相位法光速测量

相位法光速测量
相位法光速测量

相位法光速测量实验

本实验采用内调制被测信号的光强,测量光强调制波传播距离变化所引起的相应相位变化,最终测定光速,并可以测量有机玻璃、人造水晶、无水乙醇等介质的折射率。

一、实验目的

1、了解相位法测量光速的频率和波长,从而确定光速的实验原理。

2、学会用相位法测量光速以及介质折射率。

二、实验仪器

实验装置:导轨(长1m ,包含半导体激光器、调制及接收装置)、90反射镜、介质测量装置、f50透镜

数字相位计、示波器

三、实验原理

采用频率为f 的正弦型调制波,调制波在传播过程中其位相是以2π为周期变化的。表达式为:

I=I 0[1+mcos2πf (t-x/t )] (1)

式中m 为调制度,cos2πf (t-x/t )表示光在测线上转播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向转播。设测线上A 和B 两点的位置坐标分别为x 1和x 2,当这两点之间的距离

为调制波波长λ的整数倍时,该两点间的相位差为:

212()/2x x n φπλπ-?== (2)

式中n 为整数。反过来,如果我们能在光的传播路径中找到调制度的

等相位点,并准确测量它们之间的距离,那么这距离一定是波长的整数倍。

设由A点出发的调制波,经时间t后转播到A'点, AA'之间的距离为2D。则A'点相对于A点的相移为?=wt=2πft,如图1(a)所示。然而我们不可能用一台测相系统对AA'间的这个相移量进行直接测量。解决这个问题的较好方法是在AA'的中间B设置一个反射器,由A点发出的调制波经反射器反射返回A点,如图1(b)所示,光线由→→所走过的光程为2D,而且在A点反射波的位相落后?=wt。

A B A

如果以入射波作为参考信号(或作为基准信号),将它与反射波(以下称为被测信号)分别输入到相位计的两个输入端,由相位计读出基准信号和被测信号之间的相位差。

图1位相法测波长原理图

本实验正是基于上述原理,实验原理图如图2所示,激光器将晶体振荡器G2产生的频率100MHz的晶振信号对光强进行调制形成光电调制波,该光信号经90反射镜返回,经一透镜会聚到光电二极管PIN,PIN将收到的光调制信号进行光电转换,输出与LED同频的信号经放

大器放大后送入混频器2,与加在该混频器上的本机振荡器G1产生的100.300MHz的晶振信号混频,得到差频为300KHz的信号,该信号通过移相器 送入示波器Y轴。与此同时,G2产生的100MHz的晶振信号送入混频器1,与加在该混频器上的由G1产生的100.300MHz的晶振信号进行混频,产生300KHz的差频信号送入示波器的X轴。这一路信号是没有经过移相的,可以作为参考信号。这样,加在示波器上的两路信号频率相同,但相位不同,在实际测量中就可以用精密数字相位计直接测量处于不同位置时对应的相位值,由相关的公式推导,从而求出空气中和介质中的光速以及介质的折射率。

图2 光速测量原理框图

四、实验内容

1、空气中的光速测量

(1)采用示波器测量光速

先简单介绍示波器的X-Y应用功能:

①将探头菜单衰减系数设定为10X,并将探头上的开关设定为

10X;

②将示波器与高频发生电箱相连接;

③按下[AUTO]按钮;

④调整垂直[SCALE]旋钮使两路信号显示的幅值大约相等;

⑤按下水平控制区域的[MENU]菜单按钮以调出水平控制菜单;

⑥按下时基菜单按钮以选择[X-Y];

⑦调整垂直[SCALE]、垂直[POSITION]和水平[SCALE]使波形达到最佳效果。

测量开始时,将反射镜置于导轨靠近高频发射装置处,示波器接收到信号后,沿导轨前后移动反射镜,使示波器上的李萨如图形成一条倾斜的直线,此时两路信号的相位差为180或者0。接着在导轨上缓慢移动反射镜的位置,直到李萨如图形成与第一次测量正交的一倾斜直线,此时两路信号的相位差为0或者180,反射镜移动的距离为x?,则光程差为2x?。实验中光强调制波的频率f知道,光程差由上述方法测出,则光速为:

c x f f x

=?=?(3)

2/(1/2)4

注意:调节光路似的移动反射镜的时候,反射光斑必须时刻处于接收区内,否则会影响信号接收。

(2)采用数字相位计测量光速

将X、Y两路的信号送入数字相位计。每次测量可以直接独处它们的相位差值,即小心移动反射镜,每次停止时读一个相位差值,注意在移动中保证激光光斑始终在接受区内。

由于相位和距离X 具有线性关系:

0mx x Φ=+ (4)

实验开始时,将反射镜置于导轨末端任意处,每隔0.10米测量一组对应的(,)x Φ值,共测量若干组数据。在数据处理中,用最小二乘法进行线性拟合,求出直线的斜率m ,即可求出光速:

(2/)360c f m =? (5)

注意:由于相位计本身的读数误差,在移动位置超过标尺50cm 处的时候,每两个位置的相位读数误差建议减去23-(由于此时接收信号幅度降低)。

2、介质折射率的测量

采用数字相位计测量介质折射率。

图3 利用数字相位计测量介质折射率

如图3所示,实验开始时,在测量光路中加入待测样品B ,数字相位计接收到信号后,记下相应的相位差1Φ;接着移去待测样品,数

字相位计将记下取走样品B 后的相位差2Φ,则有:

012()()/360F F n n L λ-=Φ-Φ (6) 式中0 1.0n =为空气折射率,λ为光调制波的波长。所以:

12()/1201F F n L =Φ-Φ+ (7)

五、注意事项

1、仪器的调整

如果仪器放在光照较强的环境中,在调整仪器时,应采取适当措施,减少仪器收到外界光线的干扰。

将角反射镜置于导轨最末端,透镜从导轨上取下,调节90反射镜的两个反射镜后四个旋钮,使光斑照射在PIN接收器的中央,沿导轨前后移动90反射镜,同时调节反射镜的倾斜,使光斑在90反射镜移动过程中不偏离PIN接收器中心太多。然后将透镜加入光路,调节透镜位置使光斑聚集在PIN接收器表面,然后上下左右调节透镜位置,使光斑位于接收器的中心,这样光路就调节好了。

2、在使用器件的过程中,应注意尽量避免直接用手指、潮湿的物体或者其他尖锐的硬物接触镜片表面,以免损坏镜片的光洁度,影响器件的使用效果。器件使用完毕后,应放入原包装盒,存放在干燥,并能够隔绝灰尘的环境中,存放前,请先对器件前后光学表面进行一定的清洁,特别是要将表面的油污手印清理干净,因为它们会对光学元件造成严重的损害。

3、实验中应避免用手直接接触镜片,造成不必要的污染,如发现镜面较脏,应用混合液(酒精和乙醚4:1)拭擦。

4、激光管出光时,要避免眼睛直视激光光束。

光拍频法测量光速实验

图1 拍频波场在某一时刻t 的空间分布 光拍频法测量光速实验 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E 0、圆频率分别为1ω和2ω(频差 12ωωω?=-较小)的二光束: 1011120222cos()cos()E E t k x E E t k x ωφωφ=-+? ?=-+? (1) 式中112/k πλ=,222/k πλ=为波数, 1?和2?分别为两列波在坐标原点的初位相。若这两列光波的偏振方向相同,则叠加后的总场为: 1 2 1212012122cos[ ()]22cos[()](2) 22 x E E E E t c x t c ωω φφ ωωφφ--=+=-+++?-+ 上式是沿轴方向的前进波,其圆频率为12()/2ωω+,振幅为12 02cos[ ()]22 x E t c ωφφ?--+,因为振幅绝对值以频率为12/2f f f ωπ?=?=-周期性地变化,所以被称为拍频波,?f 称为光拍波频率。 实验中拍频波由光电探测器检测,光电探测器上的光电流如图1(b )和下式 []{} 2 01cos (/))i gE t x c ω?=+?-+ (3) 其中g 是光电探测器的转换常数,2f ωπ?=?,?是初相位。 如果有两路光频波,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系 2L f L c c ωπ????????= = (4) 当π? 2=?时,?L =Λ,恰为光拍波长,此时上式简化为 c f =??Λ (5) 可见,只要测定了Λ和f ?,即可确定光速c 。

光速测量实验报告参考

佛山科学技术学院 实 验 报 告 课程名称大学物理实验 实验项目 专业班级 姓 名 学号 指导教师成 绩 日期2010 年月日 一、实验目的 1.了解和掌握光调制的基本原理和技术。 2.学习使用示波器测量同频正弦信号相位差的方法。 3.测量光在空气中的速度。 二、实验器材 光速测量仪,双踪示波器。 三、实验原理 1.利用光的波长和光频率(=1014Hz)测速度 但=1014Hz,太高,目前电路最高只能响应108Hz的频率。 2.用调制波波长和频率(108Hz)测速度 108Hz,容易测量。 3.实验装置如图:

求出D-图像(直线)的斜率k,光速c=4πf?k = (2)“等相位”法测波长 表2 “等相位”法测波长 0123456 t() ) x(mm) D(mm) (同(1)处理,求出光速): 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题 1.本实验中,光速测量的误差主要来源于什么物理量的测量误差?为什么? 答:误差主要来源于波长的测量误差。因为频率可以做到很稳定。 2.通过光速测量实验,你认为波长测量的主要误差来源是什么?为提高测量精度需做哪些改进? 答:波长测量的主要误差来源是相位的测量误差。可采用高精度的相位计改进测量。

实验报告内容:一.实验目的 二.实验仪器(仪器名称、型号、参数、编号) 三.实验原理(原理文字叙述和公式、原理图) 四.实验步骤 五、实验数据和数据处理 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

关于光速测量的方法及其本质异同的报告77

关于光速测量的方法及其本质异同的报告 小组成员:白美丹白云瑞郭佳昌 郭丝丝贺小平王阳凡

关于光,那是我们每一个人都特别熟悉的。基于我们现在学习的理解,我们都知道光是一种电磁波,那即是这样,光也具有粒子性和波动性。那么光也有自己的速度,我们每天都在用光速解决问题。那么光速是怎么来的,它的数值那么大,怎么测量的?今天我们讨论讨论光速的测量史。 一.光速的几种测量方法及其原理 1.罗默木星蚀法 早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差

甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s。 罗默很快意识到,如果认为光速是有限的话,这1000秒时间恰好对应光穿过地球轨道直径所需要的时间。那个时代,地球轨道直径被认为是大约2.76亿公里(正确值是约3.0亿公里),因此罗默得到的光速比正确值略小,但作为对光速的第一次成功测量,罗默的方法被载入了史册。 2.布莱德雷光行差法 1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为: C=299930千米/秒 1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,

光拍频法测量光速

光拍法测量光速 光在真空中的传播速度是一个极其重要的基本物理量,许多物理概念和物理量都与它有密切的联系,因此光速的测量是物理学中的一个十分重要的课题。本实验的目的是通过测量光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法。 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的 两列同向传播的简谐波叠加即形成拍。若有振幅 相同为E 0、圆频率分别为1ω和2ω(频差 21ωωω-=?较小)的二光束: )cos(11101?ω+-=x k t E E )cos(22202?ω+-=x k t E E 式中11/2λπ=k ,22/λπ=k 为圆波数, 1?和2?分别为两列波在坐标原点的初位相。若 这两列光波的偏振方向相同,则叠加后的总场为: 图1 拍频波场在某一时刻t 的空间分布 ]2)(2cos[]2)(2cos[ 221212121021??ωω??ωω++-+?-+--=+=c x t c x t E E E E 上式是沿x 轴方向的前进波,其圆频率为2/)(21ωω+,振幅为]2 )(2cos[2210??ω-+-?c x t E ,因为振幅以频率为πω4/?=?f 周期性地变化,所以被称为拍频波,f ? 称为拍频。如果将光频波分为两路,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系仍由上式确定。当π?2=?时,?L=Λ,恰为光拍波长,此时上式简化为:Λ??=f c ,可见,只要测定了Λ和f ?,即可确定光速c 。 为产生光拍频波, 要求相叠加的两光波具有一定的频差, 这可通过超声与光波的相互作用来实现。超声(弹性波)在介质中传播,使介质内部产生应变引起介质折射率的周期性变化,就使介质成为一个位相光栅。当入射光通过该介质时发生衍射,其衍射光的频率与声频有关。 具体方法有两种,一种是行波法,如图2(a )所示,在声光介质与声源(压电换能器)相对的端面敷以吸声材料,防止声反射,以保证只有声行波通过介质。当激光束通过相当于位相光栅的介质时,使激光束产生对称多级衍射和频移,第L 级衍射光的圆频率为L ΩL +=0ωω,其中

光速测量实验报告(实验总结)参考

光速测量实验报告参考 一、光及光速测量的发展史 (一)古代中国对于光的认识 “景,光之人煦若射。下者之人也高,高者之人也下。足敝下光,故景障内也。”——《墨经》(光的直线传播) “阳艘向日照之?则光聚向内,离镜一二寸,光聚为一点,大如麻寂,着物则火发;阳健面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”一一《梦溪笔谈》(小孔成像) (二)西方人对于光的认识 崐神说,要有光,就有了光。一一《圣经》 光是由发光体向四面八方射出的一种东西,这种东西碰到障碍物上就立刻被弹开。如果它偶然进入人的眼睛,就叫人感觉到看见使它最后被弹开的那个东西。――毕达哥拉斯 (三)光在近代物理学发展过程中的认识 光的颗粒说(1643-1727)——牛顿 光的波动说(1635-1703)——胡克 光是电磁波(1857-1894)――赫兹 粒子说(1879-1955)——爱因斯坦 二、究竟光是什么? 现代科学的认为:光是一种人类眼睛可以见的电磁波(可见光谱)。在科学上的定义,光有时候是指所有的电磁波谱。光是由一种称为光子的基本粒子组成具有粒子性与波动性,或称为波粒二象性。光可以在真空、空气、水等透明的物质中传播。 三、光速测量的方法

(一)伽利略首先提出了光速的测量,但失败了。(1607) (二)天文测定光速 1.罗默的卫星蚀法(1676) 2.布莱德雷的光行差法(1728) 点评:由于当时天文仪器并无现在先进,且凭肉眼观察误差较大,所以测得的值都不精确 (三)大地测定光速(以光行过的路程和时间得出速度c=s/t) 1.斐索旋转齿轮法(1849) 2.惠更斯旋转镜法(1834) 3.迈克尔逊旋转棱镜法(1926) 点评:想要得到越精确的值,就要尽量增大s和t,故实际操作繁琐和精确度不大是必然的。 (四)实验室测光速法(c= X ?) 1.埃森微波谐振腔法(1950) 2.激光法测光速 点评:是目前最普遍也是最准确测量光速的方法,也是本实验的思想方法 拍光法测光速 【学习目标】 1.进一步理解光拍频的概念、掌握光拍频法测量光速的技术,了解声光调制器的应用; 2.体会到光速也是一个有限值,并了解光年是一个空间量; 3.进一步学习光路的调整和熟练示波器的使用。 【实验原理及装置】 2. 1光拍的产生和传播血* 报摇掾劲迭扯廈逗.频蚤较小、速旻咱司的二司向传塔的就谐戒施迭扯即形或拍*考空预華分别为齐和f2傍差# = 並软小)的光束〔玫门假定它汨具有叩同閔振疇)“ E l=Ea^( - 5=加邪心八-它们的迭加“ 爲話讣心胡巴二环丿卜红纠“半g 卜令型也 出I a 丿£■V C J ■ (1)是烧频率为僚;饯振碍为ZEcos +的前进浚.注 意到巴的拽逼以频宴#二翌严周歩摊变化,所以我们称它为拍频忍“就是拍4' E:+E 汁

光速的测量(位相法)

光速的测量(位相法) 光在真空中的传播速度是一个重要的基本物理常数,许多重要的物理概念和物理量都与它有着密切的联系。例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数、第二辐射常数,质子、中子、电子等基本粒子的质量等常数都与光速c相关。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在1/299,792,458秒的时间间隔中所传播的距离。”光速也已直接用于距离测量,如天文学中的光年。 1676年丹麦天文学家罗默通过观测木星对其卫星的掩食首次测量了光速。自此以后,在各个时期,人们都用当时最先进的技术和方法来测量光速,先后有旋转齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1941年,美国人安德森利用克尔盒作为光开关,调制光束,测得光速值为2.99766×108m/s。1952年,英国物理学家费罗姆用微波干涉仪法测量光速,测得光速值为299792.50±0.10km/s。1973年和1974年,美国国家标准局和美国国立物理实验室用激光对光速作了测定,测得光速分别为299792.4574±0.0011km/s和299792.4590 ±0.008 km/s。 实验目的 掌握一种新颖的光速测量方法,了解和掌握光调制的一般性原理和基本技术。 实验原理 物理学告诉我们,任何波的波长是波在一个周期内传播的距离,而波的频率是指1秒种内发生了多少次周期振动,用波长乘以频率得1秒钟内波传播的距离,即波速: c = λ? f (1) 图1 两列不同的波

图1中,第1列波在1秒内经历3个周期,第2列波在1秒内经历1个周期,在1秒内二列传播相同距离,所以波速相同,只是第2列波的波长是第1列的3倍。 利用这种方法,很容易测得声波的传播速度,但直接用来测量光波的传播速度,还存在很多技术上的困难。主要是光的频率高达1014 Hz ,目前的光电接收器无法响应频率如此高的光强变化,迄今仅能响应频率在108Hz 左右的光强变化并产生相应的光电流。 如果直接测量河中水流的速度有困难,可以采用一种方法:周期性地向河中投放小木块(f),再设法测量出相邻两小木块间的距离(λ),依据公式(1)即可算出木块移动的速度,而这一速度和水流流动的速度相等。 周期性地向河中投放小木块,为的是在水流上作特殊标记。我们也可以在光波上作一些特殊标记,称作“调制”。调制波的频率可以比光波的频率低很多,就可以用常规器件未接收光信号了。与木块的移动速度就是水流的流动速度一样,调制波的传播速度就是光波的传播速度。调制波的频率可由数字式频率计精确地测定,只要再测量出调制波的波长,然后利用公式c = λ? f 即可得到光速值。 本实验中用位相法来测定调制波的波长。 波长为0.65μm 的载波,其强度受频率为f 的正弦型调制波的调制,表达式为 01cos 2x I I m f t c π????=+- ??????? 式中m 为调制度,cos2πf (t-x/c)表示光在测线上传播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向传播,我们称这个波为调制波。调制波在传播过程中其位相是以2π为周期变化的。设测线上两点A 和B 的位置坐标分别为x 1和x 2,当这两点之间的距离为调制波波长λ的整数倍时,该两点间的位相差为 12212()2x x n π??πλ-=-= 式中n 为整数。反过来,如果我们能在光的传播路径中找到调制波的等位相点,并准确测量它们之间的距离,那么这距离一定是波长的整数倍。 设调制波由A 点出发,经时间t 后传播到A′点,AA′之间的距离为2D ,则A′点相对于A 点的相移为φ=ωt=2πft ,见图2 (a)。然而仅用一套测相系统还不能直接测量出AA'间的相移量。为了解决这个问题,较方便的办法是在AA′的中点B 设置一个反射器,由A 点发出的调制波经反射器反射返回A 点,见图2 (b)。由图显见,光线由A →B →A 所走过的光程亦为2D ,而且在A 点,反射波的位相落后φ=ωt 。如果我们以发射波作为参考信号(以下称

光速测量。。。

人类最早对于光速的测量始于伽利略。最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1983年,光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的物件的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的物件的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。丹麦天文学家罗默从地球观测木卫一的掩蔽来测量光速。1676年奥勒·罗默使用望远镜研究木星的卫星艾欧的运动,第一次定量的估计出光速。艾欧的公转轨道可以用来计算时间,因为它会规律的进入木星的阴影中一段时间(图中的C至D)。罗默观测到当地球在最接近木星时(H点),艾欧的公转周期是42.5小时,当地球远离木星时(从L至K),艾欧从阴影中出现的时间会比预测的越来越晚,很明显的是因为木星与地球的距离增加,使得"信号"要花更多的时间传递。光要通过行星之间增加的距离,使得计时的信号在第一次和下一次之间因而延长了额外的时间。当地球向木星接近时(从F到G),情形则正好相反。罗默观测到艾欧在接近的40 个轨道周期中周期比远离的40个轨道周期缩短了22分钟。以这些观测为基础,罗默认为在80个轨道周期中光线要多花费22分钟行走艾欧与地球之间增加的距离。这意味着从L至K 和F至G,地球经历了80个艾欧轨道周期(42.5小时)的时间,光线只要花22分钟。这对应于一个地球在轨道上绕着太阳运动和光速之间的一个比例(如右图)。 意味着光速是地球的轨道速度的9,300倍,与现在的数值 10,100倍比较,相差无几。在当时,天文单位的估计数值是大约1亿4千万公里。克里斯蒂安·惠更斯结合了天文单位和罗默的时间估计,每分钟的光速是地球直径的1,000倍,他似乎误解了罗默22分钟的意思,以为是横越地球轨道所花费的时间。这相当于每秒220,000公里(136,000英里),比现在采用的数值低了26%,但仍比当时使用其他已知的物理方法测得的数值为佳。艾萨克·牛顿也接受光速是有限的观念,在他1704年出版的书光学中,他提出光每秒钟可以横越地球16.6次(相当于210,000公里/秒,比正确值低了30%)。这似乎是他自己的推断(不能确知他是否有引用或参考罗默的数据)。罗默随后依据同样的原理观察木星表面上的斑点在自转周期上的变化,也观察其他三颗伽利略卫星的相同现象。但是因为这种观测是很困难的,因而日后被其他的方法所取代。. 即使如此,靠著这些观测,光速是有限的仍不能被大众满意的接受(著名的有吉恩·多米尼克·卡西尼),直到在詹姆斯·布雷德里(1728)的观测之后,光速是无限的想法才被扬弃。布雷德里推论若光速是有限的,则因为地球的轨道速度,会使抵达地球的星光有一个微小角度的偏折,这就是所谓的光行差,他的大小只有1/200度。布雷德里计算的光速为298,000公里/秒(185,000英里/秒),这与现在的数值只有不到1%的差异。光行差的效应在19世纪已经被充分的研究,最著名的学者是瓦西里·雅可夫列维奇·斯特鲁维和de:Magnus Nyrén。1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想

光速测量实验报告

光速测量实验报告 实验目的: 1. 了解和掌握光调制的基本原理和技术 2. 学习和使用示波器测量同频正弦方波信号相位差的方法 3. 测量光在空气中的速度 实验仪器: 激光器、信号发生器、光接收器、示波器、反射镜等 实验原理 相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。信号发生器为直流方波输出,则激光器发出激光脉冲。激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt=∣t1-t2∣,所以光速c=Δd/Δt 。下面是测量图: 1. 预习实验的内容,了解实验的目的,理解实验的原理,思考应当怎样把实验 做好,实验过程中都要做什么,同时,复习一下示波器一些基本的使用和各个按键的功能。为实验做好准备工作。 2. 实验前,认真读完实验仪器的操作说明,了解实验仪器的基本结构,以及实 验仪器各部分在实验中的功能和作用,分析实验中应该怎样正确的使用仪器,进入实验状态。 3. 在对实验分析的基础上,正确的连接线,把实验仪器连接摆放好 4. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试, 因此,在调试仪器阶段应当使反射镜离激光器近。同时,反射镜,激光器,信号接收器应该保持在同一水平面上。由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。 5. 选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd 和Δt ,处理实验数据,可以用线性来求。 示波器 信号发生器 激光接收器 激光器 平面反射镜 Δd

光拍法测量光速(教案)

光拍法测量光速 从17世纪伽利略第一次尝试测量光速以来,各个时期人们都采用最先进的技术来测量光速。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在299792458/1秒的时间间隔中所传播的距离”。光速也已直接用于距离测量,在国民经济建设和国防事来上大显身手,光的速度又与天文学密切相关,光速还是物理学中一个重要的基本的常数,许多其它常数都与它有关,例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数,第二辐射常数,质子、中子、电子、μ子等基本粒子的质量等都与光速c 相关。正因为如此,巨大的魅力把科学工作者牢牢地吸引到这个课题上来,几十年如一日,兢兢业业地埋头于提高光速测量精度的事业。 [目的] 1.了解声光频移法获得光拍的方法。 2.掌握光拍法测光速的原理和实验方法。 3.熟练掌握用光速测定仪测量光速的技术。 本实验是采用高频声光器件,利用声光频移效应产生150MHz 的拍频波,移动反光镜,用示波器比较近程光与远程光的相位差,求得拍频波的波长和频率,测得光的传播速度。 [仪器] 光速测量仪(LM2000C )(包括光学系统及光路系统)、多功能等精度频率计(HC-F1000L )、示波器(YB4320)。 [原理] 1.光拍的产生和传播 根据振动的迭加原理,频差较小、速度相同的二同向传播的简谐波相迭加即形成拍。考虑频率分别为1f 和2f (频差21f f f -=?较小)的光束(为简化讨论,我们假定它们具有相同的振幅): )cos(1111?ω+-=x k t E E )cos(2222?ω+-=x k t E E 它们的迭加 ]2 )(2cos[]2)(2cos[ 22 121212 121??ωω??ωω++-+?-+--=+=c x t c x t E E E E s (1) 是角频率为 2 2 1ωω+,振幅为]2 )(2 cos[ 22 12 1??ωω-+--c x t E 的前进波。 注意到s E 的振幅以频率π ωω22 1-= ?f 周期地变化,所以我们称它为拍频波,f ?就是拍频,如图一所示:

光速测量实验报告

光速测量实验报告 光拍法测量光速 【实验名称】光拍法测量光速 【实验目的】1( 掌握光拍频法测量光速的原理和实验方法。 2( 通过测量光拍的波长和频率来确定光速。 【实验仪器】CG-IV型光速测定仪,示波器,数字频率计 【实验原理】根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E0、圆频率分别为和(频差较小)的二光 束: ,,,,,,,,1212 E,Ecos(,t,kx,,) E,Ecos(,t,kx,,) 1011120222 式中,为波数,和为初位相。若这两列光波的偏振方向相同, k,2,/,k,2,/,,,112212 则叠加后的总场为: ,,,,,,,,,,,,xx,,,,12121212EEEEtt ,,,2cos(,),,cos(,),120,,,,cc2222,,,,上式是沿x轴方向的前进波,其圆频率为,振幅为(,,,)/212 ,,,x,,,,12Et,因为振幅以频率为周期性地变化,所以 E2cos(,),,f,,,/4,0,,c22,, 被称为拍频波,称为拍频,为拍频波的波长。 ,,,,,c/,f,f 实验通过实验装置获得两束光拍信号,在示波器上对两光拍信号的相位进行比较,测出两光拍信号的光程差及相应光拍信号的频率,从而间接测出光速值。假设两束光的光程差为L,对应的光拍信号的相位差为,当二光拍信号的相位差为2π时,即光程差为光拍波,,'

,,的波长时,示波器荧光屏上的二光束的波形就会完全重合。由公,,c,,,,,f,L,2F便可测得光速值c。式中L为光程差,F为功率信号发生器的振荡频率。【实验步骤】1,观察实验装置,打开光速测定仪,示波器,数字频率计电源开关。 2,调节高频信号源的输出频率(15MHZ左右),使产生二级以上最强衍射光斑。 3,用斩光器挡住远程光,调节全反射镜和半反镜,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上,这时,示波器上应有与近程光束相应的经分频的光拍波形出现。 4,用斩光器挡住近程光,调节半反镜、全反镜和正交反射镜组,经半反射镜与近程光同路入射到光电二极管的光敏面上,这时,示波器屏上应有与远程光光束相应的经分频的光拍波形出现。 5,示波器上这时有两列波出现,移动导轨上A的滑块,记下此时A的位置,然后移动滑块B,让两列波完全重合,记下滑块B的位置。 6,重复步骤5,然后再记下数据。 【实验数据与处理】 f=75.0035MHZ (mm) (mm) ,,,,D0D0AB 80.0 548.0 548.1 548.2 548.0 548.0 (mm) (mm) ,,,,D2,D2,AB 420.0 209.1 208.8 209.0 209.3 208.8 ,,,,,,,,,,,,L,2,D2,,D0,2,D2,,D0BBAA ,,D2,=(209.1+208.8+209.0+209.3+208.8) 5=209.0mm ,B ,,D0=(548.0+548.1+548.2+548.0+548.0)5=548.06mm ,B 1.88mm ,,,,L,2,209.00,548.06,2,420.0,80.0, 68c==1.88,,,2,75.0035,10=m/s ,,L,2F2.820,10 883.0,10,2.820,10,,=6.0% 83.0,10

相位法测光速实验--数据及其处理(1)

相位法测光速实验数据及其处理: x2/m t2/μm x1/m t1/μmλ/m 温度 T/℃ 压强 P/kpa e/㎜ Hg n C(×10^8m/s) 0.4422 1.590.03210.99 3.021070000 17.584.6214.998 1.000026043.02114867 0.4300 1.570.0421 1.00 3.007926316 3.00800464 0.4146 1.540.03580.99 3.044174545 3.04425382 0.4282 1.560.0501 1.01 3.038549091 3.03862821 0.4085 1.530.02750.98 3.061854545 3.06193428 0.4510 1.600.0501 1.01 3.003352542 17.884.5915.284 1.000225823.00403076 0.4378 1.580.0439 1.00 3.001789655 3.00246752 0.4427 1.590.0480 1.01 3.007886207 3.00856545 0.4205 1.550.03390.99 3.051378571 3.05206763 0.4420 1.580.0502 1.01 3.038168421 3.03886270 0.4235 1.560.02960.98 3.001789655 17.884.5915.284 1.000225823.00246752 0.4415 1.580.0405 1.01 3.109508772 3.11021096 0.4237 1.560.0490 1.01 3.011225455 3.01190545 0.4259 1.560.0607 1.03 3.045630189 3.04631795 0.4039 1.530.0470 1.01 3.033650000 3.03433506 0.4340 1.570.03000.98 3.026576271 17.984.615.381 1.000225773.02725958 0.4201 1.550.02500.98 3.063757895 3.06444960 0.4182 1.550.03150.99 3.052167857 3.05285694 0.4079 1.540.02360.98 3.033225000 3.03390981 0.4325 1.570.03310.99 3.043703448 3.04439062 0.4066 1.530.02650.98 3.054621818 17.984.615.381 1.000225773.05531146 0.4335 1.570.0362 1.00 3.080817544 3.08151310 0.4249 1.560.03570.99 3.018007018 3.01868839 0.4421 1.580.0521 1.02 3.078214286 3.07890925 0.4290 1.560.03180.99 3.080042105 3.08073749 0.4401 1.580.0371 1.00 3.071137931 17.984.615.381 1.000225773.07183130 0.4282 1.560.03310.99 3.063757895 3.06444960 0.4260 1.560.0391 1.00 3.053746429 3.05803669 0.4050 1.530.02320.98 3.068283636 3.06897636 0.4342 1.570.03410.99 3.049037931 3.04972631

相位法测光速

相位法测光速 (楚雄师范学院物理与电子科学系 08级物理2班 袁丽花) 摘要:通过对本实验的测量,熟练掌握用光速测定仪测量光速的实验方法,了解相位法测量光速的频率和波长,从而确定光速的实验原理。 关键词: 光速测定仪 频率 波长 光速 Act fast phase metering (Chuxiong Normal University Department of Physics and Electronics Physics 2 class08 Yuan Lihua) A bstract : By measuring the speed of light, master meter measuring the speed of light with the light of experimental methods to understand the phase measurement of the frequency and wavelength of light to determine the speed of light of the experimental principle. Keywords : speed of light, the wavelength of light frequency analyzer 1. 引言 对作为最基本的物理量之一的光速进行精确测定,能证实光的电磁本性,而且光速的测定问题还与物理学、天文学以及许多技术科学有密切联系。目前对光速的测量已达到非常高的精度,致使国际计量局“米”定义委员会已建议将光速的不变值作为定义长度的一个基准。 光速首先是由丹麦天文学家罗默在1676年测定的。其后许多科学家利用不同的天文学或实验室方法对光速进行了多次测量。1975年第十五届国际计量大会确认的光速值c=299792458m 2.1±/s 。实验室中测量光速一般有光脉冲测量法、相位法、驻波法和光的频率、波长直接测量法等2.99792(m/s)。本实验介绍相位法。 2.实验仪器及原理: 2.1实验仪器:光速测量仪(LM2000A ) 示波器(YB4320) 2.1实验原理: 采用频率为f 的正弦型调制波,调制波长为0.65μm 的载波的强度,调制波在传播过程中其位相是以2π为周期变化的。表达式为: I=I 0[1+mcos2πf (t-x/t )] (1) 式中m 为调制度,cos2πf (t-x/t )表示光在测线上转播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向转播。设侧线上A 和B 两点的位置坐标分别为x 1和x 2,当这两点之间的距离为调制波波长λ的整数倍时,该两点间的相位差为: πλππ?n x x 2/)(21221==-- (2)

实验22 光调制法测量光速

实验22 光调制法测量光速 从17世纪70年代伽利略第一次尝试测量光速以来,各个时期人们都采用当时最先进的技术来测量光速。1983年,国际计量局召开第七次米定义咨询委员会和第八次单位咨询委员会决定,以光在真空中1/299792458 s的时间所传播的距离为长度单位米(m),这样光速的精确值被定义为c = 299 792 458 m/s。 光在真空中的传播速度是一个极其重要的基本物理常量,许多物理概念和物理量都与它有密切的联系。例如,光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数、第二辐射常数,质子、中子、电子等基本粒子的质量等常数都与光速c相关。正因为如此,许多科学工作者都致力于提高光速测量精度的研究。 【实验目的】 1.了解和掌握光调制的基本原理和技术; 2.学习使用示波器测量同频正弦信号相位差的方法; 3.测量光在空气中的速度。 【预备问题】 1.光波的波长、频率及速度是如何定义的? 2.能否对光的频率进行绝对测量?为什么? 3.等相位测量波长法与等距离测波长法,哪一种方法有较高的测量精度? 【实验仪器】 光速测量仪,示波器等。光速测量仪的介绍见本实验附录22-A。 【实验原理】 1.利用波长和频率测速度 按照物理学定义,任何波的波长λ是一个周期波传播的距离。波的频率f是1 s发生了多少次周期振动,用波长乘以频率得1 s波传播的距离即波速为 =(22-1) c fλ 利用这种方法,很容易测得声波的传播速度。但直接用来测量光波的传播速度还存在很多技术上的困难,主要是光的频率高达1014Hz,目前的光电接收器无法响应频率如此高的光强变化,迄今仅能响应频率在108 Hz左右的光强变化并产生相应的光电流频率。 2.利用调制波波长和频率测光的速度 如果直接测量河中水流的速度有困难,可以采用如下方法:周期性地向河中投放小木块,投入频率为f,再设法测量出相邻两小木块间的距离λ,则依据式(22-1)即可算出水流的速度。 周期性地向河中投放小木块,目的是在水流上做一个特殊标记。也可以在光波上做一些特殊标记,称为“调制”。由于调制波的频率可以比光波的频率低很多,因此可以用常规器件来接收。与木块的移动速度就是水流流动的速度一样,调制波的传播速度就是光波传播的速度。 本实验用频率为108 Hz的主控振荡对光源进行直接控制,使1014 Hz的光波的光强以108

用相位法测声速

用相位法测声速 【实验目的】 1、学习用相位法测量空气中的声速。 2、了解空气中的声速与温度的关系。 3、提高声学、电磁学等不同类型仪器的综合使用能力。 4、了解换能器的原理及工作方式。 【实验仪器】 综合声速测定仪、综合声速测定仪信号源、双综示波器。 【实验原理】 1、 声波的波速 测量声速一般的方法就是在给定声音信号的频率f 情况下,测量声信号的波长λ,由 公式u f λ=,计算出声速u 。 图 2 实验连线示意图 3、相位法测量声速的原理 图2为实验连线示意图,它由综合声速测试仪、信号源、与示波器组成。声速测试仪装置的支架上部装有游标尺,游标尺的刀口下部装有两只压电换能器。作为发射超声波用的换能器1S 固定在刀口的左端。另一只接收超声波用的换能器2S 装在刀口的右端,可沿着游标尺移动。两只换能器的相对位移可从游标尺上读得。使换能器1S 发射超声波的正弦电压信号由信号源供给。正弦电压信号的频率直接在信号源的数码管上显示出来。换能器2S 把接收到的超声波压转换成电压信号,用示波器观察。 由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“1CH (X

轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“1S ”,再传送到“2S ”,然后送入示波器的“2CH (Y 轴)”。在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。由于两信号到达时间不同(或存在有波程差)而产生相位差。 2L ?πλ= 相位差不同,利萨如图形也不同。即 11sin()X A t ω?=+ 22sin()Y A t ω?=+ 合成后的方程为 2222121221212 2cos()sin ()X Y XY A A A A ????+--=- 这就是一个稳定的椭圆利萨如图形。 当210??-=时 22221212 20X Y XY A A A A +-= 或 12 X Y A A = 这就是一直线方程。即两者相位相同或相位差为2π的整数倍时,合成为一条直线。 当212k λ ??π-=±时 22 2212 1X Y A A += 合成后的利萨如图形为正椭圆。可见利萨如图形随相位差的变化而改变。当连续移2S ,增大1S 与2S 之间的距离L 时,利萨如图将从直线到椭圆再到直线变化,如图3所示。当L 改变一个波长时,即两信号的相位差改变2π时,图形就会重复出现同样斜率的直线。如图3所示。这样就可以测量出波长的长度。

相位法光速测量

相位法光速测量实验 本实验采用内调制被测信号的光强,测量光强调制波传播距离变化所引起的相应相位变化,最终测定光速,并可以测量有机玻璃、人造水晶、无水乙醇等介质的折射率。 一、实验目的 1、了解相位法测量光速的频率和波长,从而确定光速的实验原理。 2、学会用相位法测量光速以及介质折射率。 二、实验仪器 实验装置:导轨(长1m ,包含半导体激光器、调制及接收装置)、90反射镜、介质测量装置、f50透镜 数字相位计、示波器 三、实验原理 采用频率为f 的正弦型调制波,调制波在传播过程中其位相是以2π为周期变化的。表达式为: I=I 0[1+mcos2πf (t-x/t )] (1) 式中m 为调制度,cos2πf (t-x/t )表示光在测线上转播的过程中,其强度的变化犹如一个频率为f 的正弦波以光速c 沿x 方向转播。设测线上A 和B 两点的位置坐标分别为x 1和x 2,当这两点之间的距离 为调制波波长λ的整数倍时,该两点间的相位差为: 212()/2x x n φπλπ-?== (2) 式中n 为整数。反过来,如果我们能在光的传播路径中找到调制度的

等相位点,并准确测量它们之间的距离,那么这距离一定是波长的整数倍。 设由A点出发的调制波,经时间t后转播到A'点, AA'之间的距离为2D。则A'点相对于A点的相移为?=wt=2πft,如图1(a)所示。然而我们不可能用一台测相系统对AA'间的这个相移量进行直接测量。解决这个问题的较好方法是在AA'的中间B设置一个反射器,由A点发出的调制波经反射器反射返回A点,如图1(b)所示,光线由→→所走过的光程为2D,而且在A点反射波的位相落后?=wt。 A B A 如果以入射波作为参考信号(或作为基准信号),将它与反射波(以下称为被测信号)分别输入到相位计的两个输入端,由相位计读出基准信号和被测信号之间的相位差。 图1位相法测波长原理图 本实验正是基于上述原理,实验原理图如图2所示,激光器将晶体振荡器G2产生的频率100MHz的晶振信号对光强进行调制形成光电调制波,该光信号经90反射镜返回,经一透镜会聚到光电二极管PIN,PIN将收到的光调制信号进行光电转换,输出与LED同频的信号经放

光拍频波和光速测量

一、实验目的 1.理解光拍频概念及其获得。 2.掌握光拍法测量光速的技术。 二、实验原理 光拍频法测量光速是利用光拍的空间分布,测出同一时刻相邻同相位点的光程差和光拍频率,从而间接测出光速。 1、光拍的产生和接受 根据振动迭加原理,两列速度相同,振面和传播方向相同,频差又较小的简谐波迭加形成拍。假设有两列振幅相同(只是为了简化讨论)、角频率分别为ω1和ω2的简谐拨沿x 方向传播。 10111cos()E E t k x ω?=-+ 20222cos() E E t k x ω?=-+ k 1=2π/λ1,k 2=2π/λ2称为波数,?1和?2称为初位相,这两列简谐波迭加后得: 1 2 1212 121202cos cos 2222x x E E E E t t c c ωω??ωω??--++????? ?? ?=+=-+ -+ ? ???? ? ? ? ? ?? ?? ? (1) E 是以角频率为12 2 ωω+,振幅为12122cos 022x E t c ωω??--?? ??-+ ?? ????? 的前进波。注意到其振幅是 以角频率12 2 ωωω-?= 随时间作周期性的缓慢变化。所以称E 为拍频波,其中 12 2 F ωωωπ-?==?,F ?称为拍频。s λ?是拍的波长。 2、相拍二光束的获得 假设超声波()(),cos 0u y t u t k y s s ω=-沿y 方向以行波传播,它引起介质在y 方向的应变为: ()() 00sin sin s s s s s u S u k t k y s t k y y ωω?= =-=-? (2) 若介质y 方向的宽度b 恰好是超声波半波长的整数倍,且在声源相对的端面敷上反射材料,使超声波反射,在介质中形成驻波声场,(),2cos cos 0u y t u t k y s s ω=g ,它使介质在y 方向的应变为: 002cos sin 2cos sin s s s s s u S u k t k y s t k y y ωω?=- ==? (3) 即用同样的超声波源激励,驻波引起的应变量幅值是行波的两倍,这样光通过介质产生衍射的强度比行波法强的多,所以本实验采用驻波法。

用光拍频法测量光速

用光拍频法测量光速 光速一般是指光在真空中的传播速度,实验测得各种波长的电磁波(广义的光)在真空中的传播速度都相同。据近代的精确测量,光速为。它是自然界重要常数之一。近代物理学理论的两大支柱之一——爱因斯坦的相对论,是建立在两个基本“公设”之上的,这两个公设之一就是“光在空虚空间里总是以确定的速度v 传播着”s m /102.997924588×1,即通常所说的真空中光速不变。由麦克斯韦电磁理论得到电磁波在真空中的传播是一个恒量,通过电磁学测出的这一恒量与实际测定的光速十分接近,于是麦克斯韦提出了光的电磁理论,认为光是在一定频率范围内的电磁波。1887年的“迈克尔逊——莫雷实验”表明光速在任何惯性系都是不变的。爱因斯坦采用了麦克斯韦的理论作为他相对论的基础之一,而迈克尔逊——莫雷实验是相对论的重要实验基础。 目前光速测量技术,如光脉冲测量法、相位法等,还用于激光测距仪等测量仪器。 实验目的 1. 理解光的拍频概念。 2. 掌握拍频法测量光速的技术。 实验原理 1.光拍的产生和传播 两个同方向传播、同方向振动的简谐波,如果其频率差远小于它们的频率时,两波迭加即形成拍。 考虑满足上述条件的两束光,频率为f 1 和f 2 ,且f f f 12?<<1 及f f f 12?<<2 ,设两光强相等,初相为 0,沿 x 方向传播: )(cos )(cos 202101c x t E E c x t E E ?=?=ωω (1) 1 爱因斯坦 “论动体的电动力学”,1905年9月

可推导出合成波E s 的方程: )](22cos[)](22cos[2 )](2cos[)](2cos[ 212120121 202 1c x t f f c x t f f E c x t c x t E E E E s ?+???=?+???=+=ππωωωω (2) 可见合成波是频率为 2)(12f f + ,振幅为222021E f f t x c cos[()]π?? 的行波。 注意到在传播方向x 上,任何一个确定点上E s 的振幅以频率()f f 212? 周期地变化,所以我们称它为光拍频波,如图(1)所示。 图(1)拍频波 使用光敏二极管接收任何光信号时,光敏二极管输出的光电流与光强的平方,即电场强度的平方成正比。对于合成波E s ,光敏二极管在空间一点检测,其输出的光电流为 20s kE i = (3) 其中k 为由光敏二极管特性所决定的系数。将式(2)代入式(3),可以得到光电流 i 0 )](2cos 2 1)(2cos 21 ) )(cos( ) )(cos(1[2112122 00?ω?ω?ωω?ωω?+?+?+????=t t t t kE i (4) 其中?=x c 。 由式(4)可知,光电流 应由直流分量、i 012f f ?、、 和等频率成分组成。但由于光敏二极管能够输出的光电流信号频率远远低于、2 和12f 22f 12f 12f f +2f f f 2+1,因此这些项不会在光电流 中出现。滤去直流分量后得到的光电流为 i 0

相关文档
最新文档