聚乳酸合成工艺及应用

聚乳酸合成工艺及应用
聚乳酸合成工艺及应用

聚乳酸合成工艺及应用

第七章聚乳酸合成工艺及应用

聚乳酸(PLA)是一种以通过光合作用形成的生物质资源为主要起始原料生产的生物可降解高分子材料,使用后可通过微生物降解为乳酸并最终分解成二氧化碳和水。聚乳酸的合成和应用实际上是一个来源于可再生资源、使用寿命结束后降解产物回归自然、参与到生物资源再生的过程中去的一个理想的生态循环,属于自然界的碳循环。聚乳酸无毒,无刺激性,具有良好的生物相容性、生物吸收性、生物可降解性,同时还具有优良的物理、力学性能,并可采用传统的方法成型加工,在农业、包装材料、日常生活用品、服装和生物医用材料等领域都具有良好的应用前景,因而聚乳酸成为近年来研究开发最活跃的可生物降解高分子材料之一。 7.1 聚乳酸的合成工艺

7.1.1 乳酸缩聚

乳酸上的羟基和羧基进行脱水缩聚反应生成聚乳酸,如图7.2。

必须解决以下三个问题:一,乳酸缩聚的平衡常数非常小,在热力学上分析很

难生成高分子量的聚乳酸,必须从动力学上加以控制,即有效的排出缩聚反应生成的水,使反应平衡向生成聚乳酸的方向移动;二,抑制聚乳酸解聚生成丙交酯的副反应;三,抑制变色、消旋化等副反应。

(1) 溶液缩聚法

合成过程中利用高沸点溶剂和水生成恒沸物将缩聚产生的痕量水带出,有力地促进了方应向正方向进行;同时蒸出的溶剂带出水合丙交酯经分子筛脱水后回流到反应系统中,有效地抑制了聚乳酸解聚生成丙交酯。

高沸点溶剂可以是苯、二氯甲烷、十氢萘、二苯醚等。

特点:直接制的高分子两聚乳酸,但有机溶剂的回收和分离工序使生产过程较

复杂并增加了设备投资,增加了成本,而且残存的有机溶剂对产品造成污染。 (2) 熔融缩聚法

利用无催化剂条件下制的聚合度约为8左右的低聚乳酸为起始物,加入催化剂SnCl?HO(0.4%,质量分数)和等摩尔的对甲基苯磺酸(TSA),在180?、22 410Torr的条件下反应15h可制得M大于10×10的聚乳酸。 W

催化剂除TSA外,还有烷氧基金属催化剂、烷氧基金属和Sn(?)催化体系。特点:能制得较高分子量的聚乳酸,工艺简单,明显降低了生产成本。但熔融缩聚发要达到高分子需要较长的反应时间,长时间的高温造成如下问题:一,解聚反应严

重,生成的丙交酯不断逸出,产率较低,据报道最高仅约60%;二,使聚乳酸产品的颜色变深,影响外观质量和透明性;三,使聚乳酸产品的消旋化较严重。熔融缩聚制得聚乳酸分子量仍不高,与实际应用的要求尚有一定的差距。

(3)熔融?固相缩聚法

熔融?固相缩聚法是指在聚合物结晶温度以上、熔点一下进行的聚合物处于固相状态下的缩聚反应。例如,以低聚乳酸为起始物,加入催化剂

SnCl?HO22(0.4%,质量分数)和等摩尔的对甲基苯磺酸,在机械搅拌下加热至180?并在1h内将压力逐步减至10Torr,反应5h后冷却得到白色固体;然后将固体切粒,在105?真空条件下预热1~2h,接着在150?和0.5Torr压力下固相缩聚20h,4最后的M高达67×10的聚乳酸产品。L-聚乳酸(PLLA)产率达到90%以上,结W

晶度明显提高,同时有效地抑制了消旋化。

特点:能有效提高PLLA的分子量和产率,而且没有造成产品色泽明显变深,成为目前最有效的直接缩聚方法之一,但关于熔融?固相缩聚种的结晶度的调控及其对聚合反应的影响等重要问题尚未完全阐明.

(4)反应挤出强化的熔融缩聚法

反应挤出强化的乳酸熔融缩聚能一步实现聚乳酸的合成与成型,具有显著的工业应用价值,备受关注。

L-乳酸聚合成M为乳酸预聚物在双螺杆挤聚乳酸通过T行头直 W4出机中进一步缩聚接制成薄膜制品(1.0~5.0)×10的预聚物

此处,挤出机的合理设计及挤出工艺是关键,通常反应挤出时的加料速度为3.20~3.75 kg?h,螺杆转速为150 ~180 r?min,停留时间为42~49min。在此

4条件下产生的聚乳酸的M达(10.0~15.0)×10,薄膜的拉伸强度为W

15.5~25.7MPa,断裂伸长率为33%~40%。

(5) 超临界缩聚法

以二环己基碳二亚胺(DCC)和4-二甲基吡啶(DMAP)为催化剂,在80?,3500psi 条件下聚合度为8的低聚乳酸为起始物进行超临界缩聚,反应24h制得4Mn为1.35×10的产品。

特点:避免了有机溶剂的使用,特别合适用作生物医学用聚乳酸材料的合成。但是超临界缩聚是一种高压高能耗方法,且对设备要求高,因此产品价格高昂。

(6) 酶催化缩聚法

反应条件温和,避免了催化剂污染产品,非极性溶剂有利于缩聚反应的进行。但是酶催化乳酸还处于起步阶段,尚需对催化机理进行充分的认识,并以此作为理论基础探索提高分子量的新思路,突破现在制约该方法广泛使用的瓶颈。 7.1.2丙交酯的合成和开环聚合

7.1.2.1 丙交酯的合成

乳酸加热、脱水得到低分子量聚乳酸,然后在低压催化下转化为乳酸环状二聚物——丙交酯。包括L-丙交酯(LLA)、D-丙交酯(DLA)和内消旋丙交酯(MLA)。

7.1.2.2 丙交酯的开环聚合

(1) 阳离子聚合机理

阳离子聚合机理是引发剂提供H,进攻丙交酯,按烷氧断裂方式形成阳离子中间体,从而进行链增长。阳离子引发剂一般分为四类:质子酸(HCl、HBr、RCOOH、RSOH);路易斯酸(AlCl、BF、FeCL、ZnCl等);烷化剂(稳定的碳阳离子,33332 +‐如CFSOCH、EtO,BF);酰化剂(CHCOOCl)。 333434

(2) 阴离子聚合机理

阴离子聚合机理如图7.4

所示,链的增长醇盐离子对单体的酰氧键的亲核反应,尽管这一步并不引起消旋化,但由引发剂或活性链端产生的单体的去质子化引起了部分消旋化。由于活性链端产生单体的去质子化导致反应终止,不利于制备高分子量的聚乳酸。最适宜的引发剂有丁基锂和碱金属醇盐,苯甲酸甲或硬脂酸锌之类的弱碱引发剂只有在温度超过120?时才大量使用。

(3) 配位-插入聚合机理

配位-插入聚合机理是制备高分子量、高强度聚乳酸的最有效方法,应用

4Zn(?)丁醇盐作为引发剂合成的聚乳酸相对分子质量可达100×10。辛酸亚锡属于金属羧盐引发剂,具有聚合速度快、高温时低消旋的特点。以辛酸亚锡作为引发剂的聚合机理有两种:?辛酸亚锡先于含有羟基的化合物反应,生成真正的引发剂——Sn(?)的醇盐或氢氧化物,聚合过程的单体插入到醇盐的Sn(?)氧键或羧酸盐的活化中心; ?辛酸亚锡与单体形成复合物,在单体复合体上由羟基封端的大分子发生亲核反应进行聚合,在每一个增长阶段辛酸亚锡都被释放出来,这意味着在

聚合的每一阶段Sn(?)原子和聚合物都不是共价相连的。最近研究结果普遍支持第一种机理。

7.1.3 聚乳酸的扩链

对低分子量聚乳酸扩链是获得高分子量聚乳酸的经济、有效的方法。扩链即通过扩链剂与聚乳酸低聚物的端基反应而将它们串联起来,达到提高聚乳酸分子量的目的。

常用的扩链剂主要有二异氰酸酯、环氧化物、二酸酐以及二噁唑啉、二烯酮缩醛等。扩链法可以直接使用熔融法或溶液法合成的低分子量乳酸预聚体,合成线型或交联型的聚乳酸类材料,以满足不同用途的需要。熔融扩链法能在挤出机上进行,有利于成型加工和连续操作,具有应用价值。

7.2 聚乳酸的物理性质和性能

7.2.1 聚乳酸的物理性质

3聚乳酸(PLA)是一种浅黄色或透明的固体,密度约1.25g??,不溶于水、乙醇、甲醇等溶剂,无毒无刺激性,具有良好的生物相容性是一种生物可降解、生物可吸收的高强度热塑性聚合物。有三种构型,聚右旋乳酸(PDLA)聚左旋乳酸(PLLA)聚消旋乳酸(PDLLA)。PLA在UV-C(190~220nm)范围内几乎不透过紫外线,但是在225nm时紫外线透过率达到85%,300nm时紫外线透过率达到95%,UV-A和UV-B能够透过。表7.1

7.2.2 聚乳酸的使用性质

(1) 聚乳酸的力学性能

聚乳酸的力学性能优于天然高分子材料,与聚乙烯和聚丙烯相当,其拉伸强度最高可达到60MPa左右,主要表现为刚而脆,脆性是目前限制聚乳酸在日常生活用品中应用的主要问题。聚乳酸的力学性能依赖于分子量大小、立构规整性、结晶度、晶体厚度、球晶尺寸、分子链定向程度等。

(2) 聚乳酸的热性能

无定形PLA的热封起始温度为80~85?,和18%乙酸乙烯酯和乙烯-乙酸乙烯酯共聚物的相同,热粘接强度(450g??)高于EVA(130 g??)。PLLA(94%)膜的密封条件,在115?以下时剥离强度是常数,当120?时剥离强度增加高于PLA的拉伸强度,可以先于密封层被撕裂,因此可以用在手撕胶带和易开包装制品中。

(3)聚乳酸的流变性质

聚乳酸的熔融粘度主要与分子量、L/D型单元体比例、增塑剂含量、剪切速度和温度有关。聚乳酸熔融体属于假塑性非牛顿流体。半结晶聚乳酸具有比无定形聚乳酸较高的剪切粘度,随着温度或剪切应力的升高剪切粘度下降,因此在加工过程中可通过提高剪切应力来有成效的降低其表观粘度。

(4)聚乳酸的加工性能

PLA加工性能优异,能用普通设备进行挤出、注射、拉伸、纺丝、吹塑,具有良好的印刷性能和二次加工性能。

)聚乳酸的电性能 (5

当聚合物高度取向的时候PLLA显示出强大的亚电常数。PLLA的亚电常数-d1

和-d随拉伸比提高,DR在4~5时达到最大值。ξ2ξ

(6)聚乳酸的渗透性

聚乳酸对水蒸气和氧气的渗透性良好,特别是对水蒸气的透过性能能过和最高水平的玻璃纸相当,可以作为透气包装材料。在25~45?二氧化碳的渗透率是温度的函数,PLLA(98%)的二氧化碳渗透率高于PLLA(94%),但活化能低于PLLA(94%)。并且PLA的二氧化碳渗透率在室温下高于PET而低于PS。 7.2.3聚乳酸的可生物降解性能

聚乳酸的降解主要分为高聚物的吸水、酯键的水解断裂、可溶性低聚物的扩散溶解三个过程。内、外部分降解不均匀是聚乳酸降解的普遍现象。在降解初期,在材料的外部和内部会很快出现吸收不一致的情况。由于水的扩散比酯键的水解要快很多,可以认为酯键的水解在开始的阶段是均匀的。但随着降解的继续,聚乳酸材料就会出现内部降解要比外部快的现象。这种现象被认为是有两种原因造成,一是酯键断裂形成的可溶性低聚物在表面比在内部更容易扩散到外部介质中,二是酯键发生断裂形成的中性端基位于外部缓冲液的表面。这两个原因均导致表层的酸性要比内部的酸性小,并使材料内外部的羧端基产生差异。聚乳酸的内部由于羧端基的自催化作用而进一步加快内部的降解速率。随时间的延长,材料形成表面没有完全降解而内部完全降解的孔洞结构。聚乳酸的这种不均衡降解速率主要受化学结构、物理结构和表面结构因素的影响,同时还与pH值、分子量及其分布、温度和酶等条件有关。

7(3聚乳酸材料的改性

聚乳酸的更广泛应用受到的制约:

1 力学性能仍需进一步提高和均衡

2 加工过程中的热稳定性能和使用时的热变形温度需要提高

3 需要大幅度的降低价格

4 材料生物降解周期的调控

改性方法:共聚改性、共混改性、纳米复合改性

7(3.1 聚乳酸的共聚改性

聚乳酸共聚改性主要是与聚乙醇酸(PGA)、聚乙二醇(PEG)及药物通透性好的聚己内酯(PCL)等链段形成线型共聚物以及与聚多糖类化合物形成接枝共聚物共聚改性的目的是将聚乳酸与其他聚合物链段的优势结合起来,并通过控制聚乳酸与其他聚合物链段的分子量及配比调控结晶度、亲水性/疏水性等性质,进而影响到力学性能的降解周期等。同时,共聚改性也是扩展聚乳酸应用范围的有利工具。

(1)聚乙丙交酯共聚物

结晶度低,易于纺丝,纤维强度高,伸长率适中。被用作医用缝合线,生物体吸收性骨科固定材料、组织修复材料及药物控制释放载体等 (2)聚(乳酸-乙二醇)嵌段共聚物

提高聚乳酸的亲水性,调节降解速度、改善聚乳酸的脆性并提高成型加工性能。

应用于药物控制载体、与血液接触的表面、组织黏合剂以及组织工程支架等生物医学材料。

3)聚(乳酸-己内酯)嵌段共聚物

提高聚乳酸的耐热性和加工性能

改善聚乳酸的脆性,制备出耐冲击的农用薄膜

(4)天然聚多糖/聚乳酸的接枝共聚物

天然多糖,如支链淀粉、直链淀粉和葡聚糖等是一类可生物降解的天然高分子,可以在酶的催化下完全降解,将PLA与多糖接枝共聚,可以再链上引入亲水性多糖单元,在提高亲水性的同时,可以降低其结晶度而加速降解速度。

7( 3.2 聚乳酸的共混改性

共混作为聚合物改性的重要途径之一,不仅简单易行、成本低廉,而且能综合均衡各聚合物组分的性能,获得综合性较为理想的材料。聚乳酸是一种热塑性高分子,易溶于某些有机溶剂,因此可选择的共混方法包括熔融共混和溶液共混。

7(3.2.1 聚乳酸与合成生物降解高分子共混体系

(1)聚乳酸/聚羟基脂肪酸酯共混体系

聚羟基脂肪酸酯是由微生物合成的一类脂肪族聚酯,具有与通用塑料相似的热塑性,能够完全降解为水和二氧化碳,也属于生物材料。

(2)聚乳酸/聚己内酯共混体系

聚己内酯的降解周期比聚乳酸长很多,因此可以通过调节共混体系中两者的质量比开发出一系列降解周期可控的材料。但两者之间不相容,采用原位相容的方法改善相容性。

(3)聚乳酸/聚氧化乙烯共混体系

对于共混体系,低分子量的聚氧化乙烯是聚乳酸良好的增塑剂,较高分子量的聚氧化乙烯则是良好的增韧剂。

7(3.2.2 聚乳酸/天然高分子共混体系

(1)聚乳酸/淀粉共混体系

此混体系优势是能够极大的降低聚乳酸的价格。

利用淀粉改性聚乳酸,淀粉的原始含水量以及加工条件对共混体系的性能有一定的影响为改善淀粉/聚乳酸共混体系的相容性,通常采用引入淀粉接枝共聚物作为增容剂的方法

(2)聚乳酸/蛋白共混体系

Zhang将大豆蛋白(SP)和PLA用双螺旋杆挤出机制得SP/PLA 共混物。SPC与PLA有良好的相容性。

(3)聚乳酸/天然纤维共混体系

用天然植物纤维增强高分子材料能有效地提高材料的轻度和硬度,符合节约资源和保护环境的趋势。

大多数天然植物纤维添加以后,聚乳酸材料的拉伸强度、弯曲强度和弹性模量、热变形温度都得到不同程度的提高,其中增强效果最显著的是洋麻纤维。7(3.3 聚乳酸的纳米复合改性

纳米复合技术应用于聚乳酸材料,制得的聚乳酸纳米复合材料具有更加优良的韧性和弹性、较高的强度和模量以及特殊的电学和光学性能。

存在的问题:

1 纳米粒子比表面能太高,极易团聚

2 聚乳酸基质和纳米粒子填充项之间难于产生界面相互作用 7(3.3.1 蒙脱土/聚乳酸纳米复合材料

聚乳酸/蒙脱土纳米复合材料的制备方法主要包括溶液共混法、熔融共混法和原位聚合法

由于插层或剥离型蒙脱土的引入,聚乳酸/蒙脱土纳米复合材料比纯聚乳酸具有更好的结晶性、热稳定性、力学性能、阻隔性能以及降解性能。 7(3.3.2 纳米和晶须碳酸钙/聚乳酸纳米复合材料

碳酸钙因来源广泛、价格低、毒性低等特点而成为塑料、橡胶工业常用的填料之一。常用的碳酸钙填料主要是纳米碳酸钙和晶须碳酸钙。

将这两种碳酸钙分别于聚乳酸复合制备材料,冲击强度、弯曲强度和拉伸弹性模量均显著增加

7(3.3.3 碳纳米管/聚乳酸复合材料

碳纳米管(CNT)是由碳原子形成的石墨烯片层卷成的无缝、中空的管体。

聚乳酸/碳纳米管复合材料可用熔融或溶液共混法制备。为改善碳纳米管在聚乳酸基质中的分散性,将多壁碳纳米管表面修饰成带酰氯集团,在与聚乳酸溶液共

混时首先形成聚乳酸接枝碳纳米管,聚乳酸接枝碳纳米管能够在聚乳酸基质中良好分散。但多壁碳纳米管对聚乳酸的生物相容性带来不利影响。 7(3.3.4 纳米二氧化硅/聚乳酸纳米复合材料

将纳米SiO引入聚合物制备纳米复合材料,有利于提高聚合物的模量、强度2 和热稳定性。通常,使用硅烷偶联剂对纳米SiO表面进行修饰,消除或减少表2

面的硅羟基,进而实现亲水/疏水性的调控,提高聚合物基质的相容性。

制备方法:机械共混法、原位共混法、聚合物单体原位聚合法 7(3.3.5 羟基磷灰石/聚乳酸纳米复合材料

将高弹性的羟基磷灰石纳米粒与聚乳酸复合,不仅提高了聚乳酸的力学性能,还特别适用作组织修复材料。

复合方法:溶液共混、熔融共混、原位聚合法

7(3.3.6 聚多糖纳米粒子/聚乳酸纳米复合材料

天然聚多糖纳米粒子具有可再生、易得、强度高、可生物降解、生物相容、易加工、表面反应活性高等特点。

目前,已经利用纤维素晶须、甲壳素晶须和淀粉纳米晶改性了聚乳酸材料,开发出一系列全生物质聚乳酸纳米复合材料。

7(4 聚乳酸的成型加工

聚乳酸属热塑性材料,不仅加工性能优良,还具有良好的印刷性能和二次加工性能。PLA能通过普通设备进行挤出、注射、拉伸、纺丝、吹塑和模压等成型加工,一般加工温度控制在170~230?之间。

7(4.1 聚乳酸的注射成型

成型过程:首先将PLA粒料输送加入到注射机中,随着往复式螺杆的转动而向前输送,同时被压实、排气和塑化;然后,随着熔融PLA在螺杆顶部与喷嘴之间聚

集,螺杆受熔融压力而后移至积存的融料达到要求注射量时停止转动;接着,在液压力或机械力驱动下将熔融PLA料以较快的速度经由喷嘴注入温度较低的闭合模具中;在充模完成后,压力升高到较高值并维持不变,进行保压;在保压一定时间、冷却定型后,开启模具即得制品。

7(4.2 聚乳酸的注射-拉伸-吹塑成型

吹塑成型包括两个步骤:首先通过注射模塑加工瓶坯,然后瓶坯植入另一套模具并被拉伸-吹塑成最终的容器制品。

拉伸吹塑模塑使PLA制品受到双向拉伸作用发生取向,从而提高了制品冲击强度、气密性硬度、透明性和表面光泽度,使容器壁更薄,质量更轻,从而降低成本。

7.4.3 聚乳酸的挤出成型

7(4.3.1 挤出薄膜/片材工艺

(1)聚乳酸挤出流延薄膜/片材

挤出流延工艺流程如下:塑料料粒干燥-挤出熔融塑化-T型口模流延-铸片冷却-表面处理-切边-收卷。

(2)聚乳酸共挤出薄膜/片材

包装中经常使用多层结构,将多种聚合物的性能有效地结合起来。共挤出是制备成本较低的一种方法。共挤出薄膜/片材是两种或多种树脂采用流延或吹塑法加工而成的

7(4.3.2 聚乳酸的挤出纺丝

熔融纺丝法生产聚乳酸纤维素的工艺流程主要包括:原料树脂-干燥-熔融纺丝-拉伸-热处理。

挤出纺丝可采用普通单螺杆挤出、本体连续熔融纺丝的方法。一般PLA纤维通过喷丝头的温度为185~240?,螺杆的长径比为2~10。PLA纺丝的速度可以控制在很宽的范围,典型速度为2000~3000m/min. 7(4.4 聚乳酸的挤出-拉伸-成膜7(4.4.1 挤出双向拉伸聚乳酸薄膜-平膜拉伸

双向拉伸工艺有管式吹膜法双向拉伸-平膜法双向拉伸。双向拉伸可以提高PLA 膜的结晶度,进而可以提高PLA膜的力学性能,并且膜的力学性能随着拉伸倍数的增加而提高。

工艺流程:树脂进入挤出机-T型口膜挤出厚膜-骤冷-加热锟筒加热到高态下的拉伸温度-纵向锟筒逐级拉伸-横向拉伸-热定型-冷却锟逐级冷却至常温-表面处理-收卷-分切机分切成产品规格-包装出厂。

7(4.4.2 挤出双向拉伸聚乳酸薄膜-吹膜法双向拉伸

圆形口膜挤出厚膜-冷却水管膜法双向拉伸工艺流程如下:树脂进入挤出机- 骤冷-提升管加热到T~T之间的拉伸温度-横向吹胀拉伸-夹膜锟快速牵引-剖切gf

-收卷-热定型机上放卷-加热到比双向拉伸温度高而比T低的温度下热定型-保f

持同拉伸一样的张力下经过一定的时间-经过多个冷却锟筒缓慢冷却到常温-电晕处理-收卷

7(4.5 聚乳酸的热成型

PLA的热模压成型是利用PLA片材作为原料来制造制品的一种成型加工方法。热成型过程包括三个步骤:片材加热、片材成型、之前修饰,需要优化确定适合的加热温度、循环周期、模具设计等工艺条件。

热模压的成型方法和工艺条件取决于产品的性能要求和材料特性,主要影响产品质量的工艺条件包括成型温度、片材加热时间以及成型压力和成型速度。、7.5聚乳酸的应用

7.5.1聚乳酸降解塑料

内容简介:聚乳酸是玉米——淀粉——L-乳酸——聚乳酸——塑料制品——自然生物降解——二氧化碳和水——植物吸收——玉米一个完整生物循环的重要环节之一,从生产到使用后废弃对环境不带来任何危害。利用东北丰富的玉米,采用高新技术,制备完全可生物降解的高分子材料及制品,增加农副产品的附加值,解决塑料造成的“白色污染”,开发和利用可再生的自然资源。聚乳酸是21世纪最有发展前途的新型的高分子材料之一。中科院研究所从1999年开始开展聚乳酸产业化研究方向的。目前,已经完成产业化前期的生产中试。己初步具备了几个品种制品的加工技术。

应用前景及市场预测:聚乳酸是一种新型完全可生物降解绿色塑料,具有通用高分子材料的基本特性,性能与聚丙烯、聚乙烯相近,如可以采用注塑、挤出等不同方式进行加工,可以制成纤维、膜、棒、块、板材等用于纺织、包装等各种民用、工业应用和医疗特殊应用领域。针对不同应用领域对聚乳酸性能要求不同的需要,开发出10种以上规格和批号的产品。在包装膜和泡沫材料、生态农业用塑料制品、一次性塑料使用制品、纺织纤维、医用塑料制品等方面得到广泛的应用。

7.5.2聚乳酸纤维

聚乳酸纤维

聚乳酸的聚合方法有两种,一种是减压在溶剂中由乳酸直接聚合的方法,即:乳酸?预聚体?聚乳酸;另一种方法是常压下以环状二聚乳酸为原料聚合得到,即:乳酸?预聚体?环状二聚体?聚乳酸。

聚乳酸纤维是一种新型的可完全生物降解的合成纤维,系从谷物中取得,其制品废弃后在土壤或海水中经微生物作用可分解为二氧化碳和水,燃烧时不会散发毒气,不会造成污染。目前,学术界对聚乳酸纤维的研究很多,主要以日本钟纺公司为代表。由玉米、甘蔗或甜菜通过发酵和蒸馏的方法提取乳酸,聚合成聚乳酸,通过溶液纺丝方法得到聚乳酸纤维,日本钟纺公司的聚乳酸纤维的商品名为Lactron,其性能见表1,从表中数据可以看出,聚乳酸纤维具有与聚酯几面料原料。乎同等强度和伸长,杨氏模量较低,其织物比较柔软,是一种优良的Lactron可以加工成短纤维、复丝和单丝形式,与棉、羊毛或粘胶等可分解性纤维混纺,可制得类似丝的织物,制成内衣和衬衫等服装,不但耐用、吸湿性好,而且通过加工形成优良的形态稳定性和抗皱性能。

聚乳酸的原料是乳酸,即-羟基丙酸、2-羟基丙酸。由于乳酸分子中有一个不对称碳原子,所以具有d-型(右旋光)和L-型(左旋光)两种对映体,等量的L-乳酸和d-乳酸混合而成的dL-乳酸不具旋光性。成纤聚乳酸以L-乳酸为单体。

L-乳酸的工业化生产主要有微生物发酵法和化学合成法两大类。中国发酵

乳酸工业主要采用玉米、大米、薯干粉等为原料,以谷糠、麦皮等为辅料,以α-淀粉酶、糖化酶为液化剂、糖化剂,CaCO3为中和剂,经发酵生产乳酸钙,再进一步酸化纯化得到乳酸产品。聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。

丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分子量的聚乳酸,也较好地满足成纤聚合物和骨固定材料等的要求。

乳酸直接缩聚是由精制的乳酸直接进行聚合,是最早也是最简单的方法。该法生产工艺简单,但得到的聚合物分子量低,且分子量分布较宽,其加工性能等尚不能满足成纤聚合物的需要;而且聚合反应在高于180?的条件下进行,得到的聚合物极易氧化着色,应用受到一定的限制。

由于原料原因,聚乳酸有聚d-乳酸(PDLA)、聚L-乳酸(PLLA)和聚dL-乳酸(PDLLA)之分。生产纤维一般采用PLLA。聚乳酸在所有生物可降解聚合物中熔点最高,结晶度大,热稳定性好,加工温度在170~230?之间,有良好的抗溶剂性,因此能用多种方式进行加工,如挤压、纺丝、双轴拉伸、注射吹塑。

聚乳酸及其共聚物的纺丝可采用溶液纺丝和熔融纺丝工艺,主要采用干纺-热拉伸工艺,而干纺纤维的机械性能要优于熔纺纤维。研究表明,聚乳酸的分子量及其分布、纺丝溶液的组成及浓度、拉伸温度、聚乳酸的结晶度和纤维直径,都影响最终纤维的性能。

聚乳酸是热塑性聚合物,可采用熔融纺丝。熔纺同溶液纺相比具有经济上的优势,因此对其研究非常活跃。PLLA对温度非常灵敏,在升温过程中特性粘度有较大幅度的下降,而且温度越高,?η越大。因此成纤聚合体中的金属、单体、水等的含量必须严格控制,尤其是残留金属及水分子在纺丝前必须严格去除,否则在纺丝过程中会引起分子量的急剧下降和腐蚀加工机械,制得的纤维性能降低。

在熔融纺丝前,把聚乳酸未端的-OH基用醋酸酐和吡啶进行乙酰化,结果发现其热稳定性有所提高,为纺丝温度低于200?,聚乳酸基本不发生热降解。采用二步法,即第一步熔融挤压,第二步热拉伸,可制得断裂强度高于7.2 cN/dtex的聚乳酸纤维。

聚乳酸在所有生物可降解聚合物中熔点最高,结晶度大,热稳定性好,加工温度在170~230?之间,有良好的抗溶剂性,因此能用多种方式进行加工,如挤压、纺丝、双轴拉伸、注射吹塑。

聚乳酸及其共聚物的纺丝可采用溶液纺丝和熔融纺丝工艺,主要采用干纺-热拉伸工艺,而干纺纤维的机械性能要优于熔纺纤维。研究表明,聚乳酸的分子量及其分布、纺丝溶液的组成及浓度、拉伸温度、聚乳酸的结晶度和纤维直径,都影响最终纤维的性能。

温度(?) 特性粘度(η) ?η 室温 1.35 0 205 1.16 0.19 215 0.89 0.46 225 0.82 0.53

PLLA的特性粘度

聚乳酸是热塑性聚合物,可采用熔融纺丝。熔纺同溶液纺相比具有经济上的优势,因此对其研究非常活跃。PLLA对温度非常灵敏,在升温过程中特性粘度有较大幅度的下降,而且温度越高,?η越大。因此成纤聚合体中的金属、单体、水等的含量必须严格控制,尤其是残留金属及水分子在纺丝前必须严格去除,否则在纺丝过程中会引起分子量的急剧下降和腐蚀加工机械,制得的纤维性能降低。

在熔融纺丝前,把聚乳酸未端的-OH基用醋酸酐和吡啶进行乙酰化,结果发现

其热稳定性有所提高,为纺丝温度低于200?,聚乳酸基本不发生热降解。采用二

步法,即第一步熔融挤压,第二步热拉伸,可制得断裂强度高于7.2 cN/dtex的聚乳酸纤维。

不同纺丝气氛下聚乳酸的降解率。

研究还表明,纺丝的气氛对初生纤维特性粘度的影响极大,苦用氮气保护聚乳酸降解率明显降低,不同分子量的聚乳酸应该有不同挤出温度。 7.5.3聚乳酸生

物医用材料

20 世纪50 年代,由丙交酯(LA) 开环聚合制得了高分子量的聚乳酸,但由于

这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。直到20 世纪60 年代,科学工作者重新研究PLA对水敏感这一特征时,发现聚乳酸适合作为可降解手术缝合线材料。1966 年,Kulkami 等提出低分子量的PLA 能够在体内降解,最终的代谢产物是CO2 和H2O,中间产物乳酸也是体内正常代谢的产物,不会再体内积累,因此PLA 在生物体内降解后不会对生物产生不良影响。随后报道了

高分子量的PLA 也能在人体内降解,由此引发了以这类材料作为生物医用材料的

开端。

(1) 聚乳酸及其共聚物在缓释药物中的应用

缓释、控释制剂又称为缓释控释给药系统(sustainedand controlled release drug delivery system), 不需要频繁给药,能够在较长时间内维持体内有效

的药物浓度,从而可以大大提高药效和降低毒副作用[4]。聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种;意识使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作

用,让药物定量持续释放以保持血药相对平稳;另一种是作为囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。聚乳酸作为缓释剂的优点有:?熔融温度低,且易溶于溶剂中。?聚乳酸水解产物为乳酸,对人体无害。?低聚乳酸容易制备。

(2) 聚乳酸在骨内固定及组织工程方面的应用

20 世纪80 年代美国科学家Langer 与Vacanti 提出了“组织工程”这一再生医学新概念,并于20 世纪90年代初将其定义为究开发具有修复、改善、替代人体组织或功能的生物装置的生命科学工程技术[12]。目前组织工程研究主要集中于一下几个方面:?细胞外基质替代物的研究。?种子细胞的立体培养。?组织工程化组织对各种病损组织的替代研究。其中寻找一种理想的材料作为

细胞外基质替代物是组织工程研究的一个重要课题。作为一种理想的材料,临床上应满足一下几点:?组织相容性好、无排斥反应。?生物可降解性、降解可调性及降解无毒性。?易于塑形。?适应种子细胞生长、繁殖需要的物理和化学条件。?可灭菌并对其性能没有本质上的影响。

(3 )聚乳酸作为外科手术缝合线的应用

聚乳酸及其共聚物作为外科手术缝合线,由于其生物降解性,在伤口愈合后自动降解并吸收,无需二次手术,这也要求聚合物具有较强的初始抗张强度且稳定的维持一段时间,同时能有效的控制聚合物降解速率,随着伤口的愈合,缝合线缓慢降解。1975 年PLGA(LA/GA:90/10) 作为手术缝合线( 商品号Vicryl)投放市场,受到医生的青睐[23]。近年来主要集中在一下几个方面:(1) 为提高缝合线的机械强度,需要合成高分子的PLA,改进缝线加工工艺。Pennings 等[24] 考察了聚合条件对分子量的影响,Postema 等[25] 考察了干纺、湿纺及拉伸条件等对缝线结晶度、抗压强度的影响。同时,Benicewice 等[26] 认为熔融纺丝的PLLA纤维能在更长的时间内维持其强度和稳定性;(2) 光学活性聚合物的合成。半结晶的

聚乳酸合成

聚乳酸合成方法研究进展 聚乳酸的合成主要有两条路线:一条是乳酸(1actic acid)直接聚合.另一条是由乳酸预聚生成低分子量物质,其解聚得丙交酯(1actide),丙交酯重结晶后开环聚合(ROP)得到聚乳酸。具体过程如下 图2-1 聚乳酸的两条合成路线 1、直接聚合法[JK] 乳酸同时具有-OH和-COOH,是可直接缩聚的,采用高效脱水剂和催化剂使乳酸或乳酸低聚物分子间脱水缩合成高分子质量聚乳酸: 式1.1 采用直接法合成的聚乳酸,原料乳酸来源充足,大大降低了成本,有利于聚乳酸材料的普及,但该法得到的聚乳酸相对分子质量较低,机械性能较差。 2、丙交酯开环聚合法[L] 开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体-丙交酯。丙交酯经过精制提纯后,由引发剂如辛酸亚锡、氧化锌等许多化合物催化开环得到高分子量的聚合物第一步是乳酸经脱水环化制得丙交酯。 式1.2 第二步是丙交酯经开环聚合制得聚丙交酯由于此方法可通过

式1.3 由于此方法可通过催化剂的种类和浓度使得聚乳酸分子量高达70万到100万【M】,机械强度高,适合作为医用材料。 乳酸直接聚合与乳酸先制成丙交酯后再开环聚合制备聚乳酸相比,工艺简单,成本低廉。但以往的研究表明采用乳酸直接聚合法难以获得具有实用价值的高分子量聚乳酸,但丙交酯开环聚合的高成本限制了聚乳酸的应用。随着化工技术的进步,研究者们对乳酸缩聚制各聚乳酸又重新重视起来。 常有的缩聚方法有:熔融缩聚、溶液缩聚、乳液缩聚和界面缩聚。本实验室采用了熔融缩聚和溶液缩聚制得分子量较高的聚乳酸。 实验部分 实验原料:乳酸(85-90%);二水和氯化亚锡(Sn2Cl2.2H2O);三氧化二锑(Sb2O3);甲醇;高纯氮;二丁基氧化锡(SnOEt2);月桂酸二丁基锡;醋酸锰(Mn(CH3COO)2);五氧化二磷(P2O5);苯;氯仿;甲苯;四氢呋喃 实验仪器:温度计;通气管;三口烧瓶;油浴锅;磁力搅拌器一套;分馏头;冷凝管;尾接管;圆底烧瓶;干燥瓶;真空抽滤机;分析天平; 图2-1 实验装置图

聚乳酸的合成

聚乳酸的合成 聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。 丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分子量的聚乳酸,也较好地满足成纤聚合物和骨固定材料等的要求。 乳酸直接缩聚是由精制的乳酸直接进行聚合,是最早也是最简单的方法。该法生产工艺简单,但得到的聚合物分子量低,且分子量分布较宽,其加工性能等尚不能满足成纤聚合物的需要;而且聚合反应在高于180℃的条件下进行,得到的聚合物极易氧化着色,应用受到一定的限制。 由于原料原因,聚乳酸有聚d-乳酸(PDLA)、聚L-乳酸(PLLA)和聚dL-乳酸(PDLLA)之分。生产纤维一般采用PLLA。 聚乳酸的发展意义 聚乳酸在中国应用的意义不仅仅体现在环保方面,对于循环经济、节约型社会的建设也将有积极的作用。化工塑料的原料提取自不可再生的化石型资源---石油,而石油正在成为一种稀缺的消耗性资源。提取自植物的聚乳酸显然有着取之不尽的原料供应量,而分解后的聚乳酸又将被植物吸收,形成一个物质的循环利用。所以聚乳酸有“在地球环境下容易被生物降解的”塑料之称。 而且相对于化工塑料,聚乳酸不会产生更多的二氧化碳。因为聚乳酸的原料---玉米在生长过程中通过植物的光合作用,又会消耗二氧化碳。此外,聚乳酸的产业化将大大提高农作物的附加值。以玉米为例,中国每年库存达3000多万吨,且大部分被当作了饲料,如果用于生产聚乳酸,形成“玉米-乳酸-聚乳酸-共聚共混物-各种应用制品”的产业链,可大大提高玉米的价格,提高农民收益。 之前,农用薄膜和方便食品的包装或餐具已经使用了聚乳酸。但是,同利用石油和天然气制造的塑料比较起来,利用植物制造的这种聚乳酸塑料,成本较高,而且在60℃左右就会变形。由于存在着这些缺点,这种材料至今难以普及。 尽管如此,人们还是非常看好聚乳酸。一个重要的原因,就在于它是以植物作为原料。聚乳酸有可能为解决世界面临的化石燃料枯竭和地球变暖两大难题做出巨大贡献。 为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。经过多年的研究,一些著名的科研机构和企业相继推出了多种可生物降解聚合物。而在众多可生物降解聚合物中,刚刚进入工业化大生产的聚乳酸异军突起,以其优异的机械性能,广泛的应用领域,显著的环境效益和社会效益,赢得了全球塑料行业的瞩目和青睐。

聚乳酸合成及应用研究

聚乳酸合成及应用研究 摘要:综述了聚乳酸的合成方法,介绍了其生产应用现状。 关键词:聚乳酸乳酸丙交酯生物降解材料 随着科学与社会的发展,环境和资源问题越来越受到人们的重视,成为全球性问题。以石油为原料的塑料材料应用广泛,这类材料使用后很难回收利用,造成了目前比较严重的“白色污染”问题。而且石油资源不可再生,大量的不合理使用给人类带来了严重的资源短缺问题。可降解材料的出现,尤其是降解材料的原材料的可再生性为解决这一问题提供了有效的手段。 聚乳酸(PLA)是目前研究应用相对较多的一种,它是以淀粉发酵(或化学合成)得到的以乳酸为基本原料制备得到的一种环境友好材料,它不仅具有良好的物理性能,还具有良好的生物相容性和降解性能。聚乳酸属于脂肪族聚酯化合物。聚乳酸的分子构象存在3种异构体,即左旋的L-PLA,右旋的D-PLA以及内消旋的D,L-PLA。由发酵产生的聚乳酸大部分为L-PLA。PLA 的几种旋光性结构中,L- PLA及D-PLA是半结晶高分子,机械强度较好;D,L-PLA是非结晶高分子,降解快,强度耐久性差。其中L-PLA由于降解产物是左旋乳酸,能被人体完全代谢,无毒、无组织反应。由于不同的聚乳酸的分子构象,对最终产品的性能产生影响,所以在聚乳酸形成时,控制不同分子构象的相对比例,就可得到不同性能的聚合体。 1913年法国人首先用缩聚的方法合成了聚乳酸,其产量、相对分子质量都很低,实际用途不大。1954年,美国Dupont公司用间接法制备出高相对分子质量的聚乳酸,1962年,美国Cyanamid 公司发现聚乳酸具有良好的生物相容性并将聚乳酸应用于医学领域,作为生物降解医用缝线。美国的Dow化学公司和Cargill公司各出资50%组建的CargillDow聚合物公司研制、开发出了新一代PLA树脂及其合金。日本Mitsui Toatsu公司也推出了新一代改进型聚乳酸树脂(商品名为Lacea),并于1994年建成年产100t的发酵设备。目前,美国Chronopol公司开发的PLA树脂已经半商业化,并计划在未来几年内建成世界级PLA生产装置。芬兰纽斯特(Neste)公司开发的聚乳酸产品也已经投入生产。哈尔滨市威力达公司与瑞士伊文达·菲瑟公司就合作建设世界第二大聚乳酸(该项目总投资4亿元,预计投产后每年可生产聚乳酸1万吨)生产基地的技术引进进行新一轮洽谈,并取得实质性进展;双方基本确定引进的方式、时间、价格等事宜;该项目将于2005年内建成投产。 1 聚乳酸的合成方法 1. 1 直接聚合 1.1.1 溶液聚合方法 Hiltunen等研究了不同催化剂对乳酸直接聚合的影响,在适合催化剂和聚合条件下,可制得相对分子质量达3万的聚乳酸。日本Ajioka等开发了连续共沸除水直接聚合乳酸的工艺,PLA相对分子质量可达30万,使日本Mitsui Toatsu化学公司实现了PLA的商品化生产。国内赵耀明1以D,L-乳酸为原料,联苯醚为溶剂,锡粉为催化剂(200目),在130℃、4000Pa条件下共沸回流,通过溶液直接聚合制得相对分子质量为4万的聚合物。秦志中2等用锡粉作催化剂,分阶段升温减压除水,通过本体及溶液聚合制备了相对分子质量达到20万的高分子量聚乳酸;他们的研究表明在直接法制备聚乳酸的过程中,为防止前期带出大量的低聚物,并且确保在聚合反应过程中所生成的水排除干净,宜用低温高真空,中温高真空,高温高真空的工艺路线;还对聚乳酸的降解性能进行了研究。王征3等采用精馏-聚合耦合装置SnCl2·2H2O的催化体系研究了直接聚合过程中温度、时间、压力对聚合物相对分子质量的影响;研究表明延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物的相对分子质量。现已可由直接聚合方法制得具有实用价值的PLA聚合物,并且此聚合方法工艺简单,化学原料及试剂用量少,但直接聚合的PLA相对分子质量仍偏低,需进一步提高,才能使其具有更加广泛的用途。 聚乳酸直接聚合的原理: 反应体系中存在着游离乳酸、水、聚酯和丙交酯的平衡反应,其聚合方程式如下:

聚乳酸的合成方法

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。 聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原

聚乳酸合成工艺及应用

聚乳酸合成工艺及应用 第七章聚乳酸合成工艺及应用 聚乳酸(PLA)是一种以通过光合作用形成的生物质资源为主要起始原料生产的生物可降解高分子材料,使用后可通过微生物降解为乳酸并最终分解成二氧化碳和水。聚乳酸的合成和应用实际上是一个来源于可再生资源、使用寿命结束后降解产物回归自然、参与到生物资源再生的过程中去的一个理想的生态循环,属于自然界的碳循环。聚乳酸无毒,无刺激性,具有良好的生物相容性、生物吸收性、生物可降解性,同时还具有优良的物理、力学性能,并可采用传统的方法成型加工,在农业、包装材料、日常生活用品、服装和生物医用材料等领域都具有良好的应用前景,因而聚乳酸成为近年来研究开发最活跃的可生物降解高分子材料之一。 7.1 聚乳酸的合成工艺 7.1.1 乳酸缩聚 乳酸上的羟基和羧基进行脱水缩聚反应生成聚乳酸,如图7.2。

必须解决以下三个问题:一,乳酸缩聚的平衡常数非常小,在热力学上分析很 难生成高分子量的聚乳酸,必须从动力学上加以控制,即有效的排出缩聚反应生成的水,使反应平衡向生成聚乳酸的方向移动;二,抑制聚乳酸解聚生成丙交酯的副反应;三,抑制变色、消旋化等副反应。 (1) 溶液缩聚法 合成过程中利用高沸点溶剂和水生成恒沸物将缩聚产生的痕量水带出,有力地促进了方应向正方向进行;同时蒸出的溶剂带出水合丙交酯经分子筛脱水后回流到反应系统中,有效地抑制了聚乳酸解聚生成丙交酯。 高沸点溶剂可以是苯、二氯甲烷、十氢萘、二苯醚等。 特点:直接制的高分子两聚乳酸,但有机溶剂的回收和分离工序使生产过程较 复杂并增加了设备投资,增加了成本,而且残存的有机溶剂对产品造成污染。 (2) 熔融缩聚法 利用无催化剂条件下制的聚合度约为8左右的低聚乳酸为起始物,加入催化剂SnCl?HO(0.4%,质量分数)和等摩尔的对甲基苯磺酸(TSA),在180?、22 410Torr的条件下反应15h可制得M大于10×10的聚乳酸。 W 催化剂除TSA外,还有烷氧基金属催化剂、烷氧基金属和Sn(?)催化体系。特点:能制得较高分子量的聚乳酸,工艺简单,明显降低了生产成本。但熔融缩聚发要达到高分子需要较长的反应时间,长时间的高温造成如下问题:一,解聚反应严

聚乳酸的合成方法

聚乳酸的合成方法文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。

聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2聚乳酸的主要优点 1)聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原料聚合而成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利。 2)聚乳酸的物理性能良好,其具有良好的抗拉强度及延展度和热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑等各种加工方法,应用十分广泛。聚乳酸可用于民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。 3)聚乳酸薄膜具有良好的透气性、透氧性及透二氧化碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

聚乳酸合成

聚乳酸是由生物发酵生产的乳酸经人工化学合成而得的聚合物,但仍保持着良好的生物相容性和生物可降解性,具有与聚酯相似的防渗透性,同时具有与聚苯乙烯相似的光泽度、清晰度和加工性,并提供了比聚烯烃更低温度的可热合性,可采用熔融加工技术,包括纺纱技术进行加工。因此聚乳酸可以被加工成各种包装用材料,农业、建筑业用的塑料型材、薄膜,以及化工、纺织业用的无纺布、聚酯纤维、医用材料等等。 适合的加工方式有:真空成型、射出成型、吹瓶、透明膜、贴合膜、保鲜膜、纸淋膜,融溶纺丝等。 聚乳酸(PLA)的原料主要为玉米等天然原料,降低了对石油资源的依赖,同时也间接降低了原油炼油等过程中所排放的氮氧化物及硫氧化物等污染气体的排放。为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。根据我国可持续发展战略,以再生资源为原料,采用生物技术生产可生物降解的聚乳酸(PLA)市场潜力巨大。将粮食产品深加工,生产高附加值的产品是实现跨越式经济发展的重大举措。 国内聚乳酸市场分析: 我国是一个生产塑料树脂材料及消费大国,年生产各类塑料制品近1900多万吨。大力开发生产对环境友好的EDP塑料制品,势在必行,这有益于减少石油基塑料制品所带来的环境污染和对不可再生石油资源的依赖及消耗。目前,国内有多家企事业单位从事“聚乳酸〔PLA〕”聚酯材料的研究及应用工作,国家和省及部委也将PLA开发项目列入“九五”、“十五”、“863”、“973”、《火炬计划》、《星火计划》、“十一五”和《国家中长期科学科技发展规划》重点科研攻关项目。但是,目前国内PLA产业化步伐缓慢,产品经过多年的研发仅有浙江海正集团和上海同杰良生物技术有限公司等较有实力的企事业单位较有成效,江阴杲信也开发了粒子,纤维和无纺布等产品,PLA聚酯材料主要依赖国外进口,由于PLA 原料进口价格比较昂贵,这也限制了PLA高分子材料在我国的应用和发展。 随着我国加入世贸组织,先进的生产技术和设备及新产品大量进入国内市场,这也促使国内一些企事业单位和集团公司及乳酸生产厂家着手建立PLA 产业,以国内丰富的资源优势和科研院校的技术优势及人力资源优势与国外PLA 产品抗衡,并使国内能顺利的形成以PLA产品为代表的消费市场,并且能够出口创汇。 经济学家及环保人士指出,在我国发展以高性能EDP材料作为治理环境污染措施之一,正在逐步取得政府的支持。国家已将EDP塑料列入国家优先发展高新技术产业重点领域(包装材料、农业应用材料、医用材料等),《中国21世纪议程》也将发展EDP塑料包装材料列入发展内容之一,生物质塑料正在推向市场、开拓市场,无论在农业用、包装用、日用、医用等领域都具有较大的市场潜力。 2005年中国塑料包装材料需求量将达到550万吨,按其中1/3为难以收集的一次性塑料包装材料和制品计算,其废弃物将达到180万吨;据农业部预测,2005年地膜覆盖面积将达1.7亿亩,所需地膜加上堆肥袋、育苗钵,农副产品保鲜膜、片、盒等需求量将达到120万吨;垃圾袋等一次性日用杂品、

聚乳酸合成

河北工业大学化工学院 研究型开放实验报告题目:聚乳酸的合成 作者:姓名:马伟佳班级:高分子材料与工程C092班学号: 096363 成绩: 合作者:姓名:陈超班级:高分子材料与工程C091班学号: 096343 指导教师:张庆新教授 2012年 9月12日

聚乳酸的合成 姓名:陈超班级:高分子C091 指导教师:张庆新日期:2012.7—10 摘要 本文研究了丙交脂开环聚合合成聚乳酸的制备工艺。先通过优化实验得到高纯度,高收率的丙交脂,再以自制丙交脂为原料合成聚乳酸。在丙交脂制备工艺优化过程中,通过控制脱水时间和催化剂加入量调控低聚乳酸的相对分子量。 在丙交脂的制备过程中以50mL(AP)乳酸为原料,3.0mL辛酸亚锡(CP)为催化剂,减压脱水温度为127℃,初始解聚温度为150℃,甘油加入量为7mL,最终解聚温度为210℃,得到的粗丙交酯经重结晶,抽滤、干燥作为下一步反应的原料。在聚乳酸合成工艺优化过程中,以实验室现有工艺条件为基础,采用减压蒸馏的方法,三次重结晶丙交脂为原料,并与催化剂辛酸亚锡的摩尔比控制在(25~50):1,通氮气保护,真空度-0.08MPa(仪器问题,致使真空度偏小、未达到理想真空度),反应24h,产物黏均分子量为145.3万((氯仿为溶剂,乌氏黏度计测量,(30.0士0.1)℃[η]=2.27×10M)而GPC法所测分子量。 关键词:乳酸丙交酯开环聚合聚乳酸 一、综述 如今随着科学与社会的发展,环境和资源问题越来越受到人们的重视,成为全球性问题。以原油为原料的塑料材料应用广泛,但其使用后很难回收利用了,造成了目前比较严重的“白色污染”问题。由于石油资源不可再生,因而以石油资源为原料的工业产品大量不合理使用给人类带来了严重的资源短缺问题。可降解材料的出现,特别是其他原材料的可再生性为解决这一问题提供了有效的手段。 聚乳酸(Polylactic acid,PLA)⑴是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。⑵机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分

聚乳酸简述

聚乳酸的合成、生产、及应用发展简述 姓名: (郑州大学力学与工程科学学院工程力学专业) 摘要:综述了在目前面临石油危机情况下,聚乳酸作为一种可生物降解的高分子聚合物,在当今社会的发展现状及其前景。阐述了聚乳酸的生产、主要优点、发展前景等。 关键词:聚乳酸;合成;生产;降解;应用; 聚乳酸(英语:Polylactic Acid或Polylactide,缩写:PLA),是一种热塑性脂肪族聚酯。生产聚乳酸所需的乳酸和丙交酯可以通过可再生资源发酵、脱水、纯化后得到,所得的聚乳酸一般具有良好的机械和加工性能,而聚乳酸产品废弃后又可以通过各种方式快速降解,因此聚乳酸被认为是一种具备良好的使用性能的绿色塑料。 聚乳酸(H-[OCHCH3CO]n-OH)的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,光华伟业开发的聚乳酸(PLA)还具有一定的抗菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域 生产 乳酸的结构中同时含有羧基和羟基,故乳酸分子之间可以发生酯化反应形成长链。虽然名叫聚乳酸,但绝大部分羧基已经在聚合反应中反应掉,实际并没有什么酸性,这一点和聚丙烯酸为代表的侧基均为羧基的聚合物不同。聚乳酸的单体乳酸可以通过化学合成或者通过可再生资源合成。一般使用玉米、木薯提取出的淀粉,甘蔗和甜菜提取的糖和秸秆等提取的纤维素,经过发酵、脱水等过程获得乳酸。所获得的乳酸需要进行纯化,才能进行聚乳酸的生产,因为乳酸中含有的微量富马酸和醋酸都会造成聚合反应的终止。 目前生产聚乳酸的途径主要有三条: 以乳酸为原料直接缩聚:由于乳酸缩聚反应中逐渐生成的水会引起水解和链转移,所以一般先通过闪蒸等手段除去原料乳酸中残存水分,之后在100°C,1kPa的低压下脱水生成丙交酯和小分子量聚乳酸,然后以氯化亚锡和对甲苯磺酸为催化剂,在160°C温度下进行熔融缩聚,可以得到分子量高于80000的聚乳酸[2]:42。如果想进一步提高分子量,可以将熔融聚乳酸冷却后进一步缩聚,或在共沸蒸馏的条件下进行缩聚,不断把生成的水除去,最终可以得到分子量超过100,000的聚乳酸。 以乳酸为原料缩聚成一定分子量的聚乳酸后,加入酸酐和环氧树脂等偶联剂。偶联剂可以与聚乳酸链末端残余的羟基和羧基发生反应,达到较短链互相结合产生长链的扩链效果 先以两分子乳酸彼此酯化形成丙交酯,然后以纯化的丙交酯为原料,在金属催化剂(比如丁

聚乳酸的合成、改性与应用的研究进展

聚乳酸的合成、改性与应用的研究进展 摘要:本文阐述了聚乳酸(PLA)的基本特征及合成方法,并针对其性能上的缺点,提出了几种具体的改性方法,介绍了可降解生物材料聚乳酸在包装行业、纺织行业及医疗卫生行业的应用前景。 关键词:聚乳酸; 改性; 应用前景 Abstract:This paper describes the polylactic acid (PLA) and the basic characteristics of synthesis methods, and for the performance of its shortcomings, proposed several specific modification method, introduced biodegradable polylactic acid material in the packaging industry, the textile industry and health care prospects of the industry. Key word: Prospects; modified; polylactic acid

1前言 目前,世界高分子材料产量已超过2亿吨,一些不可分解的塑料产品废弃物 也相应增加,它不仅影响了整个城市的美观,更严重的是它会引起环境污染,破 坏生态环境的平衡,影响人类的身体健康。可降解塑料作为一种新型的绿色生物 材料,它可以补充替代石油资源、减少温室气体排放、有利于社会的可持续发展, 因此,生物可降解塑料成为国内外研究的热点。不同于一般石化产品,生产聚乳 酸(PLA ) 的原料主要有玉米、小麦、甘蔗等天然农作物中提取的淀粉。这些淀 粉原料可经过发酵过程制成乳酸,然后通过化学合成法制得PLA ,这样不仅降低 了对石油资源的依赖,也间接降低了原油炼油等过程中氮氧化物及硫氧化物等污 染气体的排放。聚乳酸作为目前产业化最成熟、产量最大、应用最广泛、价格最 低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,将成为 生物基塑料的主力军[1]。 2聚乳酸的合成方法 目前合成聚乳酸的方法主要有两种:直接缩聚法和开环聚合法。 2.1直接缩聚法 直接缩聚法也叫一步聚合法,就是把乳酸单体直接缩合。其原理是在脱水剂 存在的条件下,分子中的羧基和羟基受热脱水,直接缩聚成低聚物,然后加入催 化剂,继续加热,最终就会得到分子质量相对较高的聚乳酸。PLA 直接缩聚的反 应式如下: HO C H CH 3C O OH HO C H C OH O CH 3+H 2O n (n-1)n 直接缩聚法的优点是操作简单,成本低,但反应条件要求高,反应时间长, 副产物水难以及时排除,得到的产物相对分子质量低,分布宽,重现性能差。直 接聚合法制得的产物相对分子质量普遍偏低,是因为反应过程中,受到许多影响 因素的影响,在聚合反应末期,聚合熔体的粘度很大,其中的水分很难除去,残 余水分不仅会降低PLA 的相对分子质量,也会影响其整体性能,因此,改善直接 聚合法反应过程中的影响因素,是一个亟待解决的问题。

聚乳酸的合成及应用

聚乳酸的合成及应用 摘要:聚乳酸及其共聚物是具有优良的生物相容性和可生物降解的高分子材料,无毒,可吸收。其研制与开发受到人们的重视,在各个领域尤其是医药领域得到越来越广泛的应用。制备的方法有直接缩聚法、开环聚合法、共聚法。对聚乳酸及其共聚物降解性的试验评价已有三十多年,但都有缺陷。在有些方面它们的性能和制造工艺还有待改进。作为可生物降解的高分子材料,聚乳酸在医用及降解塑料方面已经有了初步的成就。 关键词:聚乳酸合成可降解医学应用 1 简介 近二十年来,国内外对生物降解高分子材料的研究兴趣非常浓厚,涉及到工农业生产领域、医用领域等各个方面。聚乳酸具有优良的生物相容性和可生物降解,降解的最终产物是二氧化碳和水其研制与开发尤其在医药领域受到越来越多的重视。早在三十年代,美国著名高分子化学家Carothers就曾对PLA做过报道,但在其后近四十年中,由于聚合物分子量低,机械性能差而无所作为。到七十年代,开始合成高分子量的具有旋光性的D或L型PLA,进行药物制剂和外科等方面研究。随着对PLA及其共聚物应用的不断扩大,其进一步的研制开发深受人们关注。 2 制备 2.1直接缩聚法[1]

此法只能得到分子量小的低聚物,产品性能差,易分解。日本昭和高分子公司将乳酸置于惰性气体保护下,慢慢加热升温并慢慢减压,使乳酸直接脱水缩合,最后直到使反应物在220°~260°,1333Pa低压下进一步缩聚,可得分子量4000以上的聚乳酸。但此法反应时间长,产物在高温下会老化分解。日本合成橡胶公司开发了一种不用催化剂情况下容易制取高分子量PLA 的特殊工艺—介质感应加热聚合法,此法无老化分解,适合用作医疗上的可生物降解吸收性高分子材料。 2.2 开环聚合法[2,3]] 目前PLA 及其共聚物的制备一般采用此方法,该法是以乳酸为原料,在引发剂等存在下先制成环状二聚体(丙交酯),再在催化剂存在下

聚乳酸的合成方法

聚乳酸的合成方法 [摘要]聚乳酸类材料具有良好的生物降解性和生物可吸收性,且易于加工,是一种理想的环境友好材料,具有广阔的开发前景。本文综述了聚乳酸的合成方法及研究现状,并研究了微波辐射加热合成聚乳酸的方法。 [关键词]聚乳酸环境友好材料熔融缩聚微波辐射 聚乳酸(poly-lactic acid,PLA)是一种新型的环境友好材料,具有良好的生物降解性、生物相容性和生物可吸收性,且易于加工。其合成方法按照机理主要分为两种,其一是丙交酯开环聚合法;其二是直接缩聚法。按照加热方式可以分为:传统法和微波辐射法。传统法加热时间长,效率低。微波辐射法是一种体加热方式,无滞后效应,效率高,无污染,是绿色合成方法[1]。本文介绍了采用微波辐射法制备聚乳酸的工艺,其结果表明,微波辐射法效率高,污染少,有一定的发展前景。 1.丙交酯开环聚合法即乳酸单体聚合成相对分子量较低的聚乳酸,聚乳酸再裂解环化成丙交酯,丙交酯进行开环聚合得到聚乳酸。开环聚合所用的催化剂不同,聚合机理也不同。目前主要有阳离子聚合、阴离子聚合和配位聚合[2]。 2.直接缩聚法在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加入催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸。它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融-固相缩聚法和反应挤出聚合法等。 2.1溶液缩聚法即采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸。该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引入使产物的最后纯化比较困难,成本仍然较高。 2.2熔融缩聚法即以乳酸单体为原料,直接缩聚合成聚乳酸。该方法工艺路线简单,操作简单,要求高真空或者氮气保护。但是产物的分子量不高,主要是因为反应后期由于体系的粘度较大,小分子水难以除去,因此有待于进一步完善。2000年日本学者[3]合成Mw超过10万PLLA。熔融聚合比溶液聚合操作简单,免去了高沸点溶剂的提纯麻烦,是减少辅助剂使用的最佳方法。它有利于降低成本、提高安全性、提高产率、缩短反应时间,是绿色化学的重要研究方向之一[4]。 2.3 熔融固相缩聚即在聚合温度低于预聚物的熔点而高于其玻璃化转变温度进行的一种聚合方法。当熔融聚合产物继续进行固相缩聚时,随结晶度的不断提高,这些低分子物质以及大分子端基聚集在无定型区,可发生酯化反应,相

聚乳酸的合成研究 开题报告

开题报告 题目:聚乳酸的合成研究 1、毕业设计(论文)综述 1.1题目背景及研究意义 近年来,由于大量不可自然分解聚合物生活垃圾和工业废弃物等白色污染的出现,使自然环境严重恶化,因此,寻找像PLA这样的可降解材料也越来越引起了人们的重视[1]。 聚乳酸(Polylactic acid,PLA)是20世纪90年代迅速发展起来的新一代可完全降解高分子材料,它是以微生物发酵产物L-乳酸为单体,用化学合成方法聚合而成的,是热塑性脂肪族树脂的一种。1913年,法国人首先用乳酸(LA)经缩聚合成PLA,1932年,被誉为高分子化学之父的Carothers以及杜邦公司也采用直接缩聚的方法得到了低相对分子质量的PLA,直到1966年,Kulkarni提出可先由LA合成丙交酯(lactdie),再进一步聚合得到PLA的制备方法。PLA是一种热塑性聚合物,加工性能良好,可利用通用的塑料加工设备进行挤出、注射、吹塑成形,也可与通用塑料淀粉及聚酯共混[2]。聚乳酸具有优良的生物相容性和可吸收性,无毒、无刺激性,它在自然界中的微生物、水、酸、碱等作用下能完全分解,最终产物是CO2和H2O,对环境无污染,可作为环保材料代替传统的聚合物材料,受到了世界各国的广泛关注和深入研究。同时,它在人体内的中间产物乳酸对人体无毒性,经美国食品和药品管理局(FDA)批准广泛用作药物控释载体、医用手术缝合线及骨折内固定材料等生物医用

高分子材料[3]。 1.2国内外研究现状 目前,聚乳酸的研究虽然是一个热点,但根据EI检索和中国期刊网检索出的数据表明,国际上1998年是聚乳酸研究的高潮,随后稍有回落。但在国内,在1999年开始迅速上升,各种“中国期刊网”检索方式都表明,1999年聚乳酸类聚合物的收录篇数是1997年、1998年的数倍,而2001年的数字较2000年又有显著增长。这种国外回落和国内增长的现象,一方面反映了中国科研创新的状况,另一方面也可能反映了由于聚乳酸的合成成本的高昂,制约了其应用研究。因此,在各种聚乳酸合成方法涌现的时候,对聚乳酸的合成进行全面、正确的展望,很有必要,也有利于中国在聚乳酸领域中更好地赶超国际水平[4]。聚乳酸研究暂时性回落的根本原因在于成本因素,这其实是所有生物降解高分子材料所面临的问题[5]。聚乳酸的化学合成方法包括丙交酯开环聚合法(也称两步法)和乳酸直接缩聚法(也称一步法)两种[6]。丙交酯开环聚合法是大规模工业化生产高分子量聚乳酸的方法。目前世界上最大的聚乳酸生产商NatureWorks LLC(原Cargill-Dow公司)就采用这种工艺生产聚乳酸[7]。国外最初从事乳酸直接缩合研究的是日本Mitsui Toatsu Chemicals公司(三井东压公司,现在的三井公司)。目前该公司对乳酸直接缩聚法的研究和开发处于世界上绝对领先的地位[8]。国内对于直接缩聚法制备聚乳酸的研究主要是安徽丰原发酵技术工程研究有限公司采用直接法,先将乳酸脱水,再经过低聚-溶剂中聚合,得到黏均相对分子质量为7万~20万的聚乳酸[9]。本课题有望形成具有工业应用潜力,绿色环保可降解材料。2、本课题研究的主要内容和拟采用的研究方案、研究方法或措施 2.1本课题研究的主要内容 20世纪50年代,美国杜邦公司首先把乳酸制得丙交酯,然后进行开环聚合,这是合成聚乳酸最传统的方法。主要原因是采用这种方法可以得到高分子质量的聚乳酸及其系列衍生物,它仍然是目前工业化生产聚乳酸最主要的工艺路线[10]。丙交酯的开环聚合主要包括阴离子开环聚合[11]、阳离子开环聚合[12]及配位开环聚合[13]。本课题主要研究乳酸制得丙交酯然后配位开环聚合,它的引发剂主要是过渡金属的有机化合物或氧化物,如烷氧基铝。 2.2 研究方案 乳酸分子间脱水生成低分子质量聚乳酸然后, 在180~230℃的温度下低聚物解聚生成环状丙交酯(LA);分离提纯丙交酯后,以烷氧基铝为引发剂, 丙交酯开环聚合生成高聚物。该法可以得到相对分子质量为70万~100万的聚乳酸。 聚乳酸合成示例如图2.2.1:

聚乳酸的合成方法

聚乳酸的合成方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。

聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原料聚合而成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利。 2) 聚乳酸的物理性能良好,其具有良好的抗拉强度及延展度和热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑等各种加工方法,应用十分广泛。聚乳酸可用于民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。 3) 聚乳酸薄膜具有良好的透气性、透氧性及透二氧化碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。 4) 当焚化聚乳酸时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性[3-4]。

聚乳酸

聚乳酸 理化性质聚乳酸特性聚乳酸的优点生产方法挤出级树脂的市场应用注塑级树脂的市场应用口腔固定材料眼科材料聚乳酸PLA在生物医药领域的应用电子电器领域的应用一次性用品的应用 聚乳酸CAS号: 31852-84-3 英文名称: 1,3-dioxan-2-one 英文同义词: polytrimethylene carbonate;1,3-Dioxan-2-one homopolymer 中文名称: 聚乳酸 中文同义词: 聚乳酸;聚三亚甲级碳酸酯;1,3-二氧杂环己烷-2-酮均聚物CBNumber: CB51260965 分子式: C4H6O3 分子量: 0 MOL File: 31852-84-3.mol 聚乳酸化学性质 安全信息 聚乳酸性质、用途与生产工艺

理化性质 聚乳酸又称聚羟基丙酸或聚交酯。由乳酸单体缩聚而成的可生物降解的高分子材料。可溶于氯仿、丙酮、二氧六环、二甲基甲酰胺、苯、甲苯等溶剂,不溶于石油醚等饱和烷烃。有良好的生物相容性和血液相容性,体外抗凝血性能好,可被人体降解,以二氧化碳和水排出体外。因此,聚乳酸可制成不同材料,如用熔融挤出法制成纤维作可吸收缝合线;纤维的编织物可作人体组织修补材料;制成薄膜材料用作肌腱组织的防粘连膜、骨膜生长隔离膜、药物缓释载体等。聚乳酸可与其他生物材料复合使用,如与磷酸三钙或碳纤维复合制成板材,可用作接骨板。 聚乳酸PLA的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸、注射、吹塑。由PLA制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有PS相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、建筑、农业、林业、造纸和医疗卫生等领域。 图1为聚乳酸PLA的化学结构式。 聚乳酸特性 聚乳酸简称PLA,是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,是一种无毒、无刺激性,具有良好生物相容性,可生物分解吸收,强度高,不污染环境,可

相关文档
最新文档