相位法测光速实验--数据及其处理(1)

相位法测光速实验--数据及其处理(1)

相位法测光速实验数据及其处理:

x2/m t2/μm x1/m t1/μmλ/m 温度

T/℃

压强

P/kpa

e/㎜

Hg

n C(×10^8m/s)

0.4422 1.590.03210.99 3.021070000

17.584.6214.998 1.000026043.02114867

0.4300 1.570.0421 1.00 3.007926316 3.00800464 0.4146 1.540.03580.99 3.044174545 3.04425382 0.4282 1.560.0501 1.01 3.038549091 3.03862821 0.4085 1.530.02750.98 3.061854545 3.06193428

0.4510 1.600.0501 1.01 3.003352542

17.884.5915.284 1.000225823.00403076

0.4378 1.580.0439 1.00 3.001789655 3.00246752 0.4427 1.590.0480 1.01 3.007886207 3.00856545 0.4205 1.550.03390.99 3.051378571 3.05206763 0.4420 1.580.0502 1.01 3.038168421 3.03886270

0.4235 1.560.02960.98 3.001789655

17.884.5915.284 1.000225823.00246752

0.4415 1.580.0405 1.01 3.109508772 3.11021096 0.4237 1.560.0490 1.01 3.011225455 3.01190545 0.4259 1.560.0607 1.03 3.045630189 3.04631795 0.4039 1.530.0470 1.01 3.033650000 3.03433506

0.4340 1.570.03000.98 3.026576271

17.984.615.381 1.000225773.02725958

0.4201 1.550.02500.98 3.063757895 3.06444960 0.4182 1.550.03150.99 3.052167857 3.05285694 0.4079 1.540.02360.98 3.033225000 3.03390981 0.4325 1.570.03310.99 3.043703448 3.04439062

0.4066 1.530.02650.98 3.054621818

17.984.615.381 1.000225773.05531146

0.4335 1.570.0362 1.00 3.080817544 3.08151310 0.4249 1.560.03570.99 3.018007018 3.01868839 0.4421 1.580.0521 1.02 3.078214286 3.07890925 0.4290 1.560.03180.99 3.080042105 3.08073749

0.4401 1.580.0371 1.00 3.071137931

17.984.615.381 1.000225773.07183130

0.4282 1.560.03310.99 3.063757895 3.06444960 0.4260 1.560.0391 1.00 3.053746429 3.05803669 0.4050 1.530.02320.98 3.068283636 3.06897636 0.4342 1.570.03410.99 3.049037931 3.04972631

光拍频法测量光速实验

图1 拍频波场在某一时刻t 的空间分布 光拍频法测量光速实验 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E 0、圆频率分别为1ω和2ω(频差 12ωωω?=-较小)的二光束: 1011120222cos()cos()E E t k x E E t k x ωφωφ=-+? ?=-+? (1) 式中112/k πλ=,222/k πλ=为波数, 1?和2?分别为两列波在坐标原点的初位相。若这两列光波的偏振方向相同,则叠加后的总场为: 1 2 1212012122cos[ ()]22cos[()](2) 22 x E E E E t c x t c ωω φφ ωωφφ--=+=-+++?-+ 上式是沿轴方向的前进波,其圆频率为12()/2ωω+,振幅为12 02cos[ ()]22 x E t c ωφφ?--+,因为振幅绝对值以频率为12/2f f f ωπ?=?=-周期性地变化,所以被称为拍频波,?f 称为光拍波频率。 实验中拍频波由光电探测器检测,光电探测器上的光电流如图1(b )和下式 []{} 2 01cos (/))i gE t x c ω?=+?-+ (3) 其中g 是光电探测器的转换常数,2f ωπ?=?,?是初相位。 如果有两路光频波,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系 2L f L c c ωπ????????= = (4) 当π? 2=?时,?L =Λ,恰为光拍波长,此时上式简化为 c f =??Λ (5) 可见,只要测定了Λ和f ?,即可确定光速c 。

光速测量实验报告参考

佛山科学技术学院 实 验 报 告 课程名称大学物理实验 实验项目 专业班级 姓 名 学号 指导教师成 绩 日期2010 年月日 一、实验目的 1.了解和掌握光调制的基本原理和技术。 2.学习使用示波器测量同频正弦信号相位差的方法。 3.测量光在空气中的速度。 二、实验器材 光速测量仪,双踪示波器。 三、实验原理 1.利用光的波长和光频率(=1014Hz)测速度 但=1014Hz,太高,目前电路最高只能响应108Hz的频率。 2.用调制波波长和频率(108Hz)测速度 108Hz,容易测量。 3.实验装置如图:

求出D-图像(直线)的斜率k,光速c=4πf?k = (2)“等相位”法测波长 表2 “等相位”法测波长 0123456 t() ) x(mm) D(mm) (同(1)处理,求出光速): 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题 1.本实验中,光速测量的误差主要来源于什么物理量的测量误差?为什么? 答:误差主要来源于波长的测量误差。因为频率可以做到很稳定。 2.通过光速测量实验,你认为波长测量的主要误差来源是什么?为提高测量精度需做哪些改进? 答:波长测量的主要误差来源是相位的测量误差。可采用高精度的相位计改进测量。

实验报告内容:一.实验目的 二.实验仪器(仪器名称、型号、参数、编号) 三.实验原理(原理文字叙述和公式、原理图) 四.实验步骤 五、实验数据和数据处理 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

关于光速测量的方法及其本质异同的报告77

关于光速测量的方法及其本质异同的报告 小组成员:白美丹白云瑞郭佳昌 郭丝丝贺小平王阳凡

关于光,那是我们每一个人都特别熟悉的。基于我们现在学习的理解,我们都知道光是一种电磁波,那即是这样,光也具有粒子性和波动性。那么光也有自己的速度,我们每天都在用光速解决问题。那么光速是怎么来的,它的数值那么大,怎么测量的?今天我们讨论讨论光速的测量史。 一.光速的几种测量方法及其原理 1.罗默木星蚀法 早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差

甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s。 罗默很快意识到,如果认为光速是有限的话,这1000秒时间恰好对应光穿过地球轨道直径所需要的时间。那个时代,地球轨道直径被认为是大约2.76亿公里(正确值是约3.0亿公里),因此罗默得到的光速比正确值略小,但作为对光速的第一次成功测量,罗默的方法被载入了史册。 2.布莱德雷光行差法 1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为: C=299930千米/秒 1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

光拍频法测量光速

光拍法测量光速 光在真空中的传播速度是一个极其重要的基本物理量,许多物理概念和物理量都与它有密切的联系,因此光速的测量是物理学中的一个十分重要的课题。本实验的目的是通过测量光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法。 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的 两列同向传播的简谐波叠加即形成拍。若有振幅 相同为E 0、圆频率分别为1ω和2ω(频差 21ωωω-=?较小)的二光束: )cos(11101?ω+-=x k t E E )cos(22202?ω+-=x k t E E 式中11/2λπ=k ,22/λπ=k 为圆波数, 1?和2?分别为两列波在坐标原点的初位相。若 这两列光波的偏振方向相同,则叠加后的总场为: 图1 拍频波场在某一时刻t 的空间分布 ]2)(2cos[]2)(2cos[ 221212121021??ωω??ωω++-+?-+--=+=c x t c x t E E E E 上式是沿x 轴方向的前进波,其圆频率为2/)(21ωω+,振幅为]2 )(2cos[2210??ω-+-?c x t E ,因为振幅以频率为πω4/?=?f 周期性地变化,所以被称为拍频波,f ? 称为拍频。如果将光频波分为两路,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系仍由上式确定。当π?2=?时,?L=Λ,恰为光拍波长,此时上式简化为:Λ??=f c ,可见,只要测定了Λ和f ?,即可确定光速c 。 为产生光拍频波, 要求相叠加的两光波具有一定的频差, 这可通过超声与光波的相互作用来实现。超声(弹性波)在介质中传播,使介质内部产生应变引起介质折射率的周期性变化,就使介质成为一个位相光栅。当入射光通过该介质时发生衍射,其衍射光的频率与声频有关。 具体方法有两种,一种是行波法,如图2(a )所示,在声光介质与声源(压电换能器)相对的端面敷以吸声材料,防止声反射,以保证只有声行波通过介质。当激光束通过相当于位相光栅的介质时,使激光束产生对称多级衍射和频移,第L 级衍射光的圆频率为L ΩL +=0ωω,其中

光速测量实验报告(实验总结)参考

光速测量实验报告参考 一、光及光速测量的发展史 (一)古代中国对于光的认识 “景,光之人煦若射。下者之人也高,高者之人也下。足敝下光,故景障内也。”——《墨经》(光的直线传播) “阳艘向日照之?则光聚向内,离镜一二寸,光聚为一点,大如麻寂,着物则火发;阳健面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”一一《梦溪笔谈》(小孔成像) (二)西方人对于光的认识 崐神说,要有光,就有了光。一一《圣经》 光是由发光体向四面八方射出的一种东西,这种东西碰到障碍物上就立刻被弹开。如果它偶然进入人的眼睛,就叫人感觉到看见使它最后被弹开的那个东西。――毕达哥拉斯 (三)光在近代物理学发展过程中的认识 光的颗粒说(1643-1727)——牛顿 光的波动说(1635-1703)——胡克 光是电磁波(1857-1894)――赫兹 粒子说(1879-1955)——爱因斯坦 二、究竟光是什么? 现代科学的认为:光是一种人类眼睛可以见的电磁波(可见光谱)。在科学上的定义,光有时候是指所有的电磁波谱。光是由一种称为光子的基本粒子组成具有粒子性与波动性,或称为波粒二象性。光可以在真空、空气、水等透明的物质中传播。 三、光速测量的方法

(一)伽利略首先提出了光速的测量,但失败了。(1607) (二)天文测定光速 1.罗默的卫星蚀法(1676) 2.布莱德雷的光行差法(1728) 点评:由于当时天文仪器并无现在先进,且凭肉眼观察误差较大,所以测得的值都不精确 (三)大地测定光速(以光行过的路程和时间得出速度c=s/t) 1.斐索旋转齿轮法(1849) 2.惠更斯旋转镜法(1834) 3.迈克尔逊旋转棱镜法(1926) 点评:想要得到越精确的值,就要尽量增大s和t,故实际操作繁琐和精确度不大是必然的。 (四)实验室测光速法(c= X ?) 1.埃森微波谐振腔法(1950) 2.激光法测光速 点评:是目前最普遍也是最准确测量光速的方法,也是本实验的思想方法 拍光法测光速 【学习目标】 1.进一步理解光拍频的概念、掌握光拍频法测量光速的技术,了解声光调制器的应用; 2.体会到光速也是一个有限值,并了解光年是一个空间量; 3.进一步学习光路的调整和熟练示波器的使用。 【实验原理及装置】 2. 1光拍的产生和传播血* 报摇掾劲迭扯廈逗.频蚤较小、速旻咱司的二司向传塔的就谐戒施迭扯即形或拍*考空预華分别为齐和f2傍差# = 並软小)的光束〔玫门假定它汨具有叩同閔振疇)“ E l=Ea^( - 5=加邪心八-它们的迭加“ 爲話讣心胡巴二环丿卜红纠“半g 卜令型也 出I a 丿£■V C J ■ (1)是烧频率为僚;饯振碍为ZEcos +的前进浚.注 意到巴的拽逼以频宴#二翌严周歩摊变化,所以我们称它为拍频忍“就是拍4' E:+E 汁

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

光速的测量(位相法)

光速的测量(位相法) 光在真空中的传播速度是一个重要的基本物理常数,许多重要的物理概念和物理量都与它有着密切的联系。例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数、第二辐射常数,质子、中子、电子等基本粒子的质量等常数都与光速c相关。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在1/299,792,458秒的时间间隔中所传播的距离。”光速也已直接用于距离测量,如天文学中的光年。 1676年丹麦天文学家罗默通过观测木星对其卫星的掩食首次测量了光速。自此以后,在各个时期,人们都用当时最先进的技术和方法来测量光速,先后有旋转齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1941年,美国人安德森利用克尔盒作为光开关,调制光束,测得光速值为2.99766×108m/s。1952年,英国物理学家费罗姆用微波干涉仪法测量光速,测得光速值为299792.50±0.10km/s。1973年和1974年,美国国家标准局和美国国立物理实验室用激光对光速作了测定,测得光速分别为299792.4574±0.0011km/s和299792.4590 ±0.008 km/s。 实验目的 掌握一种新颖的光速测量方法,了解和掌握光调制的一般性原理和基本技术。 实验原理 物理学告诉我们,任何波的波长是波在一个周期内传播的距离,而波的频率是指1秒种内发生了多少次周期振动,用波长乘以频率得1秒钟内波传播的距离,即波速: c = λ? f (1) 图1 两列不同的波

图1中,第1列波在1秒内经历3个周期,第2列波在1秒内经历1个周期,在1秒内二列传播相同距离,所以波速相同,只是第2列波的波长是第1列的3倍。 利用这种方法,很容易测得声波的传播速度,但直接用来测量光波的传播速度,还存在很多技术上的困难。主要是光的频率高达1014 Hz ,目前的光电接收器无法响应频率如此高的光强变化,迄今仅能响应频率在108Hz 左右的光强变化并产生相应的光电流。 如果直接测量河中水流的速度有困难,可以采用一种方法:周期性地向河中投放小木块(f),再设法测量出相邻两小木块间的距离(λ),依据公式(1)即可算出木块移动的速度,而这一速度和水流流动的速度相等。 周期性地向河中投放小木块,为的是在水流上作特殊标记。我们也可以在光波上作一些特殊标记,称作“调制”。调制波的频率可以比光波的频率低很多,就可以用常规器件未接收光信号了。与木块的移动速度就是水流的流动速度一样,调制波的传播速度就是光波的传播速度。调制波的频率可由数字式频率计精确地测定,只要再测量出调制波的波长,然后利用公式c = λ? f 即可得到光速值。 本实验中用位相法来测定调制波的波长。 波长为0.65μm 的载波,其强度受频率为f 的正弦型调制波的调制,表达式为 01cos 2x I I m f t c π????=+- ??????? 式中m 为调制度,cos2πf (t-x/c)表示光在测线上传播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向传播,我们称这个波为调制波。调制波在传播过程中其位相是以2π为周期变化的。设测线上两点A 和B 的位置坐标分别为x 1和x 2,当这两点之间的距离为调制波波长λ的整数倍时,该两点间的位相差为 12212()2x x n π??πλ-=-= 式中n 为整数。反过来,如果我们能在光的传播路径中找到调制波的等位相点,并准确测量它们之间的距离,那么这距离一定是波长的整数倍。 设调制波由A 点出发,经时间t 后传播到A′点,AA′之间的距离为2D ,则A′点相对于A 点的相移为φ=ωt=2πft ,见图2 (a)。然而仅用一套测相系统还不能直接测量出AA'间的相移量。为了解决这个问题,较方便的办法是在AA′的中点B 设置一个反射器,由A 点发出的调制波经反射器反射返回A 点,见图2 (b)。由图显见,光线由A →B →A 所走过的光程亦为2D ,而且在A 点,反射波的位相落后φ=ωt 。如果我们以发射波作为参考信号(以下称

光速测量。。。

人类最早对于光速的测量始于伽利略。最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1983年,光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的物件的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的物件的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。丹麦天文学家罗默从地球观测木卫一的掩蔽来测量光速。1676年奥勒·罗默使用望远镜研究木星的卫星艾欧的运动,第一次定量的估计出光速。艾欧的公转轨道可以用来计算时间,因为它会规律的进入木星的阴影中一段时间(图中的C至D)。罗默观测到当地球在最接近木星时(H点),艾欧的公转周期是42.5小时,当地球远离木星时(从L至K),艾欧从阴影中出现的时间会比预测的越来越晚,很明显的是因为木星与地球的距离增加,使得"信号"要花更多的时间传递。光要通过行星之间增加的距离,使得计时的信号在第一次和下一次之间因而延长了额外的时间。当地球向木星接近时(从F到G),情形则正好相反。罗默观测到艾欧在接近的40 个轨道周期中周期比远离的40个轨道周期缩短了22分钟。以这些观测为基础,罗默认为在80个轨道周期中光线要多花费22分钟行走艾欧与地球之间增加的距离。这意味着从L至K 和F至G,地球经历了80个艾欧轨道周期(42.5小时)的时间,光线只要花22分钟。这对应于一个地球在轨道上绕着太阳运动和光速之间的一个比例(如右图)。 意味着光速是地球的轨道速度的9,300倍,与现在的数值 10,100倍比较,相差无几。在当时,天文单位的估计数值是大约1亿4千万公里。克里斯蒂安·惠更斯结合了天文单位和罗默的时间估计,每分钟的光速是地球直径的1,000倍,他似乎误解了罗默22分钟的意思,以为是横越地球轨道所花费的时间。这相当于每秒220,000公里(136,000英里),比现在采用的数值低了26%,但仍比当时使用其他已知的物理方法测得的数值为佳。艾萨克·牛顿也接受光速是有限的观念,在他1704年出版的书光学中,他提出光每秒钟可以横越地球16.6次(相当于210,000公里/秒,比正确值低了30%)。这似乎是他自己的推断(不能确知他是否有引用或参考罗默的数据)。罗默随后依据同样的原理观察木星表面上的斑点在自转周期上的变化,也观察其他三颗伽利略卫星的相同现象。但是因为这种观测是很困难的,因而日后被其他的方法所取代。. 即使如此,靠著这些观测,光速是有限的仍不能被大众满意的接受(著名的有吉恩·多米尼克·卡西尼),直到在詹姆斯·布雷德里(1728)的观测之后,光速是无限的想法才被扬弃。布雷德里推论若光速是有限的,则因为地球的轨道速度,会使抵达地球的星光有一个微小角度的偏折,这就是所谓的光行差,他的大小只有1/200度。布雷德里计算的光速为298,000公里/秒(185,000英里/秒),这与现在的数值只有不到1%的差异。光行差的效应在19世纪已经被充分的研究,最著名的学者是瓦西里·雅可夫列维奇·斯特鲁维和de:Magnus Nyrén。1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想

光速测量实验报告

光速测量实验报告 实验目的: 1. 了解和掌握光调制的基本原理和技术 2. 学习和使用示波器测量同频正弦方波信号相位差的方法 3. 测量光在空气中的速度 实验仪器: 激光器、信号发生器、光接收器、示波器、反射镜等 实验原理 相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。信号发生器为直流方波输出,则激光器发出激光脉冲。激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt=∣t1-t2∣,所以光速c=Δd/Δt 。下面是测量图: 1. 预习实验的内容,了解实验的目的,理解实验的原理,思考应当怎样把实验 做好,实验过程中都要做什么,同时,复习一下示波器一些基本的使用和各个按键的功能。为实验做好准备工作。 2. 实验前,认真读完实验仪器的操作说明,了解实验仪器的基本结构,以及实 验仪器各部分在实验中的功能和作用,分析实验中应该怎样正确的使用仪器,进入实验状态。 3. 在对实验分析的基础上,正确的连接线,把实验仪器连接摆放好 4. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试, 因此,在调试仪器阶段应当使反射镜离激光器近。同时,反射镜,激光器,信号接收器应该保持在同一水平面上。由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。 5. 选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd 和Δt ,处理实验数据,可以用线性来求。 示波器 信号发生器 激光接收器 激光器 平面反射镜 Δd

声速测量数据处理与思考题

声速测量 (1)用共振干涉法和相位比较法测声速有何相同和不同? 相同之处:都用连续波测量,均依靠示波器测量 共振法:平行传播的声波与反射波产生干涉,形成驻波。改变半个波长的传播路程,驻波的波幅变化一个周期,从而可测得波长,乘以频率,得到声速。 相位法:比较接收波相对与发射波的相位差,改变一个波长的传播路径,相位变化360度,从而通过测看相位图,就可测得波长,乘以频率,得到声速。(2)声速测量试验中,定性分析共振法测量时声压振幅极大值随距离变大而减少的原因。 这是由于声波在实际介质中传播时,由于扩散、吸收和散射等原因,会随着离开声源的距离增加而自身逐渐减弱。这种减弱与传播距离、声波频率和界面等因素有关。而振幅的大小恰好表示波动能量的大小,所以随着声波的不断向前传播,振幅会逐渐变小。 1. 传播衰减:点声源、面声源、线声源三种类型不同的声源,辐射出的声波波阵面形状不同,随着传播距离增加其扩散衰减的规律也不相同。 2.吸收衰减:分为有空气吸收、绿色植被的吸收、气流和大气温度梯度的吸收。由于种种影响才会造成声波的衰减,在相同环境条件下,人耳可听到的声波范围为20HZ~20000HZ,根据频率越高,在传播过程中更易受空气等等各种的影响的道理,故衰减得比较快。 声速测量实验数据处理: 要求:(1)用逐差法处理数据,计算超声波的波长; (2)利用不确定度的间接传递,计算超声波传播速度的不确定度,并表示出测量结果; (3)计算测量时声速的理论值,并与测量值比较,得出百分误差。 1.共振干涉法测声速实验数据记录 共振频率T=20 ℃ f 37.056 KHz i 123456789101112 Li(mm)

光拍法测量光速(教案)

光拍法测量光速 从17世纪伽利略第一次尝试测量光速以来,各个时期人们都采用最先进的技术来测量光速。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在299792458/1秒的时间间隔中所传播的距离”。光速也已直接用于距离测量,在国民经济建设和国防事来上大显身手,光的速度又与天文学密切相关,光速还是物理学中一个重要的基本的常数,许多其它常数都与它有关,例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数,第二辐射常数,质子、中子、电子、μ子等基本粒子的质量等都与光速c 相关。正因为如此,巨大的魅力把科学工作者牢牢地吸引到这个课题上来,几十年如一日,兢兢业业地埋头于提高光速测量精度的事业。 [目的] 1.了解声光频移法获得光拍的方法。 2.掌握光拍法测光速的原理和实验方法。 3.熟练掌握用光速测定仪测量光速的技术。 本实验是采用高频声光器件,利用声光频移效应产生150MHz 的拍频波,移动反光镜,用示波器比较近程光与远程光的相位差,求得拍频波的波长和频率,测得光的传播速度。 [仪器] 光速测量仪(LM2000C )(包括光学系统及光路系统)、多功能等精度频率计(HC-F1000L )、示波器(YB4320)。 [原理] 1.光拍的产生和传播 根据振动的迭加原理,频差较小、速度相同的二同向传播的简谐波相迭加即形成拍。考虑频率分别为1f 和2f (频差21f f f -=?较小)的光束(为简化讨论,我们假定它们具有相同的振幅): )cos(1111?ω+-=x k t E E )cos(2222?ω+-=x k t E E 它们的迭加 ]2 )(2cos[]2)(2cos[ 22 121212 121??ωω??ωω++-+?-+--=+=c x t c x t E E E E s (1) 是角频率为 2 2 1ωω+,振幅为]2 )(2 cos[ 22 12 1??ωω-+--c x t E 的前进波。 注意到s E 的振幅以频率π ωω22 1-= ?f 周期地变化,所以我们称它为拍频波,f ?就是拍频,如图一所示:

光速测量实验报告

光速测量实验报告 光拍法测量光速 【实验名称】光拍法测量光速 【实验目的】1( 掌握光拍频法测量光速的原理和实验方法。 2( 通过测量光拍的波长和频率来确定光速。 【实验仪器】CG-IV型光速测定仪,示波器,数字频率计 【实验原理】根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E0、圆频率分别为和(频差较小)的二光 束: ,,,,,,,,1212 E,Ecos(,t,kx,,) E,Ecos(,t,kx,,) 1011120222 式中,为波数,和为初位相。若这两列光波的偏振方向相同, k,2,/,k,2,/,,,112212 则叠加后的总场为: ,,,,,,,,,,,,xx,,,,12121212EEEEtt ,,,2cos(,),,cos(,),120,,,,cc2222,,,,上式是沿x轴方向的前进波,其圆频率为,振幅为(,,,)/212 ,,,x,,,,12Et,因为振幅以频率为周期性地变化,所以 E2cos(,),,f,,,/4,0,,c22,, 被称为拍频波,称为拍频,为拍频波的波长。 ,,,,,c/,f,f 实验通过实验装置获得两束光拍信号,在示波器上对两光拍信号的相位进行比较,测出两光拍信号的光程差及相应光拍信号的频率,从而间接测出光速值。假设两束光的光程差为L,对应的光拍信号的相位差为,当二光拍信号的相位差为2π时,即光程差为光拍波,,'

,,的波长时,示波器荧光屏上的二光束的波形就会完全重合。由公,,c,,,,,f,L,2F便可测得光速值c。式中L为光程差,F为功率信号发生器的振荡频率。【实验步骤】1,观察实验装置,打开光速测定仪,示波器,数字频率计电源开关。 2,调节高频信号源的输出频率(15MHZ左右),使产生二级以上最强衍射光斑。 3,用斩光器挡住远程光,调节全反射镜和半反镜,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上,这时,示波器上应有与近程光束相应的经分频的光拍波形出现。 4,用斩光器挡住近程光,调节半反镜、全反镜和正交反射镜组,经半反射镜与近程光同路入射到光电二极管的光敏面上,这时,示波器屏上应有与远程光光束相应的经分频的光拍波形出现。 5,示波器上这时有两列波出现,移动导轨上A的滑块,记下此时A的位置,然后移动滑块B,让两列波完全重合,记下滑块B的位置。 6,重复步骤5,然后再记下数据。 【实验数据与处理】 f=75.0035MHZ (mm) (mm) ,,,,D0D0AB 80.0 548.0 548.1 548.2 548.0 548.0 (mm) (mm) ,,,,D2,D2,AB 420.0 209.1 208.8 209.0 209.3 208.8 ,,,,,,,,,,,,L,2,D2,,D0,2,D2,,D0BBAA ,,D2,=(209.1+208.8+209.0+209.3+208.8) 5=209.0mm ,B ,,D0=(548.0+548.1+548.2+548.0+548.0)5=548.06mm ,B 1.88mm ,,,,L,2,209.00,548.06,2,420.0,80.0, 68c==1.88,,,2,75.0035,10=m/s ,,L,2F2.820,10 883.0,10,2.820,10,,=6.0% 83.0,10

相位法测光速实验--数据及其处理(1)

相位法测光速实验数据及其处理: x2/m t2/μm x1/m t1/μmλ/m 温度 T/℃ 压强 P/kpa e/㎜ Hg n C(×10^8m/s) 0.4422 1.590.03210.99 3.021070000 17.584.6214.998 1.000026043.02114867 0.4300 1.570.0421 1.00 3.007926316 3.00800464 0.4146 1.540.03580.99 3.044174545 3.04425382 0.4282 1.560.0501 1.01 3.038549091 3.03862821 0.4085 1.530.02750.98 3.061854545 3.06193428 0.4510 1.600.0501 1.01 3.003352542 17.884.5915.284 1.000225823.00403076 0.4378 1.580.0439 1.00 3.001789655 3.00246752 0.4427 1.590.0480 1.01 3.007886207 3.00856545 0.4205 1.550.03390.99 3.051378571 3.05206763 0.4420 1.580.0502 1.01 3.038168421 3.03886270 0.4235 1.560.02960.98 3.001789655 17.884.5915.284 1.000225823.00246752 0.4415 1.580.0405 1.01 3.109508772 3.11021096 0.4237 1.560.0490 1.01 3.011225455 3.01190545 0.4259 1.560.0607 1.03 3.045630189 3.04631795 0.4039 1.530.0470 1.01 3.033650000 3.03433506 0.4340 1.570.03000.98 3.026576271 17.984.615.381 1.000225773.02725958 0.4201 1.550.02500.98 3.063757895 3.06444960 0.4182 1.550.03150.99 3.052167857 3.05285694 0.4079 1.540.02360.98 3.033225000 3.03390981 0.4325 1.570.03310.99 3.043703448 3.04439062 0.4066 1.530.02650.98 3.054621818 17.984.615.381 1.000225773.05531146 0.4335 1.570.0362 1.00 3.080817544 3.08151310 0.4249 1.560.03570.99 3.018007018 3.01868839 0.4421 1.580.0521 1.02 3.078214286 3.07890925 0.4290 1.560.03180.99 3.080042105 3.08073749 0.4401 1.580.0371 1.00 3.071137931 17.984.615.381 1.000225773.07183130 0.4282 1.560.03310.99 3.063757895 3.06444960 0.4260 1.560.0391 1.00 3.053746429 3.05803669 0.4050 1.530.02320.98 3.068283636 3.06897636 0.4342 1.570.03410.99 3.049037931 3.04972631

相位法测光速

相位法测光速 (楚雄师范学院物理与电子科学系 08级物理2班 袁丽花) 摘要:通过对本实验的测量,熟练掌握用光速测定仪测量光速的实验方法,了解相位法测量光速的频率和波长,从而确定光速的实验原理。 关键词: 光速测定仪 频率 波长 光速 Act fast phase metering (Chuxiong Normal University Department of Physics and Electronics Physics 2 class08 Yuan Lihua) A bstract : By measuring the speed of light, master meter measuring the speed of light with the light of experimental methods to understand the phase measurement of the frequency and wavelength of light to determine the speed of light of the experimental principle. Keywords : speed of light, the wavelength of light frequency analyzer 1. 引言 对作为最基本的物理量之一的光速进行精确测定,能证实光的电磁本性,而且光速的测定问题还与物理学、天文学以及许多技术科学有密切联系。目前对光速的测量已达到非常高的精度,致使国际计量局“米”定义委员会已建议将光速的不变值作为定义长度的一个基准。 光速首先是由丹麦天文学家罗默在1676年测定的。其后许多科学家利用不同的天文学或实验室方法对光速进行了多次测量。1975年第十五届国际计量大会确认的光速值c=299792458m 2.1±/s 。实验室中测量光速一般有光脉冲测量法、相位法、驻波法和光的频率、波长直接测量法等2.99792(m/s)。本实验介绍相位法。 2.实验仪器及原理: 2.1实验仪器:光速测量仪(LM2000A ) 示波器(YB4320) 2.1实验原理: 采用频率为f 的正弦型调制波,调制波长为0.65μm 的载波的强度,调制波在传播过程中其位相是以2π为周期变化的。表达式为: I=I 0[1+mcos2πf (t-x/t )] (1) 式中m 为调制度,cos2πf (t-x/t )表示光在测线上转播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向转播。设侧线上A 和B 两点的位置坐标分别为x 1和x 2,当这两点之间的距离为调制波波长λ的整数倍时,该两点间的相位差为: πλππ?n x x 2/)(21221==-- (2)

大学物理实验报告-声速的测量

声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为: v f λ=? (1) 由(1)式可知, 测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成 共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显

增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。 2.相位比较法 波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波 长。实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与 发射器的位相相同时,一国的距离等于与声波的波长。 同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信 号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。 3.时差法 用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间 的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。 4.逐差法处理数据 在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个 的距离为 这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。

实验22 光调制法测量光速

实验22 光调制法测量光速 从17世纪70年代伽利略第一次尝试测量光速以来,各个时期人们都采用当时最先进的技术来测量光速。1983年,国际计量局召开第七次米定义咨询委员会和第八次单位咨询委员会决定,以光在真空中1/299792458 s的时间所传播的距离为长度单位米(m),这样光速的精确值被定义为c = 299 792 458 m/s。 光在真空中的传播速度是一个极其重要的基本物理常量,许多物理概念和物理量都与它有密切的联系。例如,光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数、第二辐射常数,质子、中子、电子等基本粒子的质量等常数都与光速c相关。正因为如此,许多科学工作者都致力于提高光速测量精度的研究。 【实验目的】 1.了解和掌握光调制的基本原理和技术; 2.学习使用示波器测量同频正弦信号相位差的方法; 3.测量光在空气中的速度。 【预备问题】 1.光波的波长、频率及速度是如何定义的? 2.能否对光的频率进行绝对测量?为什么? 3.等相位测量波长法与等距离测波长法,哪一种方法有较高的测量精度? 【实验仪器】 光速测量仪,示波器等。光速测量仪的介绍见本实验附录22-A。 【实验原理】 1.利用波长和频率测速度 按照物理学定义,任何波的波长λ是一个周期波传播的距离。波的频率f是1 s发生了多少次周期振动,用波长乘以频率得1 s波传播的距离即波速为 =(22-1) c fλ 利用这种方法,很容易测得声波的传播速度。但直接用来测量光波的传播速度还存在很多技术上的困难,主要是光的频率高达1014Hz,目前的光电接收器无法响应频率如此高的光强变化,迄今仅能响应频率在108 Hz左右的光强变化并产生相应的光电流频率。 2.利用调制波波长和频率测光的速度 如果直接测量河中水流的速度有困难,可以采用如下方法:周期性地向河中投放小木块,投入频率为f,再设法测量出相邻两小木块间的距离λ,则依据式(22-1)即可算出水流的速度。 周期性地向河中投放小木块,目的是在水流上做一个特殊标记。也可以在光波上做一些特殊标记,称为“调制”。由于调制波的频率可以比光波的频率低很多,因此可以用常规器件来接收。与木块的移动速度就是水流流动的速度一样,调制波的传播速度就是光波传播的速度。 本实验用频率为108 Hz的主控振荡对光源进行直接控制,使1014 Hz的光波的光强以108

相关文档
最新文档