氮化镓和碳化硅的应用

氮化镓和碳化硅的应用
氮化镓和碳化硅的应用

氮化镓和碳化硅在高频率电源开关中的应用

前言

对于宽带隙(宽禁带)材料和设备的研究工作已经持续许多年了,这些材料的特性令设计者非常满意,因为宽的带隙设备显著的性能改善超过了以硅为基础的其他材料。他们在高温度下、高功率密度下、高电压下和高频率下运转的能力,使他们在未来的电子系统中的使用非常令人关注。对未来的开关和高频功率应用方面大有前途的两种非常重要的宽带隙材料就是氮化镓和碳化硅。关于氮化镓与碳化硅材料,半导体器件是否可能而且这种设备/材料是否最适合各种开关和高频功率的应用的问题有大量的正在进行的讨论和质疑。本论文总结了我们对于目前发展现状的理解以及这些技术的领先之处。材料特性、设备结构和成本都是重要的和相互关联的。最终,我们相信碳化硅和氮化镓两种材料都将扮演着重要角色而且都将融入各自的商业市场。

材料属性

作为宽带隙材料的表征是一个电子从价带顶部跳到半导体导带底部所适合的能量。需要能量通常大于一个或两个电子伏特的材料被称为宽带隙材料。碳化硅和氮化镓半导体通常也被称为化合物半导体,因为他们是由选自周期表中的多个元素组成的。下表比较了硅(Si)、碳化硅(SiC-4H1)和氮化镓(GaN) 材料的性能。这些材料的属性对电子器件的基本性能特点产生重大影响。

对于射频和开关电源设备而言,碳化硅和氮化镓两种材料的性能都优于单质硅的。碳化硅和氮化镓相比单质硅的一个更优的属性是,他们的高临界场允许这些器件能在更高的电压和更低的漏电流中操作。高电子迁移率和电子饱和速度允许更高的工作频率。然而SiC电子迁移率高于Si,GaN的电子迁移率又高于SiC,这意味着氮化镓应该最终成为极高频率的最佳设备材料。

高导热系数意味着材料在更有效地传导热量方面占优势。SiC比GaN和Si 具有更高的热导率,意味着碳化硅器件比氮化镓或硅从理论上可以在更高的功率密度下操作。当高功率是一个关键的理想设备特点时,高导热系数结合宽带隙、高临界场的碳化硅半导体具有一定优势。氮化镓相对较差的导热性,使系统设计人员处理氮化镓器件的热量管理面临一个挑战。

材料质量

碳化硅和氮化镓的材质,在过去几年已经进行了实质性的改善。我们的经验是,碳化硅比氮化镓更进一步,因为氮化镓基板只能被制造到直径2英寸。无论何种情况下,对于开关和高频功率应用的设备研究兴趣点是,需要将碳化硅或氮化镓的外延层生长或沉积在由相同(均相外延)或不同(异质外延) 的材料组成的衬底上。

同质外延的碳化硅器件在制造方面某种程度上类似于单质硅,因为在碳化硅衬底上要形成碳化硅外延层(图一)。其结果是在外延层和衬底之间具有良好的晶体匹配,并且有一个导电和导热路径从顶部到晶片的底部。这就具备了在设备结构以及成本上可以制造的意义。现在有许多制造碳化硅衬底和外延晶片的公司。Cree公司历来占据优势地位,但是其他公司都在材料质量以及同样重要的成本方面非常迅速与之缩小差距。

图一:垂直的双扩散碳化硅半导体场效应晶体管

现今,氮化镓基板主要用于在2英寸晶圆片上制造蓝色激光二极管,这是氮化镓材料在当下技术发展的最新水平。对于以氮化镓为基础的器件,同质外延氮化镓晶片比异质外延方法更具优势;但是,高品质(低缺陷)的准备外延氮化镓衬底的生产流程仍处于早期阶段,比起碳化硅还有很多不成熟之处。当涉及到大量单晶氮化镓的生长能达到开盒即用的基板时,正如碳化硅一样,还存在必须要解决的许多固有挑战。因此,今天常用的方法是异质外延的方法。但对开关和高频功率应用而言,要实施几种变化,今天对于异质外延氮化镓晶片的主要选择为,氮化镓外延层置于“非天然”碳化硅衬底上。另一种正在使用的组合是氮化镓外延层置于单质硅上。在这两种情况下,存在需要被考虑添加额外的材料和加工费用的晶格差异。

图二:使用氮化镓与过渡层材料,硅或碳化硅作为衬底,去匹配晶格的横向晶体管

适应晶体差异的常用方法是通过使用一个缓冲层(图三)。氮化铝(AlN)是一种被使用的材料,他提供了良好的材料匹配,但是他的电绝缘影响了可以制造的设备结构的类型。创建缓冲层也增加了成本和工艺的复杂性。此外,为了不影响设备性能、生产量和可靠性,这些缓冲层结合非原生基质的使用导致的缺陷和固有应力需要被克服。

图三:氮化镓和所需的缓冲层的横截面

对于同质外延的碳化硅,国家最先进的晶圆直径是3到4英寸,而对于在碳化硅或单质硅晶圆上的异质外延的氮化镓是3英寸。在成本方面,在SiC晶片上的GaN成本超过在SiC晶片上的SiC的同行的成本约20%。从设备制造业的观点出发,在SiC或Si晶片上的GaN的缺陷要高于在SiC晶片上的SiC的同行。这是一个重要的考虑因素,因为不同于简单的二极管或发光二极管,电力设备对于缺陷非常敏感。此外,在Si晶片上的GaN在外延界面具有2比1差异的(图四)热膨胀系数(CTE),在功率循环过程中是的一个问题(为何材料的附加层必需机械地发出设备声音的另一个原因)。Si晶片上的GaN承诺要比在SiC晶片上的SiC或GaN大幅的降低成本,导致了当前对这种组合的大量兴趣。主要问题是该设备结构,生产量,电气和热性能,可靠性和整体成本系统的效益能推翻目前使用的硅器件吗?

图四:半导体原料的晶格常数和热膨胀系数

设备拓扑

同质外延的碳化硅具有纵向和横向的设备都可被制造的优点。

碳化硅横向设备:

?金属半导体场效应晶体管是流行的高频设备,不但能使源信号通过高频应用,而且能一体化成在单片微波集成电路(MMIC)的形式。美高森美公司目前正在开发一个针对S波段(约3千兆赫兹)频率范围的金属半导体场效应晶体管,这个频率是用同质外延的碳化硅可能实现获得的最高频率。

碳化硅纵向设备:

?对于设计师想要包括肖特基二极管、结型场效应管、静电感应晶体管、直插式二极管、双极型晶体管和圣杯,以及常关型设备和金属半导体场效应晶体管在内的一切。有许多公司提供各种电流和阻断电压额定值的碳化硅肖特基二极管。美高森美公司提供了包含碳化硅肖特基二极管的电源模块,还引进了在甚高频(30兆赫到300兆赫)和超高频(300兆赫到600兆赫) 的频率下操作的两个射频静电感应晶体管。我们的下一代射频静电感应晶体管将以L波段(1至2千兆赫兹)的频率范围作为目标。直插式二极管和双极结型晶体管(开关和射频)受到要在整个垂直结构上非常精确地控制掺杂层的需要的挑战,并且由于受到可利用的原始材料的限制,因此在这个时候一般不会做好生产的准备。一些公司最近宣布了要在金属半导体场效应晶体管上做出地进步,其中主要的挑战是为了可用的电流而生产可靠的设备和扩大芯片尺寸,同时保持合理的收益率。我们的评估是,他们正在为接近生产做准备,但全规模生产可能是一两年后了(Yole发展署预测了2014年的碳化硅半导体场效应晶体管的大量生产)。有几家公司正在致力于结型场效应管电源开关应用的研究工作。结型场效应管面临的最常见的挑战是,设计者不情愿使用常“开”结构,因为他们习惯设计常“闭”的硅半导体场效应晶体管。显然,电路设计者不希望开关设备在“接通”位置上失败。为了解决这个问题,一些公司正在开发一种常“开”高电压的碳化硅结型场效应管与常“关”低电压的硅半导体场效应晶体管串联而成的共源共栅结构。这种方法的一个缺点是,硅半导体场效应晶体管决定了解决方案的最高温度。其他的则发展成常“闭”的碳化硅结型场效应管,其中的阈值电压大约1V的和最大转(门源)电压大约3V。这些常“闭”的结型场效应管面临的挑战是,设计人员仍然勉强使用它们,因为害怕杂散信号导致设计的故障。实质性的效率提升已经证明了对这两种解决方案具有真正的兴趣,并为每个方案做出承诺。

由于补偿所需的缓冲层没有匹配的晶格材料,所以此时无论在SiC还是Si晶片

上异质外延的GaN设备都局限于横向结构。横向设备相比它们垂直的同行有相当大的缺点,包括需要更大的芯片尺寸和附加上部接触器等。

氮化镓横向设备:

?横向设备通常比垂直设备需要更多的空间。制造业生产量也会受到较大设备的影响。

?因为必须持续穿过设备表面的大电场,横向设备往往在其工作电压能力上受到限制。

?而例如肖特基二极管的横向氮化镓设备已被证实,目前他们不具有被制造的实用性。

?无论是开关或是高频功率的应用,最常见的横向设备结构是HEMT(高电子迁移率晶体管)。今天,基于高电子迁移率的碳化硅晶体管之上的射频氮化镓设备,在非常高的频率例如C和X波段下,正在被制造使用。这些设备的主要采用者都是防御系统,例如那些所需的电子战应用。在碳化硅晶片上的氮化镓是首选,因为在成本不是主要因素的情况下,它的射频性能占主宰地位。

基于高电子迁移率的碳化硅晶体管之上的射频氮化镓设备也正在被开发。这些设备的支持者主要针对目前受横向扩散的硅场效应管设备控制的无线通信应用为研究目标。虽然基于硅的设备不像基于碳化硅的设备那样高的性能,但赌注是结合未来低成本的承诺它的性能优势在基于站市场(3G,4G,WiMAX)的远程通信方面将战胜现任的横向扩散的硅场效应管和高电子迁移率砷化镓晶体管。

?另一个追求在高电子迁移率硅晶体管之上的氮化镓产品的应用空间是低电压(约200V及以下)的开关电源电子设备。有几家公司正在对原始材料的质量改进、晶圆直径的提高、晶片成本的减少、结合增强模式的生产量的改进下赌注,通常是闭装置和高性能的氮化镓器件将战胜目前最先进的硅设备。也可能是这些产品的RadHard市场。但是当你尝试将此概念应用到高电压设备时,普遍的共识是,主要是因为在硅晶片上的氮化镓的功率它失去蒸汽,并且在碳化硅晶片上的氮化镓材料将需要被到放到一个必要的设备上和同质外延的碳化硅器件正碰撞。

设备拓扑总结

图五:半导体材料的纵向和横向拓扑

概要

根据材料特性和当前的设备能力,我们希望以下碳化硅/氮化镓的结果。

?在碳化硅之上的异质外延的氮化镓将主导在S波段上的射频频率的应用,其中性能是至关重要的,例如在国防领域的应用。

?在单质硅之上的异质外延的氮化镓在基于站市场(3G,4G,WiMAX)的远程通信方面可以找到一个代替现任的横向扩散的硅场效应管和高电子迁移率砷化镓晶体管的地方。这取决于几个因素:

?如何快速将成本降下来?

?这些应用程序需要什么性能?

?将会出现什么新的应用?

?对现任的设备性能和成本还有什么高招改进?

?在高电子迁移率硅晶体管之上的异质外延的氮化镓在开关电源电子市场(由国际整流器和EPC技术推动)上可能取代低电压设备。这也取决于若干因素,但主要归结为性能(包括与常“开”装置相关联的磁阻,或具有有限的输入电压摆幅能力的常“闭”设备)和成本比率是否将提供一个有益的又名“有价值”的系统,他将迫使设计师采用。此外,还可以有在RadHard市场上用这些设备的机会。

?同质外延的碳化硅纵向设备将在约600V的开关应用上占优势,特别是对更高功率的应用,因为:

?相比在碳化硅之上的异质外延的氮化镓而言,同质外延的碳化硅将保持较低的成本。

?同质外延的碳化硅比异质外延的更容易建立在无缺陷的晶片上。

?在单质硅之上的异质外延的氮化镓可能比同质外延的碳化硅的成本更低,并且理论上比硅器件的性能更高,但适当的高电压设备结构还不存在。

?在单质硅之上的异质外延的氮化镓不具有同质外延的碳化硅的高热导率,所以我们预计同质外延的碳化硅赢得在高温下操作的主要相关参数。

?晶圆直径将继续增加来帮助降低成本。

灰色区域似乎是在低兆赫兹到S波段频率范围内的射频应用

?在要求高功率方面同质外延的碳化硅胜

?在要求介质性能方面在硅之上的异质外延的氮化镓可能有一席之地

?成本考虑将始终发挥重要作用

总结

由这两种材料可以制造许多有趣的设备。我们目前看到氮化镓被用于低功率/电压,高频率的应用中,而碳化硅被用于高功率,高电压开关电源的应用中(图六)。

美国美高森美公司应用领域

图六:半导体材料的功率和频率区域

如果碳化硅衬底被使用,成本是相似的。然而,如果使用硅作为氮化镓外延原料的衬底,则成本可能更低,而且很可能提供一种更快地获得大直径晶片的方法。人们必须意识到要增加引入外延层来补偿晶格失配带来的抵消成本。

美高森美公司目前在发展碳化硅的路线,因为:

?碳化硅设备非常适合进入市场和我们已经服务的应用领域。

?碳化硅功率设备技术(器件和材料)比氮化镓更成熟。

?碳化硅需要与公司规模相称的更低的前期投资,同时允许我们能够更容易地利用现有的基础设施。

?碳化硅的利润增长之路比氮化镓的短。

?碳化硅业务可以被用于资助氮化镓的下游产业。

?碳化硅提供了生产金属半导体场效应晶体管的可能性,而氮化镓不能。

氮化硅结合碳化硅材料的生产与应用_张林

氮化硅结合碳化硅材料的生产与应用 ◆ 张 林 孟宪省 山东工业陶瓷研究设计院 淄博255031 ◆ 赵光华 朱喜仲 水利部丹江口水利枢纽管理局碳化硅总厂 摘 要 阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景。 关键词 氮化硅结合碳化硅,工艺,生产,应用 1 生产工艺与性能 1.1 混料 压制料是按配方称量SiC砂和Si粉,倒入高效混料机,并均匀加入事先称量好且加水稀释的添加剂和临时结合剂。搅拌15~20min,并过筛,放入料仓困料24h以上。 挤出料是根据配方,用上述相似的方法进行混料和困料。并应额外加入可塑剂。 注浆料是先将Si粉放在水池中浸泡48h后,再由泥浆泵抽送到压滤机经压滤处理。根据配方称量SiC砂和Si饼,倒入高速搅拌罐并加入一定量的水、临时结合剂和悬浮剂搅拌2h。 1.2 成型 压制成型是将困好的料准确称量后,均匀布于模具中,振动加压成型,再经真空吸盘转移到储坯车上。 挤出成型是将混合料放入真空练泥机进行真空处理,使泥料均匀混合。泥料用塑料薄膜覆盖严实,困料24h,再经真空挤出成型机挤出。 浇注成型主要是满足异型件要求,由于SiC 砂和Si粉为瘠性料,自身密度大,导致泥浆的悬浮性差,易产生沉淀,使泥浆内颗粒分布不均匀。因此,配方中颗粒不能太粗且比例要适当,同时加入悬浮剂和解胶剂(一般采用明胶),并采用压力注浆。然后把经24h搅拌过的泥浆从储浆罐抽入压力注浆罐中,进行真空处理,注浆罐带有慢速搅拌机,加压后泥浆通过管道输送至浇注台的石膏模内成型;保持一定的压力和时间,待吃浆厚度达到要求后,空浆;坯体巩固后,脱模。 1.3 干燥 成型后粗修和整形的合格坯体,入储坯车至干燥室内。干燥室的热风来自热风炉(或窑炉余热利用),热风温度以100~120℃为好,有条件也可使用电热干燥。应严格控制升温速度,以免坯体出现变形或开裂。坯体干燥3天。达到干燥残余水分(一般<0.5%)后推出冷却,经精修坯体和生坯检查,合格的进入氮化炉烧成。 1.4 烧成 合格干燥品装入窑车进氮化室,对氮化反应空间密封后推入梭式窑,接上充氮管和抽真空管,升温至700~1450℃进行抽真空和氮化烧成。中高温氮化阶段(指1100℃以上),严格控制升温制度及氮气质量,氮气纯度应达到99.99%以上。在1180℃及1280℃两个反应高峰期应增加保温时间,以免反应过速出现“流硅”。 1.5 制品的性能 氮化硅结合碳化硅制品抗折强度随温度升高而提高,至1400℃时,强度开始下降,但到1500℃时仍保持常温抗折强度指标。氮化硅结合碳化硅材质的高温抗折强度是普通耐火材料的4~8倍;热膨胀系数是高铝耐火材料的一半;导热系数是一般耐火材料的7~8倍[1]。 生产应用 NAIHU O CAILIAO 1999,33(3)156~157,175  收稿日期:1998-09-07编辑:徐慧娟156  耐火材料1999/3

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

碳化硅的用途

碳化硅的用途 碳化硅是典型的多晶型化合物,按大类来分,有α-碳化硅和β-碳化硅两种。α-碳化硅做为磨料有黑、绿两种品种。β-碳化硅是制备碳化硅类陶瓷的主要原料。碳化硅的用途十分广泛,如:冶金、机械、化工、建材、轻工、电子、发热体。磨料可作为冶金工业的净化剂、脱氧剂和改良剂。在机械加工方面可作为合成硬质合金刀具;加工后的硅碳板可作为耐火材料用于陶瓷烧制的棚板。通过精加工后生产的微粉,可用于高科技电子元器件和远红外线辐射材料的涂料。高纯度精微粉可供国防工业航空航天器皿的涂层。对国际国内各经济领域的用途十分广阔。 碳化硅半导体能应对“极端环境”,据称,碳化硅晶片甚至可以经受住金星或太阳附近的热度。前期的研究表明,即使在560摄氏度的高温中,碳化硅晶片在没有冷却装置的情况下仍能正常运作。碳化硅晶片在通讯领域具有广阔的运用前景,能让高清晰电视发射器提供更清晰的信号和图像;也可以用在喷气和汽车引擎中,监测电机运转。同时,它还可运用于太空探索领域,帮助核动力飞船执行更繁杂的任务。法国物理学家预言,在芯片制造领域,碳化硅取代硅已为时不远。 1、磨料--主要因为碳化硅具有很高硬度,化学稳定性和一定韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。

2、耐火材料和耐腐蚀材料---主要因为碳化硅具有高熔点(分解度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用棚板和匣钵、炼锌工业竖缸蒸馏炉用碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 3、化工用途--因为碳化硅可在溶融钢水中分解并和钢水中离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁净化剂,即用作炼钢脱氧剂和铸铁组织改良剂。这一般使用低纯度碳化硅,以降低成本。同时还可以作为制造四氯化硅原料。 4、电工用途--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作各种电炉),非线性电阻元件,各式避雷阀片。 5、其它配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。 碳化硅用途细分: 1、有色金属冶炼工业的应用 利用碳化硅具有耐高,强度大,导热性能良好,抗冲击,作高间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。 2、钢铁行业方面的应用 利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。 3、冶金选矿行业的应用

功率半导体的革命:SiC与GaN的共舞

功率半导体的革命:SiC与GaN的共舞 功率半导体多被用于转换器及逆变器等电力转换器进行电力控制。目前,功率半导体材料正迎来材料更新换代,这些新材料就是SiC(碳化硅)和GaN(氮化镓),二者的物理特性均优于现在使用的Si(硅),作为节能王牌受到了电力公司、汽车厂商和电子厂商等的极大期待。将Si换成GaN或SiC等化合物半导体,可大幅提高产品效率并缩小尺寸,这是Si功率半导体元件(以下简称功率元件)无法实现的。 目前,很多领域都将Si二极管、MOSFET及IGBT(绝缘栅双极晶体管)等晶体管用作功率元件,比如供电系统、电力机车、混合动力汽车、工厂内的生产设备、光伏发电系统的功率调节器、空调等白色家电、服务器及个人电脑等。这些领域利用的功率元件的材料也许不久就将被GaN和SiC所替代。 例如,SiC已开始用于铁路车辆用马达的逆变器装置以及空调等。 电能损失可降低50%以上 利用以GaN和SiC为材料的功率元件之所以能降低电能损失,是因为可以降低导通时的损失和开关损失。比如,逆变器采用二极管和晶体管作为功率元件,仅将二极管材料由Si换成SiC,逆变器的电能损失就可以降低15~30%左右,如果晶体管材料也换成SiC,则电能损失可降低一半以上。 有助于产品实现小型化 电能损失降低,发热量就会相应减少,因此可实现电力转换器的小型化。利用GaN和SiC 制作的功率元件具备两个能使电力转换器实现小型化的特性:可进行高速开关动作和耐热性较高。 GaN和SiC功率元件能以Si功率元件数倍的速度进行开关。开关频率越高,电感器等构成电力转换器的部件就越容易实现小型化。 耐热性方面,Si功率元件在200℃就达到了极限,而GaN和SiC功率元件均能在温度更高的环境下工作,这样就可以缩小或者省去电力转换器的冷却机构。 这些优点源于GaN和SiC具备的物理特性。与Si相比,二者均具备击穿电压高、带隙宽、

碳化硅材料在汽车上面的应用探究

新型碳化硅材料在汽车上面的应用 1摩擦副材料的选配 由于航空用离合器是工作在高速、高温、高载荷状态下,楔块的材料应同时满足强度及耐磨损的需求,宜选用高强度、高温、硬度高、高导热性、耐热冲击、低热膨涨系数性质的材料, 根据以上使用特性,楔块常用材料一般选Cr14Mo4V、Gr4Mo4V、W18Gr4V、M -50、AMS6490等耐高温材料,硬度一般在HRC63左右。而相配合的内外套常选用镍铬钼材料(如18CrNi4A、SAE8640、AISI9310)或轴承钢ZGGr15等,滚道表面最小硬度不低于HRC60。 2 碳化硅等特种陶瓷的结构性能及种类 陶瓷的性能由两种因素决定。首先是物质结构,主要是化学键的性质和晶体结构。它们决定陶瓷材料的性能,如耐高温性、半导体性及绝缘性等。其次是显微组织,包括分布、晶粒大小、形状、气孔大小和分布、杂质、缺陷等。陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸附等功能;在生物方面,具有一定生物相容性能,可作为生物结构材料等。但也有它的缺点,其致命缺点是脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。近期研究表明:用不同配比的各种原料和陶瓷复合材料制成的纳米级原材料经烧结可提高韧性。这一发现吸引了许多研究者,成为国际上研究的热点。预期合成陶瓷研究将使全陶瓷内燃机尽快成为现实。这是21世纪的新挑战,将使汽车发动机、刀具、模具等方面面貌一新。 工程陶瓷目前有氮化硅(Si3N4)、碳化硅(SiC),硅化钨(WSi2)、二氧化锆(ZrO2)、三氧化铝(A12O3)等。这些材料具有耐热、高硬度、耐磨、耐腐蚀、相对密度小等特点。若能用于燃气轮机,可使工作温度从目前的1100e提高到1370e,而热效率从60%提高到80%,应是理想的发动机材料。陶瓷材料种类繁多,各有特色,可制成各种功能元件。 碳化硅陶瓷是用碳化硅粉,用粉末冶金法经反应烧结或热压烧结工艺制成。碳化硅陶瓷最大特点是高温强度大、热稳定性好、耐磨抗蠕变性好。适用于浇注金属用的喉嘴、热电偶套管、燃气轮机的叶片、轴承等零件。同时由于它的热传导能力高,还适用于高温条件下的热交换器材料,也可用于制作各种泵的密封圈。氮化硅陶瓷抗温度急变性好,硬度高,其硬度仅次于金刚石、氮化硼等物质,用氮化硅陶瓷材料制作发动机,由于工作温度达到1370e,发动机效率可达30%,同时由于温度提高,可使燃料充分燃烧,排出废气污染成分大幅度降落,不仅降低能耗,并且减少了情形污染。氮化硅陶瓷原料丰富、加工性好,可以用低成本生产出各种尺寸精确的部件,特别是形状复杂的部件,成品率比其他陶瓷材料高。金属陶瓷,主要包括六大类:介电陶瓷、半导体陶瓷、磁性陶瓷、压电陶瓷、热电陶瓷、绝缘陶瓷等,该技术有助于节能环保。除了提高汽车的安全性和舒适性之外,如何提高环保性能也是一个焦点。 3 陶瓷发动机 陶瓷具有较好的高温强度、耐蚀性和耐磨性,尤其是氮化硅和碳化硅陶瓷,有可能作为高温结构材料来制造发动机。陶瓷发动机已成为当前世界各国竞相开发的目标之一。用陶瓷材料制造的发动机,具有以下优越性:陶瓷的耐热性好,这可以提高发动机的工作温度,从而使发动机效率大大提高。例如,对燃气轮机来说,目前作为其制造材料的镍基耐热合金,工作温度在1000e左右;若采用陶瓷材料,工作温度可达1300e,使发动机效率提高30%左右;工作温度高,可使燃料充分燃烧,排出废气中的污染成分大大减少。这不仅降低了能源消耗,而且减少了环

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

射频氮化镓(GaN)技术正在走向主流应用

射频氮化镓(GaN)技术正在走向主流应用 网络基础设施与反导雷达等领域都要求使用高性能高 功率密度的射频器件,这使得市场对于射频氮化镓(GaN)器件的需求不断升温。举个例子,现在的无线基站里面, 已经开始用氮化镓器件取代硅基射频器件,在基站设备上,氮化镓器件的使用得越来越广泛。氮化镓受青睐主要是因为它是宽禁带(wide-bandgap)器件,与硅或者其他三五价器件相比,氮化镓速度更快,击穿电压也更高。现在,为了 把氮化镓器件推到更大的市场去,一些射频氮化镓厂商开始考虑在未来的手持设备中使用氮化镓。对于现在的手机而言,氮化镓的性能过剩,价格又太贵。但将来支持下一代通信标准(即5G)的手机,使用氮化镓是有可能的。氮化镓技术非常适合4.5G或5G系统,因为频率越高,氮化镓的优势 越明显。但对于手机而言,氮化镓材料还有很多难题需要解决,例如功耗、散热与成本。不同工艺比较(数据来源于OKI半导体)射频氮化镓技术是5G的绝配 虽然氮化镓用到手机上还不现实,但业界还是要关注射频 氮化镓技术的发展。“与砷化镓(GaAs)和磷化铟(InP)等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS 和碳化硅(SiC)等功率工艺相比,氮化镓的频率特性更好。” 分析机构Strategy Analytics的分析师Eric Higham说。“氮

化镓器件的瞬时带宽更高,这一点很重要,载波聚合技术的使用以及准备使用更高频率的载波都是为了得到更大的带宽。”Higham说,“这意味着覆盖系统的全部波段和频道只需要更少的放大器。” 氮化镓(GaN)、砷化镓(GaAs)和磷化铟(InP)是射频应用中常用的三五价半导体材料,LDMOS (横向扩散MOS技术)是基于硅的射频技术,碳化硅(SiC)可用于功率或射频领域。可以肯定的是,氮化镓不会统治 整个射频应用,设备厂商会像以前一样,根据应用选择不同的器件和工艺制程技术,包括三五价化合物与硅材料。“(射频领域)还是有砷化镓与硅器件的市场空 间。”GlobalFoundries射频市场总监Peter Rabbeni说道。什么是氮化镓? 氮化镓技术可以追溯到1970年代,美国无线电公司(RCA)开发了一种氮化镓工艺来制造LED。现在市场上销售的很多LED就是使用蓝宝石衬底的氮化镓技术。除了LED,氮化镓也被使用到了功率半导体与射频器件上。基于氮化镓的功率芯片正在市场站稳脚跟。“我们相信,氮化镓在600V功率器件市场将占有主要优势。”英飞凌氮化镓全球应用工程经理Eric Persson说道。氮化镓功率器件还是一个新事物, 一时半会儿不会取代现在600V的主流技术--功率MOSFET。“要最大限度发挥(GaN功率技术的)作用,必须采用新型 拓扑。”Persson说道。

碳化硅主要的四大应用领域

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器、矿斗内衬的理想材料,具耐磨性能是铸铁,橡胶使用寿命的5-20倍,也是航空飞行跑道的理想材料之一。碳化硅主要有四大应用领域,即:功能陶瓷、耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。 (碳化硅-图片) 1、作为磨料,可用来做磨具,如油石、磨头、砂瓦类等。 2、作为冶金脱氧剂和耐高温材料。 3、高纯度的单晶,可用于制造半导体、制造碳化硅纤维。 主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。 用于半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 折叠磨料磨具

主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。 折叠化工 折叠"三耐"材料 利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。 另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、##飞机跑道太阳能热水器等的理想材料之一。 (碳化硅-图片) 折叠有色金属 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精

氮化镓和碳化硅的应用

氮化镓和碳化硅在高频率电源开关中的应用 前言 对于宽带隙(宽禁带)材料和设备的研究工作已经持续许多年了,这些材料的特性令设计者非常满意,因为宽的带隙设备显著的性能改善超过了以硅为基础的其他材料。他们在高温度下、高功率密度下、高电压下和高频率下运转的能力,使他们在未来的电子系统中的使用非常令人关注。对未来的开关和高频功率应用方面大有前途的两种非常重要的宽带隙材料就是氮化镓和碳化硅。关于氮化镓与碳化硅材料,半导体器件是否可能而且这种设备/材料是否最适合各种开关和高频功率的应用的问题有大量的正在进行的讨论和质疑。本论文总结了我们对于目前发展现状的理解以及这些技术的领先之处。材料特性、设备结构和成本都是重要的和相互关联的。最终,我们相信碳化硅和氮化镓两种材料都将扮演着重要角色而且都将融入各自的商业市场。 材料属性 作为宽带隙材料的表征是一个电子从价带顶部跳到半导体导带底部所适合的能量。需要能量通常大于一个或两个电子伏特的材料被称为宽带隙材料。碳化硅和氮化镓半导体通常也被称为化合物半导体,因为他们是由选自周期表中的多个元素组成的。下表比较了硅(Si)、碳化硅(SiC-4H1)和氮化镓(GaN) 材料的性能。这些材料的属性对电子器件的基本性能特点产生重大影响。 对于射频和开关电源设备而言,碳化硅和氮化镓两种材料的性能都优于单质硅的。碳化硅和氮化镓相比单质硅的一个更优的属性是,他们的高临界场允许这些器件能在更高的电压和更低的漏电流中操作。高电子迁移率和电子饱和速度允许更高的工作频率。然而SiC电子迁移率高于Si,GaN的电子迁移率又高于SiC,这意味着氮化镓应该最终成为极高频率的最佳设备材料。 高导热系数意味着材料在更有效地传导热量方面占优势。SiC比GaN和Si 具有更高的热导率,意味着碳化硅器件比氮化镓或硅从理论上可以在更高的功率密度下操作。当高功率是一个关键的理想设备特点时,高导热系数结合宽带隙、高临界场的碳化硅半导体具有一定优势。氮化镓相对较差的导热性,使系统设计人员处理氮化镓器件的热量管理面临一个挑战。

碳化硅的应用

无机固体材料学 课程论文 题目:碳化硅的性能与应用前景 院 系 化学与化学工程学院 专 业 化学师范专升本 姓 名 刘 倩

碳化硅陶瓷的性能与应用前景 摘要 碳化硅陶瓷不仅具有抗氧化性强,耐磨性好,硬度高,热稳定性好,热膨胀系数小,等优良特性,而且广泛的应用也多个领域中。碳化硅是一种典型共价键结合化合物,具有高硬度、耐磨等特性,广泛应用于航空、机械、汽车、冶金、化工、电子等领域。本文主要是对碳化硅陶瓷的性能,市场前景,应用范围进行讨论,并讨论起发展趋势。 关键词:碳化硅性能高硬度耐磨性

一.碳化硅的基本结构及其性质 1.1碳化硅结构 碳化硅是一种典型的共价键结合的稳定化合物。从理论上讲,碳化硅均由SiC四面体堆积而成,所不同的只是平行结合或反平行结合。SiC有75种变体,如α- SiC、β- SiC、3C - Si C、4H - SiC、15R- Si C 等,所有这些结构可分为方晶系、六方晶系和菱形晶系,其中α- SiC、β- SiC 最为常见。α- SiC是高温稳定型,β- SiC是低温稳定型。β- SiC在2100~2400 ℃可转变为α- SiC ,β- SiC可在1450 ℃左右温度下由简单的硅和碳混合物制得。利用透射电子显微镜和X- 射线衍射检测技术可对SiC 显微体进行多型体分析和定量测定。为了区别各种不同的结构,需要有相应的命名方法。命名方法常用的是:把低温类型的立方碳化硅叫做β—SiC,而其余六方的、菱形的晶胞结构一律称为α—SiC。这种命名方法与相律惯例以及矿物学命名都不相符,但因其很方便,也就颇为流行。 1.2碳化硅化学性质 碳化硅本身很容易氧化,但它氧化之后形成了一层二氧化硅薄膜,氧化进程逐步被阻碍。在空气中,碳化硅于800 ℃时就开始氧化,但很缓慢;随着温度升高,则氧化速度急速加快。碳化硅的氧化速率,在氧气中比在空气中快1. 6倍;氧化速率的速度随着时间推移而减慢。如果以时间推移对氧化的数量描图,可以得到典型的抛物线图形. 这反映出二氧化硅保护层对碳化硅氧化速率的阻碍作用。氧化时,若同时存在着能将二氧化硅薄膜移去或使之破裂的物质,则碳化硅就易被进一步氧化。例如:铁、锰等金属有几种化合价,其氧化物能将碳化硅氧化,并且又能与二氧化硅生成低熔点化合物,能侵蚀碳化硅。例如,FeO在1300 ℃、MnO 在1360 ℃能侵蚀碳化硅;而CaO、MgO 在1000 ℃就能侵蚀碳化硅[1]。 二.碳化硅的特点及其性能 2.1磨料 由于其超硬性能,可制备成各种磨削用的砂轮、砂布、砂纸以及各类磨料,广泛应用于机械加工行业。我国工业碳化硅主要作磨料用,黑色碳化硅制成的磨具,多用于切割和研磨抗张强度低的材料,如玻璃、陶瓷、石料和耐火物等,同时也用于铸铁零件和有色金属材料的磨削。绿色碳化硅制成的磨具,多用于硬质合金、钛合金、光学玻璃的磨削,同时也用于缸套 的珩磨及高速钢刀具的精磨。立方碳化硅专用于微型轴承的超精磨,采用W3. 5立方碳化硅

第三代半导体材料碳化硅

第三代半导体材料碳化硅 一、第三代半导体发展简述 半导体产业的基石是芯片。制作芯片的核心材料按照历史进程分为三代:第一代半导体材料(主要为目前广泛使用的高纯度硅)、第二代化合物半导体材料(砷化镓、磷化铟)、第三代化合物半导体材料(碳化硅、氮化镓)。 第三代半导体材料也称为禁带半导体材料,是指禁带宽度在2.3eV(电子伏特)及以上的半导体材料(硅的禁带宽度为1.12eV),其中较为典型的和成熟的包括碳化硅(SiC)、氮化镓(GaN)等,其余包括氧化锌(ZnO)、金刚石、氮化铝(AlN)等的研究尚处于起步阶段。 第三代半导体材料在禁带宽度、热导率、介电常数、电子漂移速度方面的特性使其适合制作高频、高功率、高温、抗辐射、高密度集成电路;其在禁带宽度方面的特性使其适合制作发光器件或光探测器等。 5G基站射频器件对高频材料的需求,以及功率器件正向着大功率化、高频化、集成化方向发展的趋势凸显出了第三代半导体材料的重要性及广阔前景。而该领域基本由美日企业主导,我国相对薄弱,研发仍主要集中于军工领域。 国家战略新兴产业政策中多次提到以碳化硅、氮化镓为代表的第三代半导体器件,随着国内多家企业开始重视该领

域,积极布局相关项目,我国的第三代半导体材料及器件有望实现较快发展。 二、第三代半导体---碳化硅概述 碳化硅是第三代化合物半导体材料的,具有优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率。 半导体芯片分为集成电路和分立器件,但不论是集成电路还是分立器件,基本结构都可以划分为“衬底—外延—器件”结构。碳化硅在半导体中存在的主要形式是作为衬底材料。 图:碳化硅晶片产业链

第三代宽禁半导体材料GaN(氮化镓)研究分析

广州创亚企业管理顾问有限公司 第三代宽禁半导体材料GaN (氮化镓)研究分析

目录contents

一、5G应用的关键材料 (一)认识第三代半导体材料 1、半导体材料的由来 2、第一代半导体材料 3、第二代半导体材料 4、第三代半导体材料(二)第三代半导体材料的特点 1、碳化硅(SiC) 2、氮化镓(GaN) 二、氮化镓(GaN) (一)GaN技术的发展历史(二)GaN的优点 1、GaN 在电力电子领域:高效率、低损耗与高频率 2、GaN 在微波射频领域:高效率、大带宽与高功率 3、与第二代半导体材料GaAs更具优势 三、GaN市场 (一)市场空间 1、0~900V的低压市场空间宏大 2、GaN RF 市场即将大放异彩

(二)射频是主战场 1、GaN 是射频器件的合适材料 2、5G应用的关键技术 3、GaN 电力电子器件典型应用:快充电源四、GaN产业链 (一)GaN工艺与流程 (二)芯片制造过程 1、流程 2、GaN衬底 3、GaN外延片 4、GaN外延使用不同衬底的区别 5、GaN器件设计与制造

由于地球的矿藏多半是化合物,所以最早 得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体 发光材料,碳化硅(SiC)的整流检波作用也较 早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半 导体锗(Ge)放大作用的发现开辟了半导体历 史新的一页,从此电子设备开始实现晶体管化。 中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。

碳化硅纤维

读书笔记——SiC纤维 通过查找有关资料文献,对作为增强材料的SiC纤维有了一定的了解。在读书笔记中,介绍了SiC纤维材料的特性、SiC纤维的制备方法、SiC纤维的应用以及国内研究现状。重点关注了制备方法中的先驱体转换法(PIP)以及SiC纤维在增强陶瓷材料方面的应用。 1.SiC纤维材料特性: 1)比强度和比模量高。碳化硅复合材料包含35%~50%的碳化硅纤维,因此有较高的比强度和比模量,通常比强度提高1~4倍,比模量提高1~3倍。 2)高温性能好。碳化硅纤维具有卓越的高温性能,碳化硅增强复合材料可提高基体材料的高温性能,比基体金属有更好的高温性能。 3)尺寸稳定性好。碳化硅纤维的热膨胀系数比金属小,仅为(2.3~4.3)×10-6/℃,碳化硅增强金属基复合材料具有很小的热膨胀系数,因此也具有很好的尺寸稳定性能。 4)不吸潮、不老化,使用可靠。碳化硅纤维和金属基体性能稳定,不存在吸潮、老化、分解等问题,保证了使用和可靠性。 5)优良的抗疲劳和抗蠕变性。碳化硅纤维增强复合材料有较好的界面结构,可有效地阻止裂纹扩散,从而使其具有优良的抗疲劳和抗蠕变性能。 6)较好的导热和导电性。碳化硅增强金属基复合材料保持了金属材料良好的导热和导电性,可避免静电和减少温差。 此外,它还具有热变形系数小、光学性能好、各向同性、无毒、能够实现复杂形状的近净尺寸成型等优点,因而成为空间反射镜的首选材料。 2.SiC纤维制备方法 2.1化学气相沉积法 化学气相沉积法(CVD)即在连续的钨丝或者碳丝芯材上沉积碳化硅。通常在管式反应器中用水银电极直接采用直流电或射频加热,把基体芯材加热到1200 ℃以上,通入氯硅烷和氢气的混合气体,经过反应裂解为碳化硅,并且沉积在钨丝或者碳丝表面。目前有美国达信系统公司、法国国营火药炸弹公司、英

碳化硅陶瓷的性能与应用

碳化硅陶瓷的性能与应用 李 缨1 黄凤萍2 梁振海1 (1咸阳陶瓷研究设计院 陕西咸阳 712000) (2陕西科技大学化工学院 西安 710021) 摘 要 详细的介绍了碳化硅原料的生产,碳化硅陶瓷的抗氧化、耐酸碱等化学性能,微观结构、色泽、热膨胀和导热系数、硬度、韧性等物理性能。并阐述了3种常用碳化硅陶瓷的致密化技术以及碳化硅在耐火材料、军事、航空航天、钢铁、电气和电工等工业部门的应用以及优越的性能和未来的应用前景。 关键词 碳化硅 陶瓷 性能 应用 碳化硅是一种人造材料,只是在人工合成碳化硅之后,才证实陨石中及地壳上偶然存在碳化硅,碳化硅的分子式为SiC,分子量为40.07,质量百分组成为70. 045的硅与29.955的碳,碳化硅的密度为3.16~3.2g 。由于碳化硅陶瓷具有诸多优异的性能,近年来被广泛应用于航空航天、机械工业、电子等各个领域,市场前景广阔,因此,研究其性能与应用具有十分重要的意义。 1 碳化硅粉体的制备 碳化硅粉体的制备方法较多,有最古老的阿奇逊合成法(Acheson),也有近十几年发展起来的激光法和有机前驱体法,以下介绍的是典型的Acheson碳化硅合成方法[1]。 该方法是采用碳热还原过程将SiO2与C反应生成SiC,反应式如下: SiO2+3C SiC+2C O 二氧化硅原料的可选用熔融石英砂或破碎过的石英岩,碳可用石墨、石油焦或无灰无烟煤制取,加入NaCl和木屑作为添加剂,一般在2000~2400℃的电弧炉中反应合成。 整个反应炉由可移动的耐火砖组成,长10~20m,宽与高3~4m,可容纳400t石墨电极,放在两端,通电后产生高温。由于反应过程中整个电弧炉很大,温度场的分布不均匀,中心温度远高于炉壁温度,因此造成在碳化硅的合成炉生成带中产物的不均匀,并常有不纯物质,核芯部位的产物是纯的绿色碳化硅,向外杂质较多,一般杂质为铁、铝、碳等,因此颜色呈黑色。此方法生产的SiC再经分拣与粉碎后分级成不同粒径的颗粒。根据颜色与纯度来区别,则可分为绿色SiC与黑色SiC。根据颗粒大小来分,又可分为不同细度颗粒的碳化硅。采用该方法生产的也可称为高温法碳化硅,它的相为α-SiC。用此方法生产的碳化硅如果要用到陶瓷生产中,还需经过粉碎与提纯处理,达到所需的纯度与粒度后方能使用。 2 碳化硅的化学性质 碳化硅的化学稳定性与其氧化特性有密切关系[2]。碳化硅本身很容易氧化,但它氧化之后形成了一层二氧化硅薄膜,氧化进程逐步被阻碍。在空气中,碳化硅于800℃时就开始氧化,但很缓慢;随着温度升高,则氧化速度急速加快。碳化硅的氧化速率,在氧气中比在空气中快1.6倍;氧化速率的速度随着时间推移而减慢。如果以时间推移对氧化的数量描图,可以得到典型的抛物线图形.这反映出二氧化硅保护层对碳化硅氧化速率的阻碍作用。 氧化时,若同时存在着能将二氧化硅薄膜移去或使之破裂的物质,则碳化硅就易被进一步氧化。例如:铁、锰等金属有几种化合价,其氧化物能将碳化硅氧化,并且又能与二氧化硅生成低熔点化合物,能侵蚀碳化硅。例如,FeO在1300℃、MnO在1360℃能侵蚀碳化硅;而Ca O、MgO在1000℃就能侵蚀碳化硅。

硅、碳化硅、氮化镓

Si:高纯的单晶硅是重要的半导体材料。单晶硅中掺入微量的第IIIA族元素,形成p型硅 半导体;掺入微量的第VA族元素,形成n型半导体。p型半导体和n型半导体结合在一起形成p-n结,广泛应用于二极管、三极管、晶闸管、场效应管和各种集成电路 熔点:1414℃, 电导率:硅的电导率与其温度有很大关系,随着温度升高,电导率增大,在1480℃左右达到最大,而温度超过1600℃后又随温度的升高而减小。 集成电路集成度的提高, 发热问题就更突出, 这就要求采用导热率更高的材料, 故最近正在研究S I C 等材料。 SiC:化学性能稳定、热膨胀系数小、耐磨性能好,碳化硅硬度很大、导热系数高、高温时能抗氧化。碳化硅被广泛用于制造高温、高压半导体。 熔点:2730 °C GaN:它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。 熔点:800℃ 优点:禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强; 导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和); GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁移率达到105cm2/Vs的2-DEG(因为2-DEG面密度较高,有效地屏蔽了光学声子散射、电离杂质散射和压电散射等因素); 晶格对称性比较低(为六方纤锌矿结构或四方亚稳的闪锌矿结构),具有很强的压电性(非中心对称所致)和铁电性(沿六方c轴自发极化) 缺点:一方面,在理论上由于其能带结构的关系,其中载流子的有效质量较大,输运性质较差,则低电场迁移率低,高频性能差。另一方面,现在用异质外延(以蓝宝石和SiC作为衬底)技术生长出的GaN单晶,还不太令人满意。 主要问题:因为GaN是宽禁带半导体,极性太大,则较难以通过高掺杂来获得较好的金属-半导体的欧姆接触,这是GaN器件制造中的一个难题,故GaN器件性能的好坏往往与欧姆接触的制作结果有关。

纳米碳化硅材料

纳米碳化硅材料 摘要:本文主要讨论的是关于纳米碳化硅材料的结构、性能及其应用,主要在其光学性质、力学性质等方面对其进行讨论。 关键词:纳米碳化硅光学性质力学性质 1. 引言 SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等特性,成为制作高频、大功率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极管的理想材料。近年来的研究表明:微米级SiC晶须已被应用于增强陶瓷基、金属基和聚合物基复合材料,这些复合材料均表现出良好的机械性能,可以想象用强度硬度更高及长径比更大的SiC 一维纳米材料作为复合材料的增强相,将会使其性能得到进一步增强。随着研究的深入,研究者还发现一维SiC纳米结构在储氢、光催化和传感等领域都有广泛的应用前景。 2. 纳米碳化硅结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,

SIC与GAN的发展中存在的问题

SiC和GaN功率器件发展中存在的问题 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。随着SiC和GaN外延材料和器件制造工艺技术取得重大进展,各种SiC和GaN功率器件的研究和开发蓬勃开展起来。尽管SiC和GaN功率器件取得了令人鼓舞的进展,已经有了许多实验室产品,而且部分产品已经进入市场,但是SiC和GaN产品的大规模应用还需做大量工作。 1 SiC功率器件发展中存在的问题 在商业化市场方面: (1)昂贵的SiC单晶材料。由于Cree公司技术性垄断,一片高质量的4英寸SiC单晶片的售价约5000美元,然而相应的4英寸Si片售价仅为7美元。如此昂贵的SiC单晶片已经严重阻碍了SiC器件的发展。 (2)Cree公司的技术垄断。由于Cree公司在世界各国申请了许多专利,严重制约了其他公司在SiC领域的发展。 在技术方面: (1)SiC单晶材料虽然在导致SiC功率半导体性能和可靠性下降的致命缺陷微管密度降低和消除方面近年来取得很大进展,但位错缺陷等其他缺陷对元件特性造成的影响仍未解决。 (2)SiC器件可靠性问题。SiC MOSFET器件目前存在两个主要技术难点没有完全突破:低反型层沟道迁移率和高温、高电场下栅氧可靠性。与Si MOSFET相比,体现不出SiC MOSFET 的优势。 (3)高温大功率SiC器件封装问题。 2 GaN功率器件发展中存在的问题 在商业化市场方面: GaN单晶生长技术还不成熟,在一定程度上阻碍了GaN功率器件的广泛应用。由于受其外延片结构的限制,使得基于硅基的GaN功率器件击穿电压多低于1200 V,从而限制了GaN 功率器件在更高工作电压领域内的应用。 蓝宝石衬底的GaN功率器件由于衬底低的热传导系数而限制了在大功率方面的应用。相对昂贵的SiC单晶片同样会阻碍基于SiC衬底的GaN功率器件的广泛应用。 GaN功率器件在技术方面,同样存在着诸多挑战。 (1)GaN材料不成熟:材料缺陷导致临界击穿电场下降、衬底漏电等是GaN功率器件无法达到其材料理论极限的主要原因之一。 (2)制造工艺不成熟:首先是增强型A1GaN/GaN HEMT制造工艺技术不过关,离商用化还有一定的距离。其次是缺乏高质量的绝缘栅生长技术。再者,缺乏实用的掺杂技术。目前只有EPC、Transform、TI、Navitas公司在低压IC技术方面获得商业化突破。 (3)电流崩塌效应的理论研究不成熟。 (4)GaN器件可靠性问题。 (5)大功率GaN器件封装问题。 总结碳化硅和氮化镓在功率电子应用方面的发展都获得了很多重大的成就。

氮化镓在射频领域的优势

氮化镓在射频领域的优势 氮化镓是一种二元III/V族直接带隙半导体晶体,也是一般照明LED和蓝光播放器最常使用的材料。另外,氮化镓还被用于射频放大器和功率电子器件。氮化镓是非常坚硬的材料;其原子的化学键是高度离子化的氮化镓化学键,该化学键产生的能隙达到3.4 电子伏特。 半导体物理学中,“能隙”是指使电子游离原子核轨道,并且能够在固体内自由移动所需的能量。能隙是一个重要的物质参数,它最终决定了固体所能承受的游离电子和电场的能量。氮化镓的能隙是3.4 电子伏,这是一个比较大的数字。这就是为何氮化镓被称为“大能隙半导体”的原因。 相比之下,砷化镓的能隙为1.4 电子伏,而硅的能隙只有1.1 电子伏。图3-2:在栅极靠近漏极的边缘位置发生机械性能退化。 在本章中,我们将向您介绍氮化镓的基础知识,并且说明氮化镓具有的哪些特性使其成为射频功率放大器和其他高压高频应用的理想材料。 // 氮化镓基础知识 镓是一种化学元素,原子序数31。镓并非自由存在于自然中。恰恰相反,镓是锌和铝生产过程中的一种副产品。压电效应造成的材料结构性能退化。 氮化镓复合物由镓和氮原子排列构成,最常见的是纤锌矿晶体结构。纤锌矿晶体结构(图1-1)是一种六边形结构,其特征是有两个晶格常数(图中标记为a 和 c)。

在半导体领域,通常在高温条件下(大约1,100摄氏度),在异质衬底上(对于射频应用,采用碳化硅作为衬底材料;对于功率电子器件应用,则采用硅作为衬底材料),利用金属有机化学蒸气沉积或分子束外延技术生长氮化镓。 碳化硅基氮化镓方法综合了氮化镓的高功率密度能力,以及碳化硅的超高导热性和低射频损耗。正是因为这一点,碳化硅基氮化镓方法才成为实现高功率密度射频性能的首选方法。今天,碳化硅基氮化镓的衬底直径可以达到6 英寸。 硅基氮化镓组合的导热性能要差很多,并且射频损耗较高,但造价较为低廉。正是因为这一点,硅基氮化镓组合才成为低成本功率电子器件应用的首选方法。今天,硅基氮化镓的衬底直径可以达到8英寸。 // 为何氮化镓性能优于其他半导体材料 尽管与硅和砷化镓等其他半导体材料相比,氮化镓是相对较新的技术,但是对于远距离信号传送或高端功率级别等(例如,雷达、基站收发台、卫星通信、电子战等)高射频和高功率应用,氮化镓已经成为优先选择。 碳化硅基氮化镓在射频应用中脱颖而出的原因如下: 1 高击穿电场: 由于氮化镓拥有大能隙,因此氮化镓材料也拥有高击穿电场,所以氮化镓器件的工作电压可以远高于其他半导体器件。当受到足够高的电场影响时,半导体中的电子能够

相关文档
最新文档