens)the east Asian subtropical front(Meiyu-Baiu-Changma),leading to a strong(or weak)EASM. An empirical model is established to predict the EASM strength by combination of the El Nin?o–Southern Oscillation(ENSO)and spring NAO.Hindcast is performed for the 1979–2006period,which shows a hindcast prediction skill that is comparable to the 14state-of-the-art multimodel ensemble hindcast.Since all these predictors can be readily monitored in real time,this empirical model provides a real time forecast tool. Citation:Wu,Z.,B.Wang,J.Li,and F.-F.Jin(2009),An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO,J.Geophys.Res.,114,D18120,doi:10.1029/2009JD011733. 1.Introduction [2]The poor simulation of the Indian monsoon was noted by many previous studies[e.g.,Sperber and Palmer,1996; Gadgil and Sajani,1998;Wang et al.,2004],yet the east Asian summer monsoon(EASM)has only recently been revealed as a major challenge in numerical simulation[Kang et al.,2002;Wang et al.,2004]and seasonal prediction [e.g.,Chang,2004;Wang et al.,2005;Wu and Li,2008]. The multimodel ensemble(MME)is generally better than any single model prediction[Doblas-Reyes et al.,2000; Palmer et al.,2000;Krishnamurti et al.,1999],providing an effective way to aggregate and synthesize multimodel forecasts[Wang et al.,2008a].However,examination of the ensemble of five state-of-the-art atmospheric general circu-lation models’(AGCMs)20-year(1979–1998)hindcast experiment indicates that the ensemble skill of these models remains very low in forecasting the EASM[Wang et al., 2005].Therefore,determination of the predictability of the EASM and identification of the sources of predictability are of central importance to seasonal prediction of the EASM and associated uncertainties[Wang et al.,2008b]. [3]It has been generally recognized that the EASM experiences strong interannual variations associated with the El Nin?o–Southern Oscillation(ENSO)[e.g.,Fu and Teng,1988;Weng et al.,1999,Wang et al.,2000,2008c; Chang et al.,2000a,2000b;Yang and Lau,2006].In the last30years,the dominant empirical orthogonal function mode indicates that an enhanced east Asian subtropical front and abundant Meiyu occur during the summer when El Nin?o decays[Wang et al.,2008c].Why is there a ‘‘delayed’’response of the EASM to ENSO in the ensuing summer when sea surface temperature(SST)anomalies disappear in the tropical eastern central Pacific?Wang et al.[2000]pointed out that the interaction between the off-equatorial moist atmospheric Rossby waves and the under-lying SST anomalies in the western Pacific warm pool region can‘‘prolong’’the impacts of ENSO from its mature phase to decaying phase and causes a‘‘delayed’’response of the EASM to ENSO.Nevertheless,since the EASM has complex spatial and temporal structures that encompass tropics,subtropics,and midlatitudes,its variability is influ-enced not only by the variations originated from the tropics (i.e.,ENSO)[e.g.,Chen and Chang,1980;Huang and Lu, 1989;Wu et al.,2000;Ding,2004;Ninomiya,2004;Wu et al.,2006],but also by those from the midlatitudes to high latitudes[e.g.,Enomoto et al.,2003;Wu et al.,2006;He et al.,2006;Ding and Wang,2007]. [4]North Atlantic Oscillation(NAO)is a large-scale seesaw in atmospheric mass between the subtropical high and the polar low[e.g.,Walker and Bliss,1932;Bjerknes, 1964;van Loon and Rogers,1978;Wallace and Gutzler, 1981;Barnston and Livezey,1987;Li and Wang,2003]. Trenberth et al.[2005]suggested that the Northern Hemi-sphere annual mode and associated NAO is the third most JOURNAL OF GEOPHYSICAL RESEARCH,VOL.114,D18120,doi:10.1029/2009JD011733,2009 Click Here for Full Article 1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China. 2Department of Meteorology and IPRC,University of Hawai’i at M a noa,Honolulu,Hawaii,USA. Copyright2009by the American Geophysical Union. 0148-0227/09/2009JD011733$09.00

东亚奇迹的教训与反思

东亚奇迹的教训与反思 莫倩云1 摘要:东亚8个经济体只用了三十年就完成了工业化,这期间他们经济的高速增长,让世界感到大惑不解,被称为东亚奇迹。这个奇迹依托的是亚洲人高储蓄和努力工作的价值观,及良好稳定的宏观经济环境,包括对基础教育的高投入、出口导向战略、低通货膨胀率、合理的政府干预等。东亚奇迹的本质则是物质资本和劳动力资源的大量投入。如果不提高生产效率和资源配置效率,不改善经济发展的质量,这样的增长是不可持续的。而给人民提供自由的空间,有助于促使生产效率的提高。 关键词:东亚奇迹亚洲价值观要素增长模型 一、东亚经济增长的奇迹 欧洲国家用了近百年的时间才完成了从农业社会到工业社会的转变,拉丁美洲也历经了二战前后90多年缓慢的工业化。当东亚国家只用了20世纪60年代至90年代这短短三十年时间就完成了社会的工业化和人的工业化。 这三十年间,香港、印尼、马来西亚、新加坡、韩国、台湾及泰国这8个国家和地区的经济年平均增长率为5.5%,比东亚其他国家快2倍,比拉丁美洲快3倍。2这些东亚经济体的迅猛增长震惊了世界,被称为东亚奇迹。 他们的起点曾经很低。1960年,日本、韩国、新加坡、香港和台湾的人均GDP 水平分别为7093美元、1110美元、2203美元、3022美元和1012美元,分别相当于当时美国人均GDP水平的50.2%、7.9%、15.6%、21.4%和7.2%。 三十年后,大部分东亚国家和地区踏入了中等发达经济体的行列。到2004年,日本、韩国、新加坡、香港和台湾的人均GDP水平按照不变价格计算,分别达到39195美元、12743美元、23636美元、27597美元和13609美元,分别相当于美国人均GDP水平的106.5%、34.6%、64.2%、75.0%和37.0%3。他们占世界出口的份额由1965年的9%增加到了1990年的21%。 这一奇迹引发西方发达社会的广泛关注,各派学者围绕亚洲社会和西方社会的经济发展方式和文化架构对经济的影响展开了激烈的讨论。 二、亚洲价值观和宏观经济环境 早期的探索者倾向于把东亚的经济飞速增长归因于东西方社会的差异,包括文化方面和宏观经济、政府干预方面,试图找到东亚经济统一的模式,但除了东亚都属于儒家文化圈和稳定的宏观经济环境之外,政府干预的程度和方式各有千秋,从总体上看,不存在所谓“东亚模式”,但仔细考察,同属儒家文化圈下的东亚各明星确实存在一些相似的地方。

相关文档
最新文档