热线法测量材料热导率

热线法测量材料热导率
热线法测量材料热导率

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。这样,只要测量低温侧

铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

动态法测定良导体的热导率

〖实验二十五〗 动态法测定良导体的热导率 实验时间2015年4月28日 报告时间2015年4月29日 1300011454 周二下午第2组3号 〖目的要求〗 1、测定良导体的热导率; 2、学习一种测定材料热导率的方法; 3、了解动态法测定良导体的特点和优越性; 4、认识热波,加强对波动理论的理解。 〖仪器用具〗 热导率动态测量仪,微机。

〖实验原理〗 1、热流方程 本实验采用非稳态法测定良导体的热导率。取棒状样品,假定热量仅沿一维传播。取一小段棒元,根据傅里叶导热定律,单位时间内在单位等温面上沿温度降低方向流过某垂直于传播方向的热流密度为: q T t t κ??=-?? 式中:κ为待测材料的热导率。由导热定律可推得热流方程: 22,T T t x c κααρ??==?? 式中:α称为热扩散率。 2、热波方程 热流方程的解将各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度围绕T 0按简谐规律变化,即: 0 sin m T T T t ω=+ 式中:T m 为热端的最高温度;ω为热端温度变化的角频率。 假设另一端无反射并保持恒定温度为T 0,则式热流方程的解也就是棒中各点的温度,即: 0 exp sin m T T kx T t ω??? =-+- ? ? ???

式中的T 0是直流成分;k 是线性成分的斜率。 从上式中可以看出: (1)当热端(x=0)温度按简谐方式变化时,这种变化将以衰减波的形式在棒内向冷端传播,称为热波,也就是温度波。 (2)热波波速 v =(3)热波波长 2λπ =因此在角频率。已知的情况下,只要测出波速或波长就可以计算出 α然后再由 c κ αρ= 计算出材料的热导率κ。由热波波速公式,可得: 222 424period c v v c T c f v κρρκρππω===? 式中:f ,T period 分别为热端温度按简谐变化的频率和周期。 从上述原理可知实现热导率测量的关键是: ①实现热量的一维传播; ②实现热端温度随时间按简谐形式变化的边界条件。 本实验采取的热波法,特点是当热量在样品中传播时,样品中各点的温度不像稳态法那样必须保持恒定,只要给定适当边界条件,可以做到样品上各点的温度均可随时间进行简谐变化,利用这种变化可以很容易测出热波波速,进而可计算出样品材料的热导率。

常用材料的导热系数表

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是 性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。 d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选 用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。 e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。

常用材料的导热系数表

材料的导热 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

非良导体热导率的测量带实验数据处理

本科实验报告 (阅) 实验名称:非良导体热导率的测量 实验11 非良导体热导率的测量 【实验目的和要求】 1.学习热学实验的基本知识和技能。 2.学习测量非良导体热导率的基本原理的方法。 3.通过做物体冷却曲线和求平衡温度下物体的冷却速度,加深对数据图事法的理解。 【实验原理】 热可以从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分,这种现象叫做热传递。热传递的方式有三种:传导,对流和辐射。 设有一厚度为l、底面积为S?的薄圆板,上下两底面的温度T ,T 不相等,且T1>T2,则有热量自上底面传乡下底面(见图1),其热量可以表示为 (1)

图1 测量样品 式中,为热流量,代表单位时间里流过薄圆板的热量;为薄圆板内热流方向上的温度梯度,式中的负号表示热流方向与温度梯度的方向相反;为待 测薄圆板的热导率。 如果能保持上下两底面的温度不变(稳恒态)和传热面均匀,则,于是 (2) 得到 关键1.使待测薄圆板中的热传导过程保持为稳恒态。 2.测出稳恒态时的。 1.建立稳恒态 为了实现稳恒态,在试验中将待测薄圆板B置于两个直径与B相同的铝圆柱A,C 之间,且紧密接触,(见图2)。 图二测量装置 C内有加热用的电阻丝和用作温度传感器的热敏电阻,前者被用来做热源。首先,

可由EH-3数字化热学实验仪将C内的电阻丝加热,并将其温度稳定在设定的数值上。B的热导率尽管很小,但并不为零,固有热量通过B传递给A,使A的温度T A逐渐升高。当T A高于周围空气的温度时,A将向四周空气中散发热量。由于C的温度恒定,随着A的温度升高,一方面通过C通过B流向A的热流速率不断减小,另一方面A向周围空气中散热的速率则不断增加。当单位时间内A 从B 获得的热量等于它向周围空气中散发的热量时,A的温度就稳定不变了。 2.测量稳恒态时的 因为流过B的热流速率就是A从B获的热量的速率,而稳恒态时流入A的热流速率与它散发的热流速率相等,所以,可以通过测A在稳恒态时散热的热流速率来测。当A单独存在时,它在稳恒温度下向周围空气中散热的速率为 (3) 式中,为A的比热容;为A的质量;n=T=T2成为在稳恒温度T2时的冷却速度。 A的冷却速度可通过做冷却曲线的方法求得。具体测法是:当A、C已达稳恒态后,记下他们各自的稳恒温度T2,T1后,再断电并将B移开。使A,C接触数秒钟,将A 的温度上升到比T2高至某一个温度,再移开C,任A自然冷却,当TA降到比T2约高To(℃)时开始计时读数。以后每隔一分钟测一次TA,直到TA 低于T2约To(℃)时止。测的数据后,以时间t为横坐标,以TA为纵坐标做A 的冷却曲线,过曲线上纵坐标为T2的点做此曲线的切线,则斜率就是A在TA 的自然冷却速度,即 (4) 于是有(5) 但要注意,A自然冷却时所测出的与试验中稳恒态时A散热是的热流速率是不同的。因为A在自然冷却时,它的所有外表面都暴漏在空气中,都可以 散热,而在实验中的稳恒态时,A的上表面是与B接触的,故上表面是不散热的。由传热定律:物体因空气对流而散热的热流速率与物体暴露空气中的表面积成正比。设A的上下底面直径为d,高为h,则有 (6)

良导体热导率的动态法测量

西安交通大学 大学物理仿真实验报告 姓名:李宗阳 班级:能动28 学号:2120301210

实验名称:良导体热导率的动态法测量 一.实验目的 1.通过实验学会一种测量热导率的方法。 2.解动态法的特点和优越性。 3.认识热波,加强对拨动理论的理解。 二.实验原理 实验采用热波法测量铜、铝等良导体的热导率。简化问题,令热量沿一维传播,周边隔热,如图1所示。根据热传导定律,单位时间内流过某垂直于传播方向上面积A 的热量,即热流为 x T KA t q ??-=?? (1) 其中K 为待测材料的热导率,A 为截面积, 文中x T ??是温度对坐标x 的梯度,负号表示热量流动方向与温度变化方向相反.dt 时间 内通过面积A 流入的热量 dxdt x T KA dt t q t q dq dx x x 22??=?? ??????? ????-??? ????=+ 图1 棒 元 若没有其他热量来源或损耗,据能量守恒定律,dt 时间内流入面积A 的热量等 于温度升高需要的热量dt t T Adx c dq ?? ? ????=ρ,其中C ,ρ分别为材料的比热容与密度。所以任一时刻棒元热平衡方程为

dx x T K t T dx C 22??=??ρ (2) 由此可得热流方程 22x T D t T ??=?? (3) 其中ρC K D =,称为热扩散系数. 式(3)的解将把各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度按简谐变化,即 t T T T m ωsin 0+= (4) 其中T m 是热端最高温度,为热端温度变化的角频率。另一端用冷水冷却, 保持恒定低温o T ,则式(3)的解也就是棒中各点的温度为 )sin(202x t e T x T T D x m D ωωαω-?+-=- (5) 其中T 0是直流成分,α是线性成分的斜率,从式(5)中可以看出: 1) 热端(x=0)处温度按简谐方式变化时,这种变化将以衰减波的形式在棒内向冷端传播,称为热波. 2) 热波波速:ωD V 2= (6) 3) 热波波长:ωπλD 22= (7) 因此在热端温度变化的角频率已知的情况下,只要测出波速或波长就可以计算出 D .然后再由ρ C K D =计算出材料的热导率K .本实验采用.式(6)可得 ωρC K V 22= 则T C V f C V K πρπρ4422== (8) 其中,f 、T 分别为热端温度按简谐变化的频率和周期.实现上述测量的关键是: 1) 热量在样品中一维传播.2) 热端温度按简谐变化.

保温隔热绝热材料性能检测导热系数检测方法

保温隔热绝热材料性能检测导热系数检测方法 1.1 适用范围及引用标准 1.1.1 适用范围 本规程规定了保温、隔热、绝热材料导热系数的检测方法。本规程适用于保温、隔热、绝热材料干燥匀质试件导热2·K/W)的测定,且所系数(被测试件的热阻应大于0.1 m测定的结 果均为在给定平均温度和温差下试件的导热系数。 1.1.2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本规程的条文。使用本规程的各方应探讨使用下列标准最新版本的可能性。 GB 4132 绝热材料名词术语 GB 10294-1988 绝热材料稳态热阻及有关特性的测定 防护热板法 GB 10295-1988 绝热材料稳态热阻及有关特性的测定 热流计法 GB 10296-1988 绝热材料稳态热阻及有关特性的测定 圆管法 GB 10297-1988 非金属固体材料导热系数的测定方法 热线法 护热平板法塑料导热系数试验方法GB 3399-1982

1.2 仪器设备 1.2.1 量具 应符合GB6342规定。 1.2.2 导热系数仪 导热系数仪根据测试原理不同可分为分为防护热板式导热系数仪、热流计式导热系数仪等。防护热板式导热系数仪示意图见图1.1,热流计式导热系数仪示意图见图1.2。

置装件试a双 b 单试件装置 1.1 防护热板式导热系数仪示意图图 a 单热流计不对称布置

b 双热流计对称布置 式件c 双试装置热流计式导热系数仪示意图图1.2 检测程序1.3 导热系数检测程EPS)1.3.1 绝热用模塑聚苯乙烯泡沫塑料(序GB 10294-1988GB 或按测数热板EPS导系的定。GB 10294-1988规定进行;仲裁方法时执行10295-1988.1.3.1.1 状态调节 样品应去掉表皮并自生产之日起在自然条件下放置28d后进测试。样品按GB/T 2918-1998中23/50二级环境条件进行,在温度(23±2)℃,相对湿度45%~55%的条件下进行16 h状态调节。 1.3.1.2厚度测量

常见材料的导热率

常见材料的导热率部分常见物质导热率 材质 导热率 (W·m?1·K?1) 测试温度 (K) 293K时的电导率 (Ω?1·m?1) 备注 0.17-0.22967.143E-15- 5.0E-14 7.143E-15- 5.0E-14通俗写法 是7.143×10?15– 5.0×10?14 0.024-0.0457273-6002.95-7.83×10? 15 (N,21%O+0.93%Ar+0.04%C O2) (1个标准大气压) 0.1-0.2293-300 237293 3.7E+07 170-190293 1.0E-11 26-40293 1.0E-12 0.507300 0.016-0.0179298-300 218-300293 1.0E-12 7.97300 125296 1.5-1.6E+07(Cu63%, Zn37%) 109-121293-296 1.3-1.6E+07(Cu70%, Zn30%) 0.15-1.31293-298 26-50293-296 5.9-7.1E+06 Sn25%[11] (Cu89%, Sn11%)[23] 0.45394 0.0146-0.017 8 273-300

3180 -3500300-320(Lateral)10?16 - (Ballistic)108SWNT(length:2.6 μm, diameter:1.7?nm) 0.8-1.28293~61-67%CaO 4012935.92-5.96E+07 0.04-0.07293 0.03293 1000273-293 1.0E-16(98.1%的宝石钻) (C+0.1%氮) 2200293 1.0E-1699%的C12和1%的C13 3320-4100293(Lateral)10?16 - (Ballistic)108 C12同位素>99.9% 0.03-0.1398-298 1.0E-14 0.045293 56300 0.8-1.429310?14-10?10氧化亚铁含量<1% 0.29293 318293-2984.52-4.55E+07 1.73-3.98(72%SiO2+14%Al2O3+4%K2O) 4840-5300293 1.0E+08 1.6- 2.22273-293 80300 34.6-80.4293-127 3 9.9-10.4E+06 55298(Fe+(2-4)%C+(1-3)%Si)

材料导热系数测试实验

东南大学材料科学与工程 实验报告 学生姓名 张沐天 班级学号 实验日期 批改教师 课程名称 材料性能测试实验 批改日期 实验名称 材料导热系数测试实验 报告成绩 一、实验目的 1.掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域,在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技术领域中,材料的导热性都是一个重要的问题。 1.材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1K ,在1s 钟内,通过1m2面积传递的热量,单位为 W/(m ·K),也叫热导率。热导率λ由简化的傅里叶导热定律 dx dT -q λ 决定。 2.热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声子和光子,因此固体的导热包括电子导热、声子导热和光子导热。 1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3.影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较

热波法测热导率

热波法测热导率 实验仪器:(注明规格和型号) 本实验使用RB-1型热导率动态测量仪,包括主机、控制单元、记录单元三大部分。 1. 主机:棒状样品及热电偶阵列,脉动热源,冷却装置 2. 控制单元 3. 记录系统 实验目的: 1. 学习一种测量热导率的方法 2. 了解动态法测量热导率的特点和优点 3. 认识热波,加强对波动理论的认识

实验原理简述: 1. 导热微分方程的建立 热传导是指发生在固体内部或静止流体内部的热量交换过程 为使问题简化, 假设样品为棒状, 热量沿一维传播; 在棒上取微元 x→x+dx, 如图中所示. 根据Fourrier导热定律, 单位时间内流过某垂 直于热流方向, 面积为A的热量, 即热流为: 其中q为热流, 表示等温面上沿温度降低方向单位时间内传递的热 量; K为热导率, 表示单位时间内在单位长度上温度降低1K时, 单位 面积上通过的热量; 而在Δt时间内通过截面A流入小体积元dV=Adx的热量为: ,而小体积元升高温度ΔT所需要的热量为: 在无外界条件变化的情况下,以上两式应当相等,联立以上两 式,可以得到: ,并可以由此推知热流方程: 其中D=K/cρ为热扩散率。 该热流方程的解将给出材料上各点温度随时间的变化,解的具 体形式还将取决于边界条件

2. 方程求解 若使热端的温度围绕T0作简谐变化:T=T0+Tm*sinωt,而另一端无反射并且保持恒定温度T0,则可以得到原微分方程的解为并且由上式可以得到热波的波长,热波在棒中的传播速度为因而,在被测样品棒热端温度的周期变化角频率ω已知的情况下,只要测出热波的波速或波长,就可以计算出热扩散率D,进而计算出热导率K。

材料导热系数的测量

材料导热系数的测量 导热系数是反映材料的导热性能的重要参数之一,在工程技术方面是必不可少的。所以对导热系数的研究和测量就显得很有必要。金属材料的导热起主要作用的是自由电子的运动,无机非金属材料的导热则是通过晶格结构的振动(声子)来实现。目前测量导热系数的方法都是建立在傅立叶导热定律的基础上的,分为稳态法和动态法。本实验介绍用稳态法,稳态法是通过热源在样品内部形成稳定的温度分布后,再进行测量的方法。 一、实验目的 1. 了解稳态法测无机非金属材料的导热系数的方法; 2. 掌握KY-DRX-RW 型导热系数测试仪的硬件和软件操作规程; 3. 利用测试仪测量石英、陶瓷两种材料的导热系数。 二、实验仪器 上海实博实业有限公司生产的KY-DRX-RW 型导热系数测试仪,主要由测试头、电器测控系统、冷却恒温水槽、计算机系统组成。各部件接线如图所示。 测试头由加热器、连接样品的上下热极、冷却器、测量热电偶、加压系统组成。加热器采用不锈钢材料加工而成,内装内热式加热器,由高精度数显温控表控温,提供稳定的热极温度。上下热极由不锈钢制成,表面安装有热电偶,热极的作用是传递热量和测量热量。冷却器也是不锈钢材料加工而成,内有水槽,通过管导与外恒温水槽相连,利用外恒温水槽与冷却器的水循环,在冷却器中形成第二恒温场,提供上热极冷端稳定温度。测量热电偶由4支组成,分别测量上下热极表面的4个温度点,利用温度梯度计算热流量。加压系统用于消除试样与热 升降手柄 电脑 显示器 水管 通讯线缆 电源220V 恒温槽 测试主机背面 电器测控系统

极的热阻。 三、实验原理 当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。对于各向同性的物质,在稳定传热状态下有傅立叶定律: t S dx dT Q ??-=?λ 比例系数称导热系数,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是瓦·米-1·开-1(W·m -1·K -1)。 本实验采用的是稳态法测量导热系数。试样被夹在两金属块之间,加压系统是经由一个升降压板和弹簧加压。加热单元是由铜或是其他高导热性的材料构成的,且包含有套筒或是相似的加热线圈。它用热绝缘材料(环氧FR -4)与周围的保温加热器相隔离。绝缘材料为5mm 厚度。保温加热器不受压力,以确保所有的测量能量都传到高测量棒上。测量棒是由高热导性材料构成,并且具有平行的工作表面。冷却单元是一个金属盒,由恒温池对其冷却。实验时,一方面加热单元直接将热量通过样品下平面传入样品,另一方面冷却单元使传入样品的热量不断由样品的上平面散出,当传入的热量等于散出的热量时样品处于稳定导热状态,这时样品的上下平面的温度分别为一定的数值。此时,通过样品厚度、半径、温度梯度与通过样品的热流便可计算导热系数。 具体计算过程如下: 1、流过待测样品的热流 )(*2112 12 T T Q d A -*= λ )(*4334 34 T T Q d A -*= λ Q 12 :流过下热极的热流,W Q 34 :流过上热极的热流,W λ 12 :下热极材料的热导,W/m·K λ34:上热极材料的热导,W/m·K T T 2 1 -:下热极两个热电偶的温差 T T 4 3 -:上热极两个热电偶的温差 A :垂直于热流方向的热极截面积,m 2 d :热极两温差电偶的距离,m 公式中 λ12 = λ34 = 18.5 W/m·K;d = 0.05 m ;热极直径为30mm

实验四稳态平板法测保温绝热材料的热导率λ

实验四、稳态平板法测保温绝热材料的热导率λ 一、 实验目的 1、 巩固和深化稳态导热过程的基本理论,学习用平板法测绝热材料热导率的实验方法 和技能 2、 测定实验材料的热导率 3、 确定试验材料热导率与温度的变化关系 二、 实验原理 热导率是表征材料导热能力的物理量。对不同的材料,热导率各不相同;对同种材料,热导率会随温度、压力、含湿量、物质的结构和密度等因素而不同。各种材料的热导率都是采用实验方法来测定的,如果分别考虑不同因素的影响,就需要对各种因素加以试验,往往不能只在一种试验设备上进行。稳态平板法是应用一维稳态导热过程的基本原理来测定材料热导率的方法,可以用来测定材料的热导率及其与温度的变化关系 实验设备是根据在一维稳态情况下通过平板的导热量Q 和平板两面的温差Δt 成正比,与平板的厚度成反比δ,与热导率λ成正比的关系来设计的 由一维稳态理论,通过薄壁平板(壁厚小于十分之一壁长与壁宽)的稳态导热量为 δ λt A Q ?= w 测试时,如果能够测得平板两面的温差Δt=t R -t L 、平板厚度δ、垂直热流方向的导热面积A 和通过平板的热流量Q ,即可根据下式计算得出热导率λ: A t Q δ λ?= W/m.℃ 上式计算得出的热导率是当时平均温度下材料的热导率值,此平均温度为 )t t (2 1 t L R += ℃ 在不同的温度和温差条件下测出相应的热导率λ,将λ值标在λ—t 坐标图内,就可得出λ=f(t )的关系曲线 三、 实验装置及测量仪表 稳态平板法测绝热材料热导率的实验装置如图1和图2所示。 被试验材料做成二块方形薄壁平板试件,面积300x300[mm 2 ],实际导热计算面积A 为 200x200[mm 2 ],板的厚度为δ[mm]。平板试件被夹紧在加热器的上下热面和上下水套的冷面

Z25-动态法良导体热导率的测量zzz

119 实验二十五 动态法良导热体热导率的测量 物体热导率的稳态测量方法很多,动态法测量在国际上也很普遍,方法有多种。本实验采用的动态法测热导率,其特点是当热量在样品中传播时,给定适当边界条件,做到样品上各点温度均可随时间作简谐变化,而不需象稳态法那样必须保持恒定。利用这种简谐变化便可计算出样品材料的热导率。传热过程中产生的温度波也称热波其特性与机械波、电磁波一样。我们即可用波动理论进行分析研究,这种方法称为热波法。将难于测量的热学量转变为各点温度波形的相位差测量,从而可显著降低测量误差。 【实验目的】 1、认识热波、加深对波动理论的理解。 2、了解动态法的特点和优越性。 3、学习一种测量热导率的方法。 【实验原理】 设热量沿一维方向传播,若对于棒状样品,将其周边隔热, 取一小段样品进行分析如图1。根据热传导定律,单位时间内流过某垂直于传播方向面积A 的热量,即热流为 dx dT KA Q -= (1) 其中K 为待测材料的热导率,dx dT 是温度对坐标x 的梯度.将(1)式两边对坐标取微分有 dx dx T d KA dQ 22-= 根据能量守恒定律,任一时刻棒元的热平衡方程为 dx dx T d KA dQ dt dT Adx C 22-==ρ (2) 其中C ,ρ 分别为材料的比热容与密度,由此可得热流方程 22dx T d D dt dT = (3) 其中ρ C K D = , 称为热扩散系数。 式(3)的解将把各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度按简谐变化,即 t T T T m ωsin 0+= (4) 图1 棒元

导热系数的测定

导热系数的测定 一、实验目的 1.理解导热系数稳态测量方法的特点,掌握双向平板法的测量原理。 2.学会使用NK-III 100E型双试件热导率测定仪,测量并计算石英玻璃板的导热系数。 二、导热系数的测定原理 本实验所用的仪器为NK-III 100E型双试件热导率测定仪,装置原理如图1。按一维稳态的傅立叶公式,在均质试材内部λ=-Q/[A(dt/dn)],式中dt/dn为温度梯度;由于试件的内部温度梯度dt/dn无法直接测得,因此导热系数无法用测试装置简单测出。在NK-III 100E型双试件热导率测定装置中可以测得的是热 面温度T 1,冷面温度T 2 和经过试件的热流量Q,此外就是冷热面的间距即试件厚 度δ。将dt/dn=(T 2-T 1 )/δ代入傅立叶公式,得到λ =Qδ/[A(T 1 -T 2 )],便可 以计算出材料的导热系数。 图1:双试件导热系数测试装置原理示意图 A=计量面加热器 B=计量面面板 C=防护加热器 D=防护面 E=冷却单元 Es=冷却单元 F=温度平衡检测热偶 G=加热单元表面热偶H=冷却单元表面热偶 I=试件 P=加压机构 1 2 3 4 5 6 7 8为测温点

三、实验步骤 1、试件一式两块,尺寸与装置型号一致厚度不超过指标规定限度,两面尽可能加工到平整。不平衡度不超过试件厚度的1%,两块试件厚度相差不超过2%. 2.将测试装置一面的压紧装置取下,拿出冷却器,取出前次试件,置入按步(1)制备后的试件一块(放在热板边上四个卡子中间),注意放试件时,热板板面必须清洁,不能夹入周围保温材料或其它杂质,试件就位后轻轻在边上掀按,若无摇动,即可将冷却器盖上(注意冷板热偶勿夹入),装上压簧机构,调节压紧螺旋,使压紧弹簧指示器指示规定指标处。 3.将装置旋过180度,在另一面按步骤2装上另一试件。 4.接上冷却器进出水管,注意调节水量的夹子应在进水一侧,两面的出水管各自回到恒温水浴(不可并成一路回路),按需要将装置固定于水平和垂直位置(以试件位置为准)。 5.将装置接线面板上标明计量加热器,防护加热器,热偶等接线柱按图5的原则分别与电工仪表和稳压电源及电位差计等妥善连接,把所附热偶接点(公共参考点)浸入至少一公升容量的冰瓶内,注意:冰瓶内必须全部是冰屑和水的混合物,整个测验过程中需经常检查,如融化太多,必须加冰屑并排水。因实验条件有限,现在我们用自来水代替。 6.此时电位差计检查所有8个测温点,此时8点读数应基本一致,相互偏差不超过10微伏。 7.事先按试件大致的导热系数值,以温差为30℃-70℃,100E型计量面直径为0.05m。已知试件厚度,计算计量面加热器所需功率,接通电源,将计量面加热器的输入功率调节到上述计算值,防护加热器输入功率暂按主炉(计量面加热器)功率的2倍计算。 8.冷面温度用自来水冷却,预先调节到冷面温度。 9.立即记录开始加热时间、各表读数等,除第一小时外,以后每隔15分钟到20分钟记录一次。记录内容包括:8点测温读数(精确到0.1微伏),加热器各自的电流电压,室温及各种情况(如停电XX分钟,冰瓶加冰,加热器从XX 电流XX电压调到XX电流XX电压,故障等等)。 10.从第2次记录开始,可按不平衡温差情况调节主炉或环炉(只调一个加热器),按热板两面试件温差情况,调节一个冷却器的水流量(要求两面温差尽可能相等,差别不超过2%)。 11.步骤10以后第2次记录时,根据上述调节以后的情况变化,继续观察或再作调节,但调节不可频繁。 12.经过步骤10和11达到平衡(即不平衡温差在限度以下两试件温差差别在2%以后)后,若连续四次记录的试件温度改变率不超过±1%(功率不变),即认为达到稳定状态。

相关文档
最新文档