地震相的识别

地震相的识别
地震相的识别

通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。

一、地震相分析

(一)地震相概念

地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。

(二)地震相分析

地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下:

(1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。

(2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。

(3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、

下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。

(4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。

(5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。

(6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。

由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。

二、地震相划分标志

(一)外部几何形态

外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。

目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘

形和充填型等。

1.席状

席状反射是地震剖面上最常见的外形之一,其主要特点是上下界

面接近平行,厚度相对稳定。席状相单元内部通常为平行、亚平行或乱岗状反射结构,可代表深湖、半深湖等稳定沉积环境和滨浅湖、冲积平原等不稳定沉积环境。

图1 地震相单元外形示意图

3.楔状

特点是在倾向方向上厚度向一个方向逐渐增厚,向相反方向减薄而终止;在走向方向则常呈丘状。楔状代表一种快速、不均匀下沉作用,往往出现在同生断层下降盘、大陆斜坡侧壁的三角洲、浊积扇和海底扇中,是陆相断陷湖盆最常见的地震相单元。楔状相单元内部若为前积反射结构,常代表扇三角洲;若分布在同生断层下降盘,而且内部为杂乱、空白、杂乱前积或帚状前积,则是近岸水下扇、冲积扇或其他近源沉积体的较好反映。

4.滩状

顶部平坦而在边缘一侧反射层的上界面微微下倾。一般出现在陆架边缘、地台边缘和碳酸盐岩台边缘。

5.透镜状

特点是中部厚度大,向两侧尖灭,外形呈透镜体。一般出现在古河床、沿岸砂坝处,有时在沉积斜坡上也可见到透镜体。

6.丘形

其特点是凸起或层状地层上隆,高出于围岩。上覆地层上超于丘形之上,大多数丘形是碎屑岩或火山碎屑岩的快速堆积或生物生长形成的正地形。不同成因的丘形体具有不同的外形。根据外形上的差异,可以分为简单扇形复合体(如水下扇、三角洲朵叶)、重力滑塌块体、等高流丘、碳酸盐岩岩隆(滩和礁)。丘状外形在断陷盆地边界也很常见。近岸水下扇、冲积扇等的走向剖面也常显示丘状。湖盆内部的中、小型三维丘状体,特别是在其顶面有披盖反射出现时,是浊积扇的标志。

7.充填型

充填外形的判别标志是下凹的底面,它反映了冲刷一充填构造或断层、构造弯曲、下部物质流失引起的局部沉降作用。根据外形的差别可划分为河道充填、海槽充填、盆地充填和斜坡前缘充填等(图2)。根据内部结构还可以划分为上超充填、丘形上超充填、发散充填、前积充填、杂乱充填和复合充填等等(图2)。充填型代表各种成因的沉积体,如侵蚀河道、海底峡谷、海沟、水下扇、滑塌堆积等。

(二)内部反射结构

1.平行与亚平行反射结构

该反射结构以反射层平行或微微起伏为主要特征。它往往出现在席状、席状披盖及充填型单元中。平行与亚平行反射代表均匀沉降的陆架三角洲台地或稳定的盆地平原背景上的匀速沉积作用(图3a,b)。

2.发散反射结构

其特征是相邻两个反射层向同一个方向倾斜(图3c),向发散方向反射增多并加厚,在收敛方向上反射突然终止。出现这种现象可能是由于地层厚度向上倾方向变薄,低于地震分辨率的缘故。发散结构一般出现在楔状单元中,表明沉降速度差异不均衡。在滚动背斜上,三角洲前缘砂岩和页岩反射层系向同期形成的同生断层方向有明显的发散现象,是油气聚集的有利地带。

3.前积反射结构

前积反射结构通常反映某种携带沉积物的水流在向前(向盆地)推进(前积)的

图3 平行(a)、亚平行(b)和发散(c)反射结构示意图

过程中,由前积作用产生的反射结构,这种反射结构在地震剖面上最容易识别。它在倾向剖面上相对于上下反射层系均是斜交的,是陆架一台地或三角洲体系向盆地方向迁移过程中沉积在前三角洲或大陆坡环境内岩相的地震响应。根据其内部形态上的差别,可以进一步划分为s型、斜交型、s复合斜交型、切线斜交型和叠瓦型s种,如图4b。

前积结构在不同方向的测线上表现形式不同。在倾向方向上呈前积型,在走向方向上则呈丘形。

4.乱岗状反射结构

乱岗状反射结构由不规则的、不连续亚平行的反射组成,常有许多非系统性的反射终止和同相轴分裂现象,波动起伏幅度小,接近地震分辨率的极限(图5)。

图4 前积反射结构示意图图5 乱岗状反射结构示意图

a-S型;b一斜交型;c—切线斜交型;d一复合斜交型;e一叠瓦型

乱岗状反射结构侧向变为比较大的明显的斜坡沉积模式,向上递变为平行反射。该反射结构代表一种分散弱水流或河流之间的堆积,解释为前三角洲或三角洲之间的指状交互的较小的斜坡朵叶地层。

5.杂乱状反射结构

杂乱状反射结构的特点是不连续的、不规则的反射,振幅短而强。它可以是地层受到剧烈变形,破坏了连续性之后造成的,也可以是在变化不定相对高能环境下沉积的。在滑塌结构、切割与充填河道综合体、高度断裂的、褶皱的或扭曲的地层,都可能产生这种反射结构。

另外,许多火成岩侵人体、泥丘(盐岩)刺穿以及深部地层都可能出现杂乱反射结构。这些地质体本身可能是均质的或成层的,但因为反射能量太弱,低于随机噪声的水平而呈现不规则的杂乱结构。盐岩与围岩界面不规则也是形成杂乱反射的原因。

6.无反射

没有反射反映了纵向上沉积作用的连续性。如厚度较大的快速和均匀的泥岩沉积,它们有利于碳氢化合物的生成和超压带的形成。无反射有时也反映均质的、无层理的、高度扭曲的或者倾角很陡的砂岩、泥岩、盐岩、礁和火成岩体。

三、陆相湖盆主要砂岩沉积体地震相特征

陆相湖盆由于沉积作用和断裂活动的复杂性和多样性,发育形成了多种沉积样式和特殊地质体,它们在地震剖面上具有各自特殊的地震属性,形成了多种多样的地震相类型,可大致划分为以下几种:砂砾岩扇体地震相、三角洲地震相、滩坝砂体地震相、河道砂体地震相、生

物礁地震相、火成岩地震相、白云岩地震相、潜山地震相、深湖相泥岩地震相、盐丘地震相等10种类型。这里主要介绍与砂岩沉积体有关的地震相特征。

(一)砂砾岩扇体地震相

陆相湖盆由于湖岸至深湖中心距离短,物源充足,水系发育,使本区沉积发育了大量的砂砾岩扇体。同时不同时期地质条件不同,即使同一时期由于沉积部位不同沉积的砂砾岩扇体,也会因物源的距离、水体深度、湖底坡度、水动力条件和形成机制等各方面的差异而导致其形态、规模、岩性和物性都有所不同。根据沉积相、测井相、地震相标志特征,将陡坡带划分为6种不同类型的砂砾岩扇体:冲积扇、近岸水下扇、扇三角洲、辫状河三角洲、陡坡深水浊积扇、近岸砂体前缘滑塌浊积扇。各类扇体的一般地震相特征为;

(1)一般产于箕状断陷盆地陡坡一侧的断层面附近,或古地貌的山谷出口。

(2)平面外形复杂,典型的呈扇形,顺倾向方向呈楔形,横界面为典型的丘状。

(3)在顺倾向方向的地震剖面中,发散型的反射结构十分发育,或称帚状结构,收敛点指向扇端。在多期扇体相互叠置的剖面上,由于侧向上的差异压实作用和水流的冲刷剥蚀作用,扇体也可呈丘形反射特点。

(4)在倾向地震剖面上,地震反射的连续性是多变的。一般说,在各期扇体的顶面和远端的反射连续性强,在它的内侧靠近断层面附

近,反射杂乱或无反射。在它的顶端,特别是靠上的扇体顶面,反射的连续性变差。

(5)在走向剖面上,典型扇体的外包络多呈丘状反射,背斜反射幅度最高部位多为扇中,内幕反射向扇端方向连续性变好,向扇根方向连续性变差。

典型扇体的地震相特征如下:

1.冲积扇体

这类扇体主要发育于陆相湖盆边缘,处于湖盆近物源区的峡谷出口处,由于古地形高差大,古气候干燥炎热,在湖盆边缘由季节性洪水搬运和堆积了一套粗碎屑物质,在平面上可分为扇根、扇中和扇端3个亚相。其最大特征为突发性强,以剥蚀充填为主,沉积厚度和面积相对较大。在顺延物源方向的地震剖面上,其反射外形呈宽缓的丘状反射,内部反射结构在扇体的不同亚相特征又有所不同,其中扇根和扇端亚相为空白和杂乱反射,而扇中亚相为低频的亚平行或发散结构(图6);在垂直物源方向的地震剖面上,其反射外形为倾角较陡的丘状反射,内部为杂乱一短波状反射结构,同相轴连续性差,反射振幅较强。

2.水下扇体

近岸水下扇体是在滨浅湖、半深湖区水下形成的扇形砾岩体。它主要形成于陆相断陷湖盆的扩张期,随着湖水范围的扩大,扇体也不断后退,并始终沿湖盆边缘紧邻山麓部位分布,平面上也分为扇根、扇中和扇端3个亚相,自下而上表现为扇根一扇中一扇端一浅湖一深湖沉

积,构成向上变细变薄的垂向层序。近岸水下扇由于它整体没于水下,地震反射成层性和连续性好,但在陡坡带的不同部位所发育的扇体其地震相特点有所不同,通常在顺延物源方向的剖面上,由于与上覆地层岩性差异较大,扇体包络面反射振幅较强,其反射外形一般呈逐渐收敛的楔状体,内部反射呈小角度的发散结构(图7);在垂直物源方向的地震剖面上,扇体大都为丘状反射,内部反射为亚平行结构,同相轴为中等连续的中强振幅。

图6冲积扇体地震反射特征(垂直物源方向)图7近岸水下扇体地震反射特征(沿物源方向)

3.扇三角洲

扇三角洲是从邻近高地推进到稳定水体(海、湖)中去的冲积扇,其发育的基本条件是源区地势高、坡降陡,具有丰富的物源条件。其形成的动力机制比较复杂,陆上部分也可看作为洪积扇体,而水下部分与三角洲具有很大的相同性,平面上扇三角洲可分为3个亚相,即扇三角洲平原、扇二角洲前缘和前扇三角洲。具有典型的前积特征,一般呈斜交型前积结构,代表着水动力较强、物源供应充足的沉积环境(图8)。在垂直物源方向上,一般为宽缓的丘状反射,内部为低频

的平行或亚平行结构,同相轴为连续性较好的强振幅反射。

4.辫状河三角洲

陆相湖盆演化萎缩期随着构造运动的由强变弱,湖水深度由深变浅,沿陡坡带断阶之上山地河流人口处附近,形成较为独立、规模较小、垂直湖盆长轴方向进积型为主的三角洲复合体。主要特点是短流程辫状河流携带粗碎屑物人湖,河口处坡降较大,碎屑物卸载快,

图8 扇只角洲地震反射特征(沿物源方向)图9辫状河三角洲砂体地震反射特征(沿物源方向)

前积作用明显。辫状河三角洲可分为三角洲平原亚相、三角洲前缘亚相、前三角洲亚相3个亚相。

尽管辫状河三角洲与曲流河三角洲在发育规模上存在较大差异,但在地震反射特征上却有很大的相似性。在地震剖面上,中间为斜交前积反射,前积反射一般代表辫状河三角洲前缘和前三角洲,顶积层一般代表着辫状河三角洲平原相沉积,地震剖面上多为中弱振幅反射同相轴,其产状为发散或亚平行;在底积层地震剖面上表现为中弱振幅、低到中等连续性,为亚平行或发散结构,如图9。在垂直物源方向剖面上为席状反射,内部为平行结构,反射振幅有变化。

5.陡坡深水浊积扇体

这类扇体为陆相断陷湖盆陡坡一侧特有,发育于断陷一深陷期的重力流沉积系列。主要发育于低位体系域和湖侵体系域中。季节性洪水期,在山高湖深、坡陡流急的条件下,沿主水流方向携带大量碎屑,受湖水顶托仍有继续向前搬运和下切的能力,将一些砂砾和泥质物继续向前搬运沉积,形成具有一定规模的扇体。

在盆地构造拉伸最强烈的时期,沿陡坡断裂带及其派生的次级小型断层,常发育一些断裂凹槽,在这些凹槽(或浊积水道)的前方,便发育了大量的以陡坡为物源的深水重力流沉积。在平面上,陡坡深水浊积扇体周围均被半深湖、深湖相泥岩、油页岩所包围。在地震剖面上,扇体包络面比较清楚,往往发育在同生断层的下降盘,其反射外形一般呈楔状或丘形,规模不同其反射外形又有差异,内部为小角度发散结构或波状、杂乱反射结构,如图10。据其岩电特征可划分为内扇、中扇、外扇3个亚相。其中内扇亚相为低频的杂乱反射;中扇亚相由于分选较好,所以成层性较好,同相轴较为连续;外扇亚相为同相轴振幅变弱、连续性变差。

6.近岸砂体前缘滑塌浊积扇体

在陡坡带斜坡之上,随着三角洲、水下扇等沉积物的不断堆积,厚度逐渐加大,促使前缘坡度不断增大。在重力、地震、断裂、洪水等因素的触发下,上述砂体前缘未固结的沉积物便会形成浊流再次搬运,于其前方沉积下来,形成再次滑塌浊积扇沉积系列。其单体规模一般较小,且与陡坡近岸水下扇、扇三角洲等有较好的伴生关系,平面上

可划分为内扇、中扇、外扇3个亚相。

图10陡坡深水浊积扇体地震反射特征(垂直物源)图11近岸砂体前缘滑塌浊积扇体地震相

由于其沉积厚度不是很大,一般在10 )20 rtr左右,在地震frlJ面上大都呈两端尖灭的透镜状或扁楔形,反射振幅中等,连续性较好。该类浊积岩横剖面上,由于差异压实作用,同相轴有小幅度弯曲,呈不太明显的丘状反射,如图11)

(二)三角洲砂体地震相

三角洲砂体在陆相沉积湖盆中,多发育在湖盆的长轴方向,三角洲沉积体通常位于湖、陆之间的过渡地带,其形成的先决条件是湖盆的沉降和携带有大量碎屑沉积物的河流注人。另外,其发育情况还受构造运动、气候、湖平面变化、河口水流性质及湖盆边缘斜坡坡度等多种因素影响。由于湖泊的水动力能量远小于海洋,湖成三角洲一般是以河流作用占优势,形成建设性三角洲,平面上呈鸟足状或锯齿状,如松辽盆地北部古三角洲、东营凹陷古三角洲、鄱阳湖的赣江三角洲等均是如此。三角洲具有典型的三层结构,即顶积层、前积层和底积层。在地震剖面上,三角洲顶底是具有近水平的顶积层和底积层,中间为

斜交前积反射,前积反射的最下部由于多发育有浊积砂体,常见局部地层加厚,同相轴增多现象。前积反射一般代表三角洲前缘和前三角洲,三角洲前缘砂体主要位于斜交前积反射的上倾端;顶积层一般代表着三角洲平原相沉积,地震剖面上多为强振幅中等连续反射同相轴,其产状为平行或亚平行;底积层地震剖面上表现为弱振幅、低到中等连续性,为亚平行或发散结构,如图12。

图12三角洲砂体地震反射特征(沿物源方向)

(三)浊积砂体地震相

浊积砂体是在一套重力整体搬运机制下产生的浊积物,或称重力整体搬运沉积,这种沉积是受到自身的重力在超过沉积物内部粒间摩擦和吸附力造成的剪切应力后顺坡而下运动的产物。其规模大小不等。地震相特征如下(图13):

(1)在垂直走向方向的地震剖面上,存在地槽或峡谷。

(2)在走向剖面中呈丘形反射,内部反射为丘形或杂乱反射,它被上覆层上超。丘形反射可能是浊流沉积最直接的标志。

图13浊积砂体地震反射特征(倾向)

(3)倾向地震剖面上出现斜交(前积)反射的下面和朝盆地的方向,可能有浊流。

(四)滩坝砂体地震相

滩坝砂体发育于滨岸环境。滩是指低潮线到最大风暴线之间,向湖倾斜的斜坡上的砂砾堆积;坝则离岸有一定的距离,由砂堆成的长条形的水下降起。其成因主要由于在波浪带波浪能量降低,遇到近岸地形隆起或湾口处,速度减缓,释放出砂砾堆积形成。

图14滩坝砂体地震反射特征图15河道砂体地震反射特征(垂直走向)

滩坝砂岩储层的分布主要受构造活动、物源供应和湖水动力条件的控制,不同地区和不同的层位,储层发育和分布特点有较大的差别,砂体一般在构造作用形成的正向地带沉积。滩坝砂岩分布广泛,但由于滩坝砂岩单层厚度较薄,一般1一3 m,最厚15 m左右,在地震上难以识别追踪。坝砂相对厚度大,物性好,分布局限,地震反射同相轴呈中振幅,中连续,短轴状不连续展布,在砂体发育区有同相轴小幅度弯曲或振幅异常现象,如图14。滩砂平面广泛分布,单层厚度

薄,横向连续性较差,同相轴一般呈席状强反射。

(五)河道砂体地震相

河道砂体泛指充填在古河道中的砂体,包括河床充填砂体、点砂坝和心滩砂体。规模较大的河道砂体在地震剖面上常具有典型的反射特征,内部反射平行一亚平行或前积,强振幅、低频,向边缘上超,边界清楚。其外形为顶平底凹或顶凸底凹的透镜体状,内部杂乱或无反射,或为上超式充填反射。规模较小的河道砂体,由于厚度小

于地震分辨率,一般表现为短轴状的振幅异常(图15 )。在中浅层,分辨率较高的情况下,可与周围的泛滥平原等泥质沉积在地震反射结构上有较大差别,容易识别。利用水平切片技术和可视化透视技术可更好的解音J河流相砂体的平面分布。

四、地震相的解释

不同成因类型的砂体,具有特定的地震响应特征,但是由于地震相的多解性,在进行地震相的研究时,必须以取心井为基础,建立相关的地震相模式作为分类依据。地震相解释应掌握以下几个方面的原则(刘震,1997):地震相参数能量匹配;以岩心相为准;沉积体系匹配和沉积演化史匹配。

1.能量匹配准则

地震相参数中的反射结构和几何外形具有明显的沉积环境能量标志,而同一沉积体的反射结构和外形,必须是同一能量级。代表高能环境的反射结构和外形不能与代表低能环境的反射结构和外形匹配,反之亦然。例如,平行反射结构一般代表低能环境,发散结构代表从高能

到低能变化,而前积结构表示高能环境。又如,席状外形反映或低能或高能环境,但丘状外形则一定为高能环境。

2.以岩心相为准

在没有钻井的探区内,只能通过地震相与沉积相的一般对应关系,与同类盆地的标准地震相模式对比,将地震相转换成沉积相。但是若在有井的探区,进行地震相解释时应尽可能结合钻井资料,用钻井的岩心相标定对应的地震相。

3.沉积体系匹配准则

沉积体系指成因上有联系的沉积相的共生组合,是平面相序的模式。在平面上一组地震相的分布所受沉积体系的控制表现在两个方面:一是沉积相类型的排列方式,即哪些沉积相可以相邻连接,而哪些沉积相绝对不能相邻连接;哪些沉积相可以组成一个相序排列,哪些沉积相很少能形成一种相序排列。二是沉积相排列的方向性,受沉积盆地的边界条件即构造背景所制约,从不同的边界向盆地内部延伸时,有些沉积相可以重复出现,而有些沉积相则不能再出现。例如在盆地发育的中期,在陡坡区向缓坡区方向上,陡岸处的近岸水下扇体一般不会在深湖区和缓坡区再出现。这种沉积体系的方向性有助于地震相的正确解释。

4.沉积演化史匹配准则

沉积相的类型具有明显的地质时代特征,盆地不同发育期所产生的相模式和沉积体系可能有巨大的差别。另外,像沃尔索相律指出的那样,只有当平面上能够彼此相邻的相,才有可能在垂向上(地质年代中)

依次叠置。显然从一个层序(或亚层序)到另一个层序(或亚层序)的地震相分布遵循沉积环境演化规律,即沉积盆地发育阶段对沉积相的控制作用

地震相的识别剖析

通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。 一、地震相分析 (一)地震相概念 地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。 (二)地震相分析 地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下: (1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。 (2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。 (3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、

下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。 (4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。 (5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。 (6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。 由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。 二、地震相划分标志 (一)外部几何形态 外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。 目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘 形和充填型等。 1.席状 席状反射是地震剖面上最常见的外形之一,其主要特点是上下界

地震概论答案

第一章地震对人类社会的重大影响 三国地震灾害的基本状况 (一) 中国地震灾害的基本状况 中国是世界上大陆区地震最多最密布的国家之一。本世纪以来全球共发生7级以上地震 1,200余次,其中的1/10发生在中国。近年以来,在中国平均每年发生6次6级以上地震;因地震造成的死亡人数达27.6万余人,伤者约76.3万人;地震造成的财产损失,仅对1949年以来的12次7级以上地震的统计,房屋倒塌600多万间,合1亿平方米,价值逾百亿元。其它工农业生产设施及各种财产的直接经济损失达300亿元左右。 下面例出了近代其中几次灾害严重的地震损失和伤亡情况。 邢台地震:1966年3月8日和22日邢台6.8级、7.2级地震,是新中国成立后发生在我国人口稠密地区、造成严重破坏和人员伤亡的第一次大地震,共有8064人丧生、38000馀人受伤。受灾面积达23000平方公里; 唐山地震:中国唐山大地震是1976年7月28日在河北省唐山市发生7.8级地震,震中位于唐山市区。造成24万人死亡,16万多人伤残,财产损失达100亿元以上。 汶川地震:2008 5月12日发生于四川省汶川县,地震烈度达到9度。地震波及大半个中国及亚洲多个国家和地区。截至2008年9月18日12时,汶川大地震共造成69227人死亡,374643人受伤,17923人失踪。是中华人民共和国成立以来破坏力最大的地震,也是唐山大地震后伤亡最严重的一次; 芦山地震:2013年4月20日8时2分在四川省雅安市芦山县(北纬30.3,东经103.0)发生7.0级地震, 震源深度13公里。 (二) 美国地震灾害的基本状况 美国的地震分布是环太平洋地震带。环太平洋地震带是地球上最主要的地震带,地球上约有80%的地震都发生在这里。 1906年4月18日,美国旧金山8.3级地震,造成城市供水系统破坏,并因火炉倾倒引发大火,大火持续三天三夜,将10平方公里的市区化为灰烬,死亡700人,直接经济损失5亿美元。这场地震及随之而来的大火,对旧金山造成了严重的破坏,可以说是美国历史上主要城市所遭受最严重的自然灾害之一。1994年1月17日凌晨4时31分,在洛杉矶市发生里氏6.6级地震。在持续30秒的震撼中,震中30公里范围内高速公路、高层建筑或毁坏或倒塌,煤气、自来水管爆裂,电讯中断,火灾四起,直接和间接死亡造成62人死亡,9000多人受伤,25000人无家可归。 (三) 日本地震灾害的基本状况 日本地处太平洋板块和亚欧板块交界处,板块活动活跃,碰撞频繁,所以,日本是一个地震频发的国家。 日本关东大地震:关东大地震是1923年9月1日日本关东地区发生的7.9级强烈地震。地震灾区包括东京、神奈川、千叶、静冈、山梨等地,地震造成15万人丧生,200多万人无家可归,财产损失65亿日元。 日本神户大地震,1995年1月17日晨5时46分,日本神户市发生7.2级直下型地震,5400多人丧生,3.4万多人受伤,19万多幢房屋倒塌和损坏,经济损失1000亿美元,震后又发生500多处火灾。这是自1923年来在日本城市发生的最为严重的一次地震,共造成数千人死亡,地震给日本造成的全部损失达数万亿日元。 三国地震灾害的不同特点 (一)中国地震灾害的特点 中国的地震活动,在大陆地区中,具有频度高、强度大和分布范围广的特点。地震基本烈度7度以上地区占全部国土面积的32%,其中有136个城市分布在上述地区,约占全国城市的 45%。 (1)空间分布特点 我国陆地东部地震活动比西部弱,从地震的空间分布可以看出地震的分布是不均匀的,往往呈带状展布,被称为地震带。且地震以浅源地震为主,除了东北(日本海西)和东海一带中深源地震外,绝大多数地震的震源深度在40km以内,大陆东部震源更浅,多在10-20km左右。 (2)时间分布特点 中国的地震活跃期一般经历三个阶段,即能量积累阶段、能量大释放阶段和能

matlab编程合成地震记录

clc; %s1=input('请输入文件名: ','s'); fid=fopen('yy-10.txt','r'); c1=fscanf(fid,'%f'); N=length(c1); for i=2:3:N k=(i-2)/3+1; deltt(k)=c1(i); vv(k)=1000000/deltt(k); rr(k)=0.31*vv(k)^(1/4); Z(k)=vv(k)*rr(k); end n1=N/3; dp=360.2:0.2:2303 for k=1:n1-1 R(k)=(Z(k+1)-Z(k))/(Z(k+1)+Z(k)); end figure(9); plot(dp,R); %============================================================= %对反射系数序列进行低通滤波 %============================================================== r1=fft(R); r1(1001:8716)=0.0; figure(10); plot(abs(r1)); r2=ifft(r1); R1=real(r2); figure(11); plot(dp,R1); for i=1:n1-1 if(abs(R1(i))<0.01) R1(i)=0.0; end end figure(12); plot(dp,R1); f=30; wl=50; t=-wl:wl; deltt=0.002; b=(1-2*(pi*f*t*deltt).^2).*exp(-(pi*f*t*deltt).^2); figure(1);

paradigm-地震相分析工具stratimagic流程

Stratimagic地震相分析软件简易流程 Stratimagic地震相分析软件介绍 概述 stratimagic是帕拉代姆公司推出的专门用于岩性解释、油藏描述、地震相分析的软件包。它运用人工神经网络分析技术,统计聚类的分级分类技术、主组分分析(PCA)技术,以及层位尖灭识别等先进的技术和方法对地震属性及所反映的地质特征进行分析解释,利用Stratimagic软件可以实现地震道、多属性数据体以及变时窗/深度和等时窗/深度的层段内的地震相自动划分,地质相分层曲线约束下的微相划分,研究其与地质相的关系以及与岩石物性的关系,可以帮助我们从一个新的角度去进行储层预测和油藏描述,突破了只能进行构造解释的常规的地震解释模式。地震相自动划分技术的应用,使得解释人员摆脱了手工解释繁重的工作负担,使地震相划分更具有客观性。 Stratimagic地震相分析软件以其独一无二的专利技术和容易使用的特点,已成为石油天然气工业进行地震相分析的先进的商用软件。目前该软件最新版本是帕拉代姆公司于2006年释放的Stratimagic3.1。 一、 Stratimagic软件的基本方法原理 1、地震信号的分类 地震解释不仅仅是构造圈闭解释,而且要进行岩性和油藏特征描述,是一个从层位图到油藏特征描述的过程,要利用沉积学知识将井信息和可用模型与地震数据联合使用,确定地震与岩石地球物理特性的关系。 在使用Stratimagic之前,有两种地震属性方法用于油藏特征描述。 1、首先计算多种层段属性,进行井资料、沉积模型与属性成果图的对比分析,一般情况下也只有3到4种属性匹配较好。 2、通过地震反演获得波阻抗数据体。这里假设井资料完全代表着所含的地质信息的差别,而且没有考虑其它的地质相变化的存在。在上面处理中丢失了两个基本信息:即地震信号的总体变化和这种变化的分布规律。 没有地震信号的总体变化的知识,很难给出井位置的地震信号变化的可靠评

地震概论习题及答案

第2章习题答案 一、简答题 1、什么是地震烈度,与地震震级有何关系? 2、划分烈度的依据是什么? 3、什么是基本地震烈度、研究基本烈度有什么意义? 4、简述我国基本地震烈度状态,并分析我国地震危险性,说明抗震烈度的意义。 5、什么是抗震烈度? 6、利用地震烈度知识,解释分析唐山地震和汶川地震的震灾情况。 二、填空题 1、1883年,第一个烈度表是由_罗西、__弗瑞尔_____制定,分___七____级。 2震级和烈度的含义不同。震级是衡量地震__能量大小_的级别。地震释放的能量越大,震级就__越大_ ___。一次地震只有一个震级。烈度是指某地区受地震影响的__强弱或破坏程度__。破坏越严重,烈度就越大。 3、防震减灾三大体系是_监测预报、震害防御_和应急救援。 4、抗震设防目标总概括是为:“小震不坏,中震可修大震不倒”。 5、上网查寻《我国主要城市设防烈度》,查找你的家乡是_____ ___、当地的设防烈度为,基本烈度为____ __。 6、划分不同烈度地区的线称为等烈度线,简称等震线。正常情况下,地震烈度随震中距离的增加而递减。通常等震线是封闭的。 7、某地区基本烈度是6度,在该地区建水库、大坝设防烈度应为7度、建小学校防烈度应为__6度___。 三、选择题 1、在地震灾情分析,怎样定量描述各地方人对地震感受不同,建筑物破坏程度?(B ) A 用震级 B 用地震烈度 C 用发震时间段 D 用本区地质构造条件 2、中国第三代地震烈度区划图发布施行时间是( B ) A、1956年 B 1990年 C 1977年 3、反映某地区地震风险用(C )衡量 A震级 B 烈度 C 基本烈度D抗震设防烈度 4、反映某建筑物质量用( D )衡量 A震级 B 烈度 C 基本烈度D抗震设防烈度 一、填空题 1、密度,弹性性质 2、一致,垂直 3、逆进椭圆 4、东西向,南北向,垂直向 5、震中距,地震波走时 二、选择题 1、C; 2、B; 3、C; 4、A; 5、A 第4章习题答案

地震相定义、划分、识别及特征

地震相 通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。 一、地震相分析 (一)地震相概念 地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。 (二)地震相分析 地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下: (1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。 (2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。(3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。 (4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。 (5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。(6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。 由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。 二、地震相划分标志 (一)外部几何形态 外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。 目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘 形和充填型等。 1.席状 席状反射是地震剖面上最常见的外形之一,其主要特点是上下界面接近平行,厚度相对稳定。席状相单元内部通常为平行、亚平行或乱岗状反射结构,可代表深湖、半深湖等稳定沉积环境和滨浅湖、冲积平原等不稳定沉积环境。

北大通选课介绍(1.2.1版)

A类 地震概论(授课老师:赵克常老师):这个课很火,一学期要开两个班,一个班500人……而且老师讲的也很好,前几个学期,我的几个同学选了的都是九十七八分,不过上个学期据说得高分的难度有所增加,不知道这个学期什么情况……总之,算是比较理想的A类课程; 环境生态学:被誉为文科生必选的两门A类课程之一(另一个是三宝),成绩主要根据两部分,一个是上课的随机点名,另外就是一个大论文,很大很大,最起码要一万五以上才有可能拿到一个相对高的分……而且环生的论文要求很高,尤其是格式什么的,不过上课的时候老师会讲解,而且在BBS环生的版上也有说明,不过目前的一种风气是借师兄师姐写过的环生论文改一改拿来交上……不做评论; 人类的性、生育与健康:俗称三宝,要选这门课要投比较高的意愿点,或者靠补选的时候用人品刷……总之是很有用的一门课,讲的知识还是很实用的(其实不想大家想的那样的……),闭卷考试,给分一般,但是总的来说对于文科生来说算是学起来相对容易的一门A类课; 人类生存发展与核科学:上过的人不多,目前我认识的只有一个上过,不过上课还比较轻松,给分也不错; B类 美国文化与社会(也属于E类):一门很高级很丰富的课,前一个学期,我有个同学选了,上课方式是每一节课请一位在某一方面有专长的老师来讲授,很像听讲座,不过具体考试和最后的给分则没有什么特点可说,如果对于美国的文化有比较浓厚的兴趣可以选一下; 中西文化比较:这个课还挺有趣的,辜老师是辜鸿铭先生的后代,在学术上也颇有建树,不过考试要记的东西很诡异,有些难记; 晚清历史人物及外交(授课老师:李扬帆老师)(具体名字我想不起来了,因为我选过这个课,所以现在不显示了,也不知道这个学期还开不开)这个课很轻松愉快,两篇论文,几次点名,而且李老师蛮有趣的,虽然有点WS…… 中国政府与政治过程(授课老师:徐湘林老师)(我忘记是不是B类了……):也是一个很轻松的课,我上的时候,这个课招100人,但是只报了20多个,所

地震概论课后客观题答案

一、简答题 1、什么是地震烈度,与地震震级有何关系? 2、划分烈度的依据是什么? 3、什么是基本地震烈度、研究基本烈度有什么意义? 4、简述我国基本地震烈度状态,并分析我国地震危险性,说明抗震烈度的意义。 5、什么是抗震烈度? 6、利用地震烈度知识,解释分析唐山地震和汶川地震的震灾情况。 二、填空题 1、1883年,第一个烈度表是由_罗西、__弗瑞尔_____制定,分___七____级。 2震级和烈度的含义不同。震级是衡量地震__能量大小_的级别。地震释放的能量越大,震级就__越大_ ___。一次地震只有一个震级。烈度是指某地区受地震影响的__强弱或破坏程度__。破坏越严重,烈度就越大。 3、防震减灾三大体系是_监测预报、震害防御_和应急救援。 4、抗震设防目标总概括是为:“小震不坏,中震可修大震不倒”。 5、上网查寻《我国主要城市设防烈度》,查找你的家乡是_____ ___、当地的设防烈度为,基本烈度为____ __。 6、划分不同烈度地区的线称为等烈度线,简称等震线。正常情况下,地震烈度随震中距离的增加而递减。通常等震线是封闭的。 7、某地区基本烈度是6度,在该地区建水库、大坝设防烈度应为7度、建小学校防烈度应为__6度___。 三、选择题 1、在地震灾情分析,怎样定量描述各地方人对地震感受不同,建筑物破坏程度?(B ) A 用震级 B 用地震烈度 C 用发震时间段 D 用本区地质构造条件 2、中国第三代地震烈度区划图发布施行时间是( B ) A、1956年 B 1990年 C 1977年 3、反映某地区地震风险用(C )衡量 A震级 B 烈度 C 基本烈度D抗震设防烈度 4、反映某建筑物质量用( D )衡量 A震级 B 烈度 C 基本烈度D抗震设防烈度 第3章习题答案 一、填空题 1、密度,弹性性质 2、一致,垂直 3、逆进椭圆 4、东西向,南北向,垂直向 5、震中距,地震波走时 二、选择题 1、C; 2、B; 3、C; 4、A; 5、A

地震监测中异常次声波的识别方法

V ol 35No.1 Feb.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第1期2015年2月 文章编号:1006-1355(2015)01-0240-04 地震监测中异常次声波的识别方法 左明成,武云 (中国地质大学(武汉)计算机学院,武汉430074) 摘要:地震异常次声波的监测是地震监测中的重要手段和途径。但是,该次声波在接收过程中受到了众多噪声的干扰。为了找到一种地震异常次声波识别监测的有效方法,根据已经收集到的次声波数据进行了分析与研究,按照去噪、特征抽取、信号筛选、分类决策的过程鉴别异常的次声波。在实验中此方法和思路不仅仅得到了较好的识别效果,而且在监测过程中也可识别出矿山爆炸信号和巴东地震次声波信号。从而说明该方法是地震次声波自动识别与监测的一条有效途径。由此,不仅可以较大地减轻地震监测的工作量,实现异常次声波的自动监测,还可以应用到其他的地质灾害的监测和地震的震前监测程序之中。 关键词:声学;信号分析;地震监测;地震次声波中图分类号:TB132;TN911.6;TP18 文献标识码:A DOI 编码::10.3969/j.issn.1006-1335.2015.01.049 Recognition Method of Abnormal Infrasound in Earthquake Monitoring ZUO Ming-cheng ,WU Yun (China University of Geosciences (Wuhan)Computer College,Wuhan 430074,China ) Abstract :Monitoring the earthquake abnormal infrasound is the important means for seismic monitoring,but the infra-sound is often disturbed by many noises in the receiving process.In order to find an effective method for abnormal sound recognition in seismic monitoring,the collected infrasound wave data was analyzed.With the process of de-noising,feature extraction,signal filtering,classification and determinasion,the abnormal infrasound was detected.Application of this idea and method can get a better recognition effect in the experiment.As an example,this method was applied to identify the mine explosion signal and Badong earthquake infrasound signal.It shows that this method is effective for automatic recogni-tion and monitoring of earthquake infrasound.This method can realize automatic monitoring of abnormal infrasound effec-tively and economically,and can be applied to the monitoring programming for earthquake monitoring and some other geo-logical disasters monitoring. Key words :acoustics ;signal analysis ;seismic monitoring ;seismic infrasound waves 地震发生时震源会向大气中辐射有明显特征的异常次声波[1–3],这为异常次声波的识别分离提供了先决条件。通过对地震异常次声波的特征进行相关研究,就可以掌握异常次声波的大体形态特征。而 收稿日期:2014-08-01基金项目:国家级大学生创新创业训练项目(201310491060)作者简介:左明成(1992-),男,山东莱阳人,本科生,空间信 息与数字技术专业,主要研究方向为地震监测、数据挖掘;数字图像处理、三维可视化。E-mail:1317085693@https://www.360docs.net/doc/5812337227.html, 通讯作者:武云,讲师,计算机应用系研究生。 E-mail:23753648@https://www.360docs.net/doc/5812337227.html, 地震在发生之前通常也会产生异常次声波,对于地 震前的监测和其它地质灾害的监测而言,异常次声波的特征研究就显得十分必要了。 1数据源 为了得到次声波数据,在湖北省境内安装次声波接收仪器的方式接收次声波,次声波接收仪使用的是中科院声学所研制的In SYS 2008型号的次声波传感器,仪器可以长时间稳定地接受信号。将16台次声波接收仪接收到的数据通过仪器转换存储在二进制文件中,可以更直观的对次声波数据进行研究。图1中是次声波传感器。

2019智慧树知到[地震概论]章节答案

2019智慧树知到[地震概论]章节答案 [第一章测试] 1.【单选题】( )是震后引起大面积火灾的地震。 答案:1923年日本关东大地震 2.【单选题】世界上第一次取得明显减灾实效的成功地震预报是( )。 答案:1975年辽宁海城7.3级地震 3.【单选题】()不是由地震引起的灾害。 答案:台风 4.【多选题】地震引发海啸需要满足的条件是()。 答案:震源破裂方式以垂直错动为主地震发生在深海震级足够大震源深度浅 5.【多选题】破坏性地震可能会造成的灾害有()。 答案:地裂火灾列车脱轨崩塌 6.【多选题】以下哪些为8级及以上地震()。 答案:2001年青海昆仑山口西大地震1679年河北三河平谷大地震1668年山东郯城县大地震1556年陕西华县大地震 [第二章测试]

1.【单选题】大陆漂移的速度慢的惊人,每年只有()厘米 答案:1~10 2.【单选题】每一板块均是一种巨大而坚硬的活动的岩块,其厚度()公里不等,它包括地壳和与地幔一部分。 答案:50—250 3.【单选题】从地震发生的垂直位置分布来看,所有地震都发生于地壳及地幔上部,其中多数发生在地壳的数十千米范围内。据统计,有_____的地震震源在地表以下至深300m以内震源,深度大于300km的地震仅占_____。 答案:96% 4% 4.【多选题】在中国南北地震带地区有() 答案:云南甘肃东部宁夏 5.【多选题】天然地震的成因多而复杂,主要分4大类:分别是() 答案:火山地震塌陷地震构造地震陨石地震 6.【多选题】3、火山地震约占地震总数的7%。我国历史上()有过多次火山喷发的记载, 答案:黑龙江五大连池火山吉林长白山天池火山云南腾冲火山、海南海口火山

合成地震记录

% 地震合成记录 % 日期:07.07.19 % clc clear reply = input('请输入层数n(Default=5):','s'); %层数为n ifisempty(reply) n = 5; else n = sscanf(reply,'%f',[1 1]); end reply = input... ('请输入各层速度、密度及层厚(Defaul=[600 1000 1500 2000 2500;1500 1800 2000 2500 3000;500 700 400 300]):','s'); ifisempty(reply) V = [600 1000 1500 2000 2500]; dens = [1500 1800 2000 2500 3000]; %速度和密度v和den h = [500 700 400 300]; else clear a; a = sscanf(reply,'%f',[3 n]); V = a(1,:); dens = a(2,:); h = a(3,:); end % % 计算反射系数R % forilayer = 1:n-1 z1(ilayer) = V(ilayer) * dens(ilayer); z2(ilayer) = V(ilayer+1) * dens(ilayer+1); %各层反射系数R R(ilayer) = (z2-z1) / (z2+z1); end % % 计算各反射界面所对应的时间tlength %

tlength(1) = 2*h(1)/V(1); forilayer = 2:n-1 tlength(ilayer) = tlength(ilayer-1) + 2*h(ilayer)/V(ilayer); end reply = input('请输入Ricker子波的频率f和采样间隔dt(Defalt=40 0.004):','s'); ifisempty(reply) f = 40; %子波频率f和采样间隔dt dt = 0.004; else clear a; a = sscanf(reply,'%f',[2 1]); f = a(1); dt = a(2); end % % 计算各反射界面所对应的采样点数nR % nsample = floor(tlength(n-1)/dt); forilayer = 1:n-1 nR(ilayer) = floor(tlength(ilayer)/dt); end % % 形成反射系数序列RR % RR(1:2*nsample) = 0;%?这个地方反射系数的长度应该是nsample/2 forilayer = 1:n-1 RR(nR(ilayer)) = R(ilayer); %只有在有界面的地方反射系数才有值end %subplot(2,2,1); stem(RR); title('反射系数序列'); % % 形成一个Ricker子波wavelet % wavelet = ricker(f,dt); fori = 1:length(wavelet);

地震识别砂体技术

第一节河道砂体形态研究 河道砂是河流相储层中最主要和最重要的油气富集场所,因此河道沉积的研究比较系统和深入,国内外相关的文献和研究成果十分丰富,针对研究目标和对象有现代河流沉积、露头剖面砂体、石油钻井三种不同研究体系。因研究的对象和目标的差异,对河道的认识有着不同的的侧重,因侧重面的不同导致对河道砂体几何形态的认识上有很大的差异。利用现代河流沉积和露头沉积研究成果去认识古代河道容易导致认识的偏差,人们对古代河道的认识停留在用现代河流臆测古代河流的程度上;对聚集油气的河道砂体的认识则受勘探阶段和钻井密度的限制,在不同的井网密度阶段下,对河道砂体的认识程度存在很大的不同,因此,我们利用与汪家屯气田河流沉积有关的文献和研究成果,分析河道砂体沉积环境、形成过程、保存条件,总结砂体的四维时空规律,充分认识汪家屯气田河道砂体在空间上可能的展布规律和存在的三维几何形态,通过地震属性成像技术和属性数字地质统计相关分析,从几何形态模型和数字地质方面,识别河流沉积保留下的砂体。 1.国外研究现状 河流分类Leopold(1957)和Wolman(1957)最初将河道体系划分为顺直河、辫状河和曲流河,已为沉积学者所通用。Schumm(1968)根据搬运方式又提出一种分类方案,将河道分为三种类型:即悬载河、混载河、底载河,对现代河流较适用,对古代河流意义不大。B.R.Rust(1978)对河型分类,分为辫状河、曲流河、网状河、顺直河,这一方案在石油业得到广泛认可。 早在50年代Leopold(1957)和Wolman(1957)就建立了河道宽度和曲流带长度的关系以及曲流半径和曲流长度的关系,Strokes(1961)测量了Mesaverd 组河道砂体大小,厚0.6-30.5m,宽1.5-61.0m,长4.5-12km。 Knutson(1971,1976)研究Colorado西部河道砂得出曲流河的宽厚比为14:1。Campbell研究新墨西哥Morrison组Westwater Canyon 砂岩段,总结低弯度辫状河,单个河道平均宽度183m,厚度4m,厚宽比46:1。 Cowan(1991)研究表明,如果砂岩厚度大于12m,就是由几个河道砂体复合而成,指出辫状河道体系平均宽度500m,厚度7m,厚宽比70:1。在曲流河点坝中一个侧积体的最大宽度大致是2/3河宽。 以上河道砂学者的研究现代沉积、露头,还是停留在对河道的静态平面二维或者是剖面二维认识认识上,虽然对于河道的认识有指导作用,但对储集油气的河道砂来说研究还很不够。 只有对砂体的三维空间几何形态认识的基础上,我们才能够识别和寻找河道砂体。 2.大庆油田钻井研究砂体平面形态 钻井研究河道几何形态需要有足够的井网密度,钻井揭示河道是一维的,多口井连的剖面是二维,无论研究的如何精细也不能给出河道在空间的展布几何形态,只有在满足研究需要的足够大的一定区域和密集井网的测井、录井、取心充足的资料背景下,通过特定的砂体对比和组合手段,才可能完整认识保留下的河流沉积砂体类型、微相、三维形态。我们有幸得到了大庆萨中开发区高密度的井网砂体资料。 大庆油田萨中开发区为萨尔图油田中部,面积116km2,萨、葡、高油层高密度的井网为认识砂体提供了很好的例证。 高、葡、萨油层是在青山口组-姚家组-嫩江组早期,松辽盆地由水退转水进

地震相识别学习笔记

地震参数(地震相标志)按其属性可分为四大类: ①几何参数:反射结构、外形; ②物理参数:反射连续性、振幅、频率、波的特点; ③关系参数:平面组合关系; ④速度-岩性参数:层速度、岩性指数、砂岩含量。 一、内部反射结构 (Seismic Reflection Configuration) 指层序内部反射同相轴本身的延伸情况及同相轴之间的相互关系反映物源方向、沉积过程、侵蚀作用、古地理、流体界面等 ②发散反射结构(Divergent) 往往出现在楔形单元中,反射层在楔形体收敛方向上常出现非系统性终止现象(内部收敛),向发散方向反射层增多并加厚。它反映了由于沉积速度的变化造成的不均衡沉积或沉积界面逐渐倾斜,反映沉积时基底的差异沉降,常出现于古隆起的翼部,盆地边缘、或同生断层下降盘,盐丘翼部,往往是油气聚集的有利场所。 ③前积反射结构(Progradational) 由沉积物定向进积作用产生的,为一套倾斜的反射层,与层序顶底界呈角度相交,每个反射层代表某地质时期的等时界面并指示前积单元的古地形和古水流方向。在前积反射的上部和下部常有水平或微倾斜的顶积层和底积层,常见近端顶超和远端下超。代表三角洲沉积。上部是浅水沉积,下部则是深水沉积。 d.叠瓦状前积(shingled),它表现为在上下平行反射之间的一系列叠瓦状倾斜反射,这些斜反射层延伸不远,相互之间部分重叠。它代表斜坡区浅水环境中的强水流进积作用,是河流、缓坡三角洲或浪控三角洲的特征。也称之为羽状前积。 在同一三角洲沉积中,不同部位可表现为不同类型的前积。如受主分支河道控制的建设性三角洲朵状体可能表现为斜交前积,无顶积层也无底积层,只有前积层,较低能的朵状体侧缘或朵状体之间可能呈现S形前积。 前积在不同方向的测线上表现不同,倾向剖面表现为前积,走向剖面表现为丘形。 ④乱岗状反射结构(hummocky) 它是由不规则、连续性差的反射段组成,常有非系统性反射终止的同相轴分叉现象。常出现在丘形或透镜状反射单元中。维尔把它解释为三角洲或三角洲间湾沉积的反射特征,代表分散性弱水流沉积。冲积扇及扇三角洲沉积中也会出现这种反射结构。 乱岗结构的波状起伏幅度较小,接近于地震分辨率极限(乱中有规则),乱岗状与杂乱反射的名称易混淆,在实际上有很大差别,有人亦称之为波状反射。

地震解释技术现状及发展趋势

第21卷 第2期地 球 物 理 学 进 展V ol.21 N o.22006年6月(页码:578~587) P ROG RESS IN G EOP HY SICS June. 2006 地震解释技术现状及发展趋势 张进铎 (东方地球物理公司研究院,涿州072751) 摘 要 本文以我国塔里木油田石油地球物理勘探实例为基础,概述了石油勘探过程中地震解释技术类型、特征、现状和发展趋势.本文认为,在地震勘探技术飞速发展的今天,地球物理学家及地质学家希望获得的地震信息,应当是能够直接反应地下岩石物理特性或油气水的分布,而利用常规的地震解释技术是很难做到这些;随着石油勘探的进一步深化,一些新的地震解释技术涌现出来,并在油气勘探与开发过程中发挥着巨大作用.未来的石油勘探将会面临前所未有的困难,新情况、新问题将层出不穷,地震解释技术也同样面临着考验,因此,只有立足在现有的成熟解释技术之上,并不断探索新的技术与思路,才能与未来的石油勘探步伐相一致. 关键词 塔里木盆地,地震相干技术,地震相分析技术,波阻抗反演技术,三维可视化技术中图分类号 P631 文献标识码 A 文章编号 1004-2903(2006)02-0578-10 Present status and future trend of seismic data interpretation techniques ZH ANG Jin -duo (Geoph ysical R esearc h Institute ,BGP ,CN PC,Zh uoz hou 072751,China) Abstract Dur ing the o il and gas explorat ion techniques develo ping ,g eophysicists and g eolo gists ho pe to use the seis -mic data to recog nize the ro ck features and o il and water dist ributions,it is difficult to do these by using the o rdinary seism ic data inter pr etatio n techniques.A few new techniques have been used with the oil and gas ex plor ation dev elop -ments,and t hese techniques have a lot of adv ant ages in practical a pplies.O il and g as ex plo ratio n w ill be faced w ith many difficulties in t he future,new co nditions and new pr oblems w ill be generated,the seismic dat a interpretation techniques w ill be also faced w ith new tests,so,w e must use mature techniques now ,and at the same time,dev elo ping new techniques and methods to match the steps in the future o il and gas ex plor ation. Keywords T ar im basin,seismic co her ent technique,seismic face technique,seismic inv ersion t echnique,3D v isualiza -t ion technique 收稿日期 2005-04-10; 修回日期 2005-08-20. 作者简介 张进铎(1966-),男,河北徐水人,硕士学位,高级工程师,从事三维地震解释与地震解释新技术应用工作.地址:河北省涿州市 贾秀路东方地球物理公司研究院总工办.(E -mail:peter_zhang@https://www.360docs.net/doc/5812337227.html,) 0 引 言 近年来,随着科学技术的迅速发展,在石油、天然气勘探领域中,地震资料解释和地质综合研究技 术有了飞速发展,新技术新方法层出不穷,以地震相干解释技术[1~5]、地震相分析技术[6~8]、波阻抗反演 技术[9,10]、三维可视化解释技术[11] 等为代表的一系 列新的地震解释技术[12] 在实际工作中得到了全面推广应用和发展. 现今的地震资料解释已不仅仅满足于常规的构造解释,它更倾向于以地震信息为主,借助先进的解 释技术,开展储层特征综合分析、油气藏分布规律等 更深层次的研究. 1 目前主要地震解释技术类型和现状 1.1 地震相干解释技术 地震相干解释技术[13]就是利用地震波形相干原理,计算中心地震道和指定相邻道的相干系数,将普通地震资料转换成相干系数资料,以突出地震资料中的异常现象. 该技术能快速建立起断裂系统、特殊岩性体的空间展布形态,指导岩性体和断层的剖面解释及平

人工合成地震记录作业

人工合成地震记录作业-CAL-FENGHAI.-(YICAI)-Company One1

人工合成地震记录程序设计 (一)、人工合成地震记录原理: 地震记录上看到的反射波波形是地震子波在地下各反射界面上发生反射时形成的。反射波的振幅有大有小(决定于界面反射系数的绝对值)、极性有正有负(取决于反射系数的正负)、到达时间有先有后(取决于反射界面的深度)的地震反射子波叠加的结果。 如果地震子波的波形用S (t )表示,地震剖面的反射系数为双程垂直反射时间t 的函数,用R (t )表示,那么反射波地震记录形成的物理过程在数学上就可以用S (t )的R (t )的褶积表示,即某一时刻的反射波地震记录f (t )是: )()()(t R t S t f *= 其离散形式为: ))(()()(1 t m n R t m S t n f M m ?-??=?∑= 如果大地为多层介质,在地面记录长度内可接收的反射波地震记录为: ))(()()(11t m n R t m S t n f M m N n ?-??=?∑∑== 式中,n 为合成地震记录的采样序号,n =1,2,3...N ;N 为合成一道地震记录的采样点数;m =1,2,3...M ,为离散子波的采样点数;△t 为采样间隔。 这种褶积模型将地震波的实际传播过程进行了简化: 1、在合成地震记录的过程中没有考虑大地的吸收作用,所有薄层的反射波都与地震子波的形式相同,只是振幅和符号不同。 2、假设地震波垂直入射到界面上,并原路径返回。 3、假设地层横向是均匀的,在深度(纵向)方向上假设密度为常数,只是速度发生变化。 4、不考虑地震波在传播过程中的透射损失。 (二)、人工合成地震记录的方法 1、 反射系数序列 在有速度测井资料的情况下,可以用速度曲线代替波阻抗曲线,计算反射系数序列。在没有速度资料的情况下,可根据干扰波调查剖面分析的结果设计地质模型。 如设计的地质模型如图a 所示,图中H 为层厚度,V 为层速度,根据下式计算反射系数: 1 1)(--+-=N N N N N V V V V H R 式中H 为反射界面的深度,N 为反射层序号,随深度变化的反射系数序列如图b 所示。但褶积计算中需要与时间有关的反射系数,深度与时间的转换可用下列公式计算: t V H n n R H R ?=→111112),()( 1222222),()(n t V H n n R H R +?= →

地震相解释和构造解释

设计的内容为地震资料构造解释和地震相解释。地震资料构造解释的主要内容包括在剖面上识别断层并标识断层,在平面上利用相干体进行断层的组合,并且进行地层对比追踪,最后根据解释的断层和层位做等T0构造图。地震相解释主要内容是在剖面上识别水道的形状,在平面上识别水道的空间展布情况,利用剖面上的地震反射构型、地震反射结构投影到平面上做出平面地震相图。 实验一、地震构造解释 一、实验目的 学会Discovery软件的安装、建立工区、三维数据加载、剖面显示地震记录。进行层位对比追踪和断层解释,利用相干体进行断层的平面组合,以及根据解释的层位和断层做出等时构造图。结合剖面图会分析地质意义和盆地内生储盖组合。 二实验内容 本实验以Discovery软件为解释平台进行以下实验: 1 利用Discovery 中模块建立中国的工区和Seisvision模块加载数据。 2断层的剖面解释并结合相干体切片进行断层的平面组合。 根据断层的识别标志进行断层的识别,并结合相干体提高断层识别准度 (期间常见的问题:主测线和联络测线方向断层往往不闭合,解决办法是要根据两个方向综合判断断层。) 3 不整一地震反射界面的识别及追踪对比。 4 等T0构造图的绘制。。 (断层在地震剖面上的一般标志) (1)同相轴错断、波组波系错断(中小断层); (2)同相轴数目突然增减或消失(同生断层); (3)地层产状突变、地震相特征突变(边界断层); (4)同相轴分叉、合并、扭曲及强相位转换(小断层); (5)断面波、绕射波。 (地震反射界面的追踪对比方法) (1)单一同相轴的基本追踪对比方法

★反射波同相轴具线状廷伸特征,相邻记录道的同一同相轴应为一连续的曲线,相邻界面的同相轴应大体平行。 ★相邻记录道同一界面反射波同相轴波形特征相似,即振幅、周期、相位数等相似,它们在空间上是逐渐地变化的。 (2)根据波组或波系进行地震反射界面对比 ★波组是相邻若干个界面形成的多个强反射同相轴的组合。波组之间是一些振幅比较弱的同相轴, ★多个波组组成一个波系。不同波组的相位数多少、振幅强弱、波的疏密程度往往不同,而不同波系所包含的波组个数,各波组间的间隔关系等往往不一样。(3)根据振幅包络线进行对比 ★由于角度不整合面上下相接触的地层层位横向上变化很大,从而界面反射系数的大小甚至于极性变化很大,这使得角度不整合面的反射波特征很不稳定。当进行同相轴对比时,往往很困难。这时应当根据地震反射波的包络线进行对比,即对比界面可以穿相位。 ★在对比基底界面时,根据反射波的包络线进行对比更是常用的方法。因为基底反射波在埋深较大的情况下,振幅一般较弱,对比时要注意沉积岩盖层与基底在宏观反射特征上的差别。 (4)通过剖面闭合检查地震反射界面对比 ★单条剖面的对比完成后,需要与正交剖面进行闭合检查,若在一个环形闭合圈中同相轴不能闭合,则说明对比有误。 ★剖面闭合了,是否解释就肯定正确? 不一定。剖面闭合只说明地震反射界面从几何学的角度上是正确的了,至于其地质意义是否正确还要根据更多的地质资料深入分析。因此剖面闭合是地质解释正确的必要条件,而不是充分条件。 四、过程分析及成图解释

相关文档
最新文档