第17讲功能关系能量守恒定律

第17讲功能关系能量守恒定律
第17讲功能关系能量守恒定律

第17讲功能关系能量守恒定律

1.功能关系

(1)功是__能量转化__的量度,即做了多少功就有__多少能量__发生了转化.

(2)做功的过程一定伴随着__能量的转化__,__能量的转化__可以通过做功来实现.

2.能量守恒定律

(1)能量守恒定律的内容:能量既不会凭空__产生__,也不会凭空消失,它只能从一种形式__转化__为另一种形式,或者从一个物体__转移__到别的物体,在转化或转移的过程中,能量的总量__保持不变__.

(2)能量守恒定律的表达式:ΔE减=__ΔE增__.

(3)对定律的理解

①某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等.

②某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.

这也是我们列能量守恒定律方程式的两条基本思路.

1.请判断下列表述是否正确,对不正确的表述,请说明原因.

(1)力对物体做了多少功,物体就有多少能.(×)

解析功是能量“转化”的量度,力对物体做了多少功,物体就改变了多少能.

(2)能量在转化或转移的过程中,其总量有可能增加.(×)

解析根据能量守恒定律知,能量在转化或转移的过程中,其总量保持不变.

(3)能量在转化或转移的过程中,其总量会不断减少.(×)

解析同(2).

(4)能量在转化或转移的过程中总量保持不变,故没有必要节约能源.(×)

解析能量虽然守恒,但能量的转化具有方向性,在能源的利用过程中,即在能量转化的过程中,能量从便于利用的变成不便于利用的,故应节约能源.

(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)

(6)滑动摩擦力做功时,一定会引起能量的转化.(√)

一对功能关系的理解

1.对功能关系的理解

(1)做功的过程就是能量转化的过程.不同形式的能量发生相互转化可以通过做功来实现.

(2)功是能量转化的量度.功和能的关系,一是体现在不同性质的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等.2.几种常见的功能关系及其表达式

外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距

1

3l.重力加速度大小为g.在此过程中,外力做的功为(A)

A.

1

9mgl B.

1

6mgl

C.

1

3mgl D.

1

2mgl

解析 将绳的下端Q 缓慢向上拉至M 点,相当于使下部分13的绳的重心升高1

3l ,故重力

势能增加13mg ·l 3=1

9

mgl ,由功能关系可知选项A 正确.

功能关系的选用原则

(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析. (2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.

(3)只涉及机械能的变化用除重力和弹力之外的力做功与机械能变化的关系分析. (4)只涉及电势能的变化用电场力做功与电势能变化的关系分析.

二 摩擦力做功与能量转化 1.静摩擦力做功

(1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零.

(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能. 2.滑动摩擦力做功的特点

(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: ①机械能全部转化为内能;

②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能. (3)摩擦生热的计算:Q =F f x 相对.其中x 相对为相互摩擦的两个物体间的相对路程. 从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.

[例2](2018·河北保定调研)(多选)如图所示,足够长的传送带与水平方向的夹角为θ,物块a 通过平行于传送带的轻绳跨过光滑定滑轮与物块b 相连,b 的质量为m ,开始时,a 、b 及传送带均静止且a 不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b 上升h 高度(未与滑轮相碰)过程中( BC )

A .物块a 的重力势能减少了mgh sin θ

B .摩擦力对a 做的功大于a 的机械能的增加量

C .摩擦力对a 做的功等于物块a 、b 动能增加量之和

D .任意时刻,重力对a 、b 做功的瞬时功率大小不相等

解析 开始时,a 、b 及传送带均静止且a 不受传送带摩擦力作用,有m a g sin θ=m b g ,

则m a=m b

sin θ=

m

sin θ,b上升h,则a下降h sin θ,则a重力势能的减少量为ΔE p a=m a gh sin θ

=mgh,故选项A错误;根据能量守恒得系统机械能增加,摩擦力对a做的功等于a、b机械能的增加量,所以摩擦力对a做的功大于a机械能的增加量;由A分析可知系统重力势能不变,所以摩擦力做的功等于系统动能的增加量,故选项B、C正确;任意时刻,a、b 的速率相等,对b,重力的瞬时功率大小P b=mg v,对a有P a=m a g v sin θ=mg v,所以重力对a、b做功的瞬时功率大小相等,故选项D错误.

求解相对滑动过程中能量转化问题的思路

(1)正确分析物体的运动过程,做好受力分析.

(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系.

(3)公式Q=F f x相对中x相对为两接触物体间的相对位移,若物体在传送带上做往返运动时,则x相对为总的相对路程.

三能量转化规律的应用

1.应用能量守恒定律的基本思路

(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;

(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.

2.应用能量守恒定律解题的步骤

(1)分清有多少形式的能(动能、势能、内能等)发生变化.

(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.

(3)列出能量守恒关系式ΔE减=ΔE增.

[例3](2017·江苏启东一模)如图所示,一物体质量m=2 kg,在倾角θ=37°的斜面上的A点以初速度v0=3 m/s下滑,A点距弹簧上端B的距离AB=4 m.当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin 37°=0.6.求:

(1)物体与斜面间的动摩擦因数μ;

(2)弹簧的最大弹性势能E pm.

解析(1)物体从开始位置A点到最后D点的过程中,弹性势能没有发生变化,动能和

重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =1

2m v 20

+mgl AD sin 37°,①

物体克服摩擦力产生的热量为Q =F f x ,② 其中x 为物体的路程,即x =5.4 m, ③ F f =μmg cos 37°,④

由能量守恒定律可得ΔE =Q, ⑤ 由①②③④⑤式解得μ≈0.52.

(2)由A 到C 的过程中,动能减少ΔE ′k =1

2m v 20,⑥

重力势能减少ΔE ′p =mgl AC sin 37°,⑦ 摩擦生热Q =F f l AC =μmg cos 37°l AC ,⑧ 由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE ′k +ΔE ′p -Q, ⑨ 联立⑥⑦⑧⑨解得ΔE pm ≈24.5 J. 答案 (1)0.52 (2)24.5 J

能量问题的解题方法

(1)涉及能量转化问题的解题方法

①当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律. ②解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE 减和增加的能量总和ΔE 增,最后由ΔE 减=ΔE 增

列式求解.

(2)涉及弹簧类能量问题的解题方法

两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点: ①能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.

②如果系统中每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.

③当弹簧为自然状态时系统内某一端的物体具有最大速度.

1.(多选)如图所示,卷扬机的绳索通过定滑轮用力F 拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动,在移动过程中,下列说法正确的是( CD )

A .力F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和

B .力F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和

C .木箱克服重力做的功等于木箱增加的重力势能

D .力F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和

解析 对物体应用动能定理知,力F 对木箱做的功应等于木箱机械能的增量和木箱克服摩擦力所做的功之和,选项A 、B 错误,选项D 正确;选项C 显然正确.

2.(多选)如图所示,一轻质弹簧一端固定在墙上的O 点,另一端可自由伸长到B 点.今使一质量为m 的小物体靠着弹簧,将弹簧压缩到A 点,然后释放,小物体能在水平面上运动到C 点静止,已知AC =l ;若将小物体系在弹簧上,在A 点由静止释放,则小物体将做减速运动直到最后静止,设小物体通过的总路程为s ,则下列说法中可能的是( BC )

A .s >l

B .s =l

C .s

D .无法判断

解析 第一种情况下弹簧的弹性势能全部转化为内能,有Q =F f l =E 弹;第二种情况下有可能停在B 点(弹性势能全转化为内能),此时s =l ,也有可能停在其他的位置,这样末态的弹性势能不为零,转化为内能的量也会小一些,所以小物体通过的总路程小于l .选项B 、C 正确.

3.(多选)如图所示,质量为M 、长为L 的木板静止于光滑的水平面上,一质量为m 的滑块(视为质点)放置在木板左端,滑块与木板间滑动摩擦力大小为F f ,用水平的恒定拉力F 作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木块速度为v 2,下列说法正确的是( BD )

A .上述过程中,F 做功W F 大小为12m v 21+12M v 22

B .其他条件不变的情况下,M 越大,s 越小

C .其他条件不变的情况下,F 越大,滑块到达右端所用时间t 越长

D .其他条件不变的情况下,F f 越大,滑块与木板间产生的热量Q 越多

解析 由牛顿第二定律有F f =Ma 1、F -F f =ma 2,又L =12a 2t 2-12a 1t 2、s =1

2a 1t 2,故M

越大,a 1越小,s 越小,选项B 正确;F 越大,a 2越大,t 越小,选项C 错误;由Q =F f L 可得,F f 越大,滑块与木板间产生的热量Q 越多,选项D 正确;由功能关系可得F 做的功还有一部分转化为系统热量Q ,即W F =Q +12m v 21+12

M v 2

2,选项A 错误.

[例1](16分)某快递公司分拣邮件的水平传输装置示意如图,皮带在电动机的带动下保

持v =1 m /s 的恒定速度向右运动,现将一质量为m =2 kg 的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5.设皮带足够长,取g =10 m/s 2,在邮件与皮带发生相对滑动的过程中,求:

(1)邮件滑动的时间t ; (2)邮件对地的位移大小x ,

(3)邮件与皮带间的摩擦力对皮带做的功W . [答题送检]来自阅卷名师报告

[解析] (1)邮件滑动时的加速度 a =μmg m

=μg =0.5×10 m /s 2=5 m/s 2,

邮件滑动的时间为t ,由v =at 得t =v a =1 m/s

5 m/s 2=0.2 s.

(2)邮件对地位移x =12at 2=1

2×5×0.22 m =0.1 m.

(3)邮件与皮带之间的摩擦力对皮带做功

W =F f s 皮带=-μmg v t =-0.5×2×10×1×0.2 J =-2 J. [答案] (1)0.2 s(6分) (2)0.1 m(5分) (3)-2 J(5分)

1.(2017·江苏卷)(多选)如图所示,三个小球A 、B 、C 的质量均为m ,A 与B 、C 间通过铰链用轻杆连接,杆长为L .B 、C 置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A 由静止释放下降到最低点,两轻杆间夹角α由60°变为120°.A 、B 、C 在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g .则此下降过程中( AB )

A .A 的动能达到最大前,

B 受到地面的支持力小于3

2mg

B .A 的动能最大时,B 受到地面的支持力等于3

2mg

C .弹簧的弹性势能最大时,A 的加速度方向竖直向下

D .弹簧的弹性势能最大值为

3

2

mgL 解析 A 球初态v 0=0,末态v =0,因此A 球在运动过程中先加速后减速,速度最大时,动能最大,加速度为0,故A 球的动能达到最大前,A 球具有向下的加速度,处于失重状态,由整体法可知在A 球的动能达到最大之前,B 球受到地面的支持力小于3

2mg ,在A 球的动能

最大时,B 球受到地面的支持力等于3

2mg ,选项A 、B 正确;弹簧的弹性势能最大时,A 球

到达最低点,此时具有向上的加速度,选项C 错误;由能量守恒,A 球重力所做功等于弹簧最大弹性势能,A 球下降高度h =L cos 30°-L cos 60°=3-12L ,重力做功W =mgh =3-1

2

mgL ,选项D 错误.

2.(2018·江苏无锡模拟)如图所示,足够长的水平桌面左侧有一轻质弹簧,其左端与固定挡板A 相连接.自然状态时其右端位于B 点.质量m 1=0.5 kg 的小物块a 放置在B 点,在外力F 作用下缓慢地将弹簧压缩到C 点(未画出),在这一过程中,所用外力F 与弹簧压缩量的关系如图乙所示.撤去力F 让a 沿水平桌面运动,取g =10 m/s 2.

(1)求小物块a 停下来的位置离B 点的距离s ;

(2)若用同种材料制成的小物块b 放置在B 点.在另一外力作用下缓慢地将弹簧压缩到同一C 点,释放后弹簧恢复原长时b 恰好停在B 点(此时b 还未脱离弹簧).求小物块b 的质量m 2.

解析 (1)设弹簧从B 压缩至C 存贮的弹性势能为E p ,BC 间的距离为x ,物块a 与桌面间的动摩擦因数为μ,将小物块a 从B 压缩至C 的过程中,由动能定理有

W F +W f +W 弹=0, 由功能关系有 W 弹=-ΔE p ,

由题图乙可得F f =μm 1g =1.0 N ,

将小物块a 从B 压缩至C 的过程中,摩擦力做功 W f =-μm 1gx ,

根据F -x 图象中,图线与x 轴所围的面积为力F 做的功,有 W F =1

2

(1.0+19.0)×0.1 J =1 J ,

对小物块a 从C 点运动到停止的过程中,由功能关系有 E p =μm 1g (x +s ), 又x =0.1 m ,

解得μ=0.2,E p =0.9 J ,s =0.8 m. (2)根据题意,对小物块b 由功能关系有 E p =μm 2gx , 解得m 2=4.5 kg.

答案 (1)0.8 m (2)4.5 kg

1.(多选)如图,一固定容器的内壁是半径为R 的半球面,在半球面水平直径的一端有一质量为m 的质点P ,它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W ,重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( AC )

A .a =2(mgR -W )

mR

B .a =2mgR -W

mR

C .N =3mgR -2W

R

D .N =2(mgR -W )

R

解析 质点由半球面最高点到最低点的过程中,由动能定理有,mgR -W =1

2m v 2,又在

最低点时,向心加速度大小a =v 2R ,两式联立可得a =2(mgR -W )

mR ,选项A 正确,B 错误;

在最低点时有N -mg =m v 2R ,解得N =3mgR -2W

R

,选项C 正确,D 错误.

2.(2017·河北石家庄二中模拟)(多选)研究表明,弹簧的弹性势能E p 的表达式为E p =1

2kx 2,

其中k 为劲度系数,x 为弹簧的形变量.如图所示,质量均为m 的两物体A 、B 用轻绳相连,将A 用一轻弹簧悬挂在天花板上,系统处于静止状态.弹簧一直在弹性限度内,重力加速度为g ,现将A 、B 间的轻绳剪断,则下列说法正确的是( CD )

A .轻绳剪断瞬间A 的加速度为g

B .轻绳剪断后物体A 最大动能出现在弹簧原长时

C .轻绳剪断后A 的动能最大时,弹簧弹力做的功为3m 2g 2

2k

D .轻绳剪断后A 能上升的最大高度为2mg

k

解析 未剪断轻绳时,把A 、B 看做整体进行受力分析,由平衡条件可得轻弹簧中弹力为2mg ,隔离B 受力分析,由平衡条件可得轻绳中拉力为mg .轻绳剪断瞬间,A 受到轻弹簧竖直向上的弹力2mg 和竖直向下的重力mg ,由牛顿运动定律,有mg -2mg =ma ,解得A 的加速度为a =-g ,选项A 错误;轻绳剪断后物体A 向上做加速运动,最大动能出现在弹簧弹力等于A 的重力时,此时轻弹簧伸长量x =mg

k ,选项B 错误;未剪断轻绳时,弹簧伸

长量为2mg k ,弹簧弹性势能为E p1=12k ????2mg k 2=2m 2g 2

k ,轻绳剪断后A 的动能最大时,弹簧弹

性势能为E p2=12k ????mg k 2=m 2g 22k ,根据功能关系,弹簧弹力做的功为W =E p1-E p2=3m 2g 2

2k ,选

项C 正确;设轻绳剪断后A 能上升的最大高度为h ,由机械能守恒定律,有E p1=mgh ,解得h =2mg

k

,选项D 正确.

3.(2018·天津模拟)(多选)如图所示,质量为m 的物体以初速度v 0由A 点开始沿水平面向左运动,A 点与轻弹簧O 端的距离为s ,物体与水平面间的动摩擦因数为μ,物体与弹簧相撞后,将弹簧压缩至最短,然后被弹簧推出,最终离开弹簧.已知弹簧的最大压缩量为x ,重力加速度为g ,下列说法正确的是( CD )

A .弹簧被压缩到最短时,弹簧对物体做的功W =1

2m v 20-μmg (s +x )

B .物体与弹簧接触后才开始减速运动

C .弹簧压缩量最大时具有的弹性势能E p =1

2m v 20-μmg (s +x )

D .反弹过程中物体离开弹簧后的运动距离l =v 20

2μg

-2x -s

解析 从物体开始运动到弹簧被压至最短过程中,由动能定理有-μmg (s +x )+W =0-12m v 20,又W =-ΔE p ,解得W =μmg (s +x )-12m v 20、E p =12

m v 20-μmg (x +s ),选项C 正确,A

错误;从弹簧开始反弹至物体运动到静止过程中,由能量守恒定律有E p =μmg (x +l ),解得l =v 20

2μg -2x -s ,选项D 正确;由于物体受摩擦力作用,故物体向左一直做减速运动,选项B 错误.

4.(2017·全国卷Ⅰ)一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105 m 处以7.50×103 m /s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2.(结果保留两位有效数字)

(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;

(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.

解析 (1)飞船着地前瞬间的机械能为 E k0=1

2m v 20

,①

式中,m 和v 0分别是飞船的质量和着地前瞬间的速率.由①式和题给数据得 E k0=4.0×108 J ,②

设地面附近的重力加速度大小为g .飞船进入大气层时的机械能为 E h =12m v 2h

+mgh ,③

式中,v h 是飞船在高度1.60×105 m 处的速度大小.由③式和题给数据得E h =2.4×1012 J .④

(2)飞船在高度h ′=600 m 处的机械能为 E h ′=12m ????2.0100v h 2

+mgh ′,⑤ 由功能原理得W =E h ′-E k0,⑥

式中,W 是飞船从高度600 m 处至着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得

W =9.7×108 J.

答案 (1)4.0×108 J 2.4×1012 J (2)9.7×108 J

5.(2018·重庆模拟)如图所示,一小球(视为质点)从A 点以某一初速度v 0沿水平直线轨道运动到B 点后,进入半径R =10 cm 的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C 点右侧有一壕沟,C 、D 两点的竖直高度h =0.8 m ,水平距离s =1.2 m ,水平轨道AB 长为L 1=1 m ,BC 长为L 2=3 m ,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g =10 m/s 2.

(1)若小球恰能通过圆形轨道的最高点,求小球在A 点的初速度v 0;

(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A 点初速度的范围是多少.

解析 (1)小球恰能通过最高点时,设小球在最高点的速度为v ,由牛顿第二定律有mg =m v 2R

小球从A 运动到圆形轨道最高点的过程中,由动能定理有 -μmgL 1-mg ·2R =12m v 2-1

2m v 20,

解得v 0=3 m/s.

(2)设小球有A 点的初速度v 1,小球恰好停在C 处,小球从A 运动到C 点过程中,由动能定理有

-μmg (L 1+L 2)=0-1

2m v 21

,解得v 1=4 m/s ,

若小球停在BC 段,则小球在A 点初速度的范围为 3 m /s ≤v A ≤4 m/s ,

设小球在A 点的初速度v 2,小球恰好越过壕沟,由平抛运动规律有 h =1

2

gt 2,s =v C t , 小球从A 运动到C 点的过程中,同理有 -μmg (L 1+L 2)=12m v 2C -12m v 2

2, 解得v 2=5 m/s.

若小球能过D 点,则小球在A 点初速度的范围为v A ≥5 m/s , 故小球在A 点初速度范围是 3 m /s ≤v A ≤4 m/s 或v A ≥5 m/s.

答案 (1)3 m /s (2)3 m/s ≤v A ≤4 m /s 或v A ≥5 m/s

6.(2017·江苏卷)如图所示,两个半圆柱A 、B 紧靠着静置于水平地面上,其上有一光滑圆柱C ,三者半径均为R .C 的质量为m ,A 、B 的质量都为m

2,与地面间的动摩擦因数均

为μ.现用水平向右的力拉A ,使A 缓慢移动,直至C 恰好降到地面.整个过程中B 保持静止.设最大静摩擦力等于滑动摩擦力,重力加速度为g .求:

(1)未拉A 时,C 受到B 作用力的大小F ; (2)动摩擦因数的最小值μmin ;

(3)A移动的整个过程中,拉力做的功W.

解析(1)对C受力分析,如图甲所示.C受力平衡有2F cos 30°=mg,

解得F=

3

3mg.

(2)C恰好降到地面时,B受C压力的水平分力最大,如图乙所示.

F x max=

3

2mg,

B受地面的最大静摩擦力F f=μmg,根据题意F fmin=F x max,

解得μmin=

3 2.

(3)C下降的高度h=(3-1)R,

A的位移x=2(3-1)R,

摩擦力做功的大小W f=F f x=2(3-1)μmgR,根据动能定理W-W f+mgh=0-0,

解得W=(2μ-1)(3-1)mgR.

答案(1)

3

3mg(2)

3

2(3)(2μ-1)(3-1)mgR

课时达标第17讲

[解密考纲]主要考查对功能关系的理解,对各种功能关系的熟练应用;掌握摩擦力做功与能量转化和弹簧弹力做功与能量转化的处理技巧.

1.如图所示,在竖直平面内有一“V”形槽,其底部BC是一段圆弧,两侧都与光滑斜槽

相切,相切处B、C位于同一水平面上.一小物体从右侧斜槽上距BC平面高度为2h的A 处由静止开始下滑,经圆弧槽再滑上左侧斜槽.最高能到达距BC所在水平面高度为h的D 处,接着小物体再向下滑回,若不考虑空气阻力,则(C)

A.小物体恰好滑回到B处时速度为零

B.小物体尚未滑回到B处时速度已变为零

C.小物体能滑回到B处之上,但最高点要比D处低

D.小物体最终一定会停止在圆弧槽的最低点

2.(多选)在离水平地面h高处将一质量为m的小球水平抛出,在空中运动的过程中所受空气阻力大小恒为F f,落地时小球距抛出点的水平距离为x,速率为v,那么,在小球运动的过程中(AD)

A.重力做功为mgh

B.克服空气阻力做的功为F f·h2+x2

C.落地时,重力的瞬时功率为mg v

D.重力势能和机械能都逐渐减少

解析重力做功为W G=mgh,选项A正确;空气阻力做功与经过的路程有关,而小球经过的路程大于h2+x2,故克服空气阻力做的功大于F f·h2+x2,选项B错误;落地时,重力的瞬时功率为重力与沿重力方向的分速度的乘积,故落地时重力的瞬时功率小于mg v,选项C错误;重力做正功,重力势能减少,空气阻力做负功,机械能减少,选项D正确.3.(2017·重庆诊断)一个排球在A点被竖直抛出时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,设排球在运动中受到的阻力大小恒定,则(C) A.上升到最高点过程重力势能增加了20 J

B.上升到最高点过程机械能减少了8 J

C.从最高点回到A点过程克服阻力做功4 J

D.从最高点回到A点过程重力势能减少了12 J

解析由题意知整体过程中动能(机械能)减少了8 J,则上升过程克服阻力做功4 J,下落过程克服阻力做功4 J;上升到最高点过程动能减少量为20 J,克服阻力做功4 J,即机械能减少4 J,则重力势能增加了16 J,选项A、B错误;由前面分析知选项C正确;从最高点回到A点过程动能增加了12 J,机械能减少4 J,则重力势能减少16 J,选项D错误.4.(2017·天津质检)一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的 1.5倍,则此过程中铁块损失的机械能为(D)

A .1

8mgR

B .1

4mgR

C .1

2

mgR

D .3

4

mgR

解析 在半圆底部,由圆周运动知识得1.5mg -mg =m v 2

R ,解得v 2=0.5gR .由功能关系

可得此过程中铁块损失的机械能为ΔE =mgR -1

2

m v 2=0.75mgR ,选项D 正确.

5.(2017·海门中学校级模拟)如图所示,半圆形轨道MON 竖直放置且固定在地面上,直径MN 是水平的,一小物块从M 点正上方高度为H 处自由下落,正好在M 点滑入半圆轨道,测得其第一次离开N 点后上升的最大高度为H

2,小物块接着下落从N 点滑入半圆轨道,

在向M 点滑行过程中(整个过程不计空气阻力),下列说法正确的是( C )

A .小物块正好能到达M 点

B .小物块一定到不了M 点

C .小物块一定能冲出M 点

D .不能确定小物块能否冲出M 点

解析 设小物块由M 运动到N 克服摩擦力所做的功为W 1,则由能量守恒定律可得W 1

=1

2mgH ;设小物块由N 运动到M 克服摩擦力所做的功为W 2,因为速度越大,小物块对轨道的压力越大,所受滑动摩擦力越大,所以W 2

2mgH ,小物块一定能冲出M 点,即只

有选项C 正确.

6.如图所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( B )

A .缓冲器的机械能守恒

B .摩擦力做功消耗机械能

C .垫板的动能全部转化为内能

D .弹簧的弹性势能全部转化为动能

解析 由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A 错误,B 正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C 、D 错误.

7.(多选)如图所示,一轻质橡皮筋的一端系在竖直放置的半径为0.5 m 的圆环顶点P 处,另一端系一质量为0.1 kg 的小球,小球穿在圆环上可做无摩擦的运动.设开始时小球置于A 点,橡皮筋刚好处于无形变状态,A 点与圆心O 位于同一水平线上.当小球运动到最低点B 时速率为1 m /s ,此时小球对圆环恰好没有压力(重力加速度g =10 m/s 2).下列说法正确的是( BD )

A .从A 到

B 的过程中,小球的机械能守恒

B .从A 到B 的过程中,橡皮筋的弹性势能增加了0.45 J

C .小球过B 点时,橡皮筋上的弹力为0.2 N

D .小球过B 点时,橡皮筋上的弹力为1.2 N

解析 A 到B 过程中,橡皮筋弹力做负功,所以小球机械能不守恒,选项A 错误.由

能量守恒mgR =12m v 2

B +E 弹,可得弹性势能增加了0.45 J ,所以选项B 正确;由F -mg =m v 2

B R

可得弹力F =1.2 N ,选项C 错误,D 正确.

8.(2017·贵州贵阳质检)蹦极是一项既惊险又刺激的运动,深受年轻人的喜爱.如图所示,蹦极者从P 点静止跳下,到达A 处时弹性绳刚好伸直,继续下降到最低点B 处,B 离水面还有数米距离,蹦极者在其下降的整个过程中,重力势能的减少量为ΔE 1、绳的弹性势能增加量为ΔE 2、克服空气阻力做功为W ,则下列说法正确的是( C )

A .蹦极者从P 到A 的运动过程中,机械能守恒

B .蹦极者与绳组成的系统从A 到B 过程中,机械能守恒

C .ΔE 1=W +ΔE 2

D .Δ

E 1+ΔE 2=W

解析 蹦极者从P 到A 的过程中,除了重力做功以外,有空气阻力做功,机械能不守恒,故选项A 错误;从A 到B 的过程中,对于系统,除了重力和弹力做功以外,有空气阻力做功,系统机械能不守恒,故选项B 错误;根据能量守恒知,由于动能变化量为零,重力势能的减小量等于弹性势能的增加量与克服阻力做功之和,即ΔE 1=W +ΔE 2,故选项C 正确,D 错误.

9.(2017·甘肃兰州模拟)(多选)质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m /s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取

g =10 m/s 2,则下列说法正确的是( BD )

A .物块在车面上滑行的时间t 为0.4 s

B .在此过程中物块的动能减少了0.336 J

C .在此过程中物块与小车组成的系统机械能守恒

D .在此过程中产生的内能为0.24 J

解析 设小车做匀加速运动时的加速度为a 1,物块做匀减速运动时的加速度大小为a 2,则a 1=μm 2g m 1=103 m /s 2,a 2=μg =5 m/s 2,v 0-a 2t =a 1t ,所以t =v 0a 1+a 2=225

3 s =0.2

4 s ,选

项A 错误;相对静止时的速度v =a 1t =0.8 m/s ,物块克服摩擦力做的功W =12m 2(v 20-v 2

)=0.336 J ,选项B 正确;由能量守恒定律可知,系统损失的机械能转化为内能,则E =12m 2v 20-1

2(m 1

+m 2)v 2=0.24 J ,选项C 错误,D 正确. 10.(2017·四川成都一模)如图所示,有三个斜面a 、b 、c ,底边长分别为L 、L 、2L ,高度分别为2h 、h 、h .某一物体与三个斜面间的动摩擦因数都相同,这个物体分别沿三个斜面从顶端由静止下滑到底端.三种情况相比较,下列说法正确的是( B )

A .物体损失的机械能ΔE c =2ΔE b =4ΔE a

B .因摩擦产生的热量2Q a =2Q b =Q c

C .物体到达底端的动能E k a =2E k b =2E k c

D .物体运动的时间4t a =2t b =t c

解析 本题的易错点是误认为摩擦力越小,机械能的损失越小,从而错选A 项.物体

损失的机械能等于因摩擦产生的热量,当动摩擦因数相同时,物体沿斜面下滑因摩擦产生的热量(等于克服摩擦力做的功)分别为Q c =μmg ·2L ,Q a =Q b =μmgL ,故选项A 错误,B 正确;由动能定理得E k a =mg ·2h -μmgL ,E k b =mgh -μmgL ,E k c =mgh -μmg ·2L ,因此有E k a >E k b >E k c ,但不能确定物体到达底端时动能的数量关系,也不能确定运动时间的数量关系,选项C 、D 错误.

11.(2017·苏州一模)如图所示,一个半径为R 的1

4圆周的轨道,O 点为圆心,B 为轨道

上的一点,OB 与水平方向的夹角为37°.轨道的左侧与一固定光滑平台相连,在平台上一轻质弹簧左端与竖直挡板相连,弹簧原长时右端在A 点.现用一质量为m 的小球(与弹簧不连接)压缩弹簧至P 点后释放.已知重力加速度为g ,不计空气阻力.

(1)若小球恰能击中B 点,求刚释放小球时弹簧的弹性势能; (2)试通过计算判断小球落到轨道时速度能否与圆弧垂直; (3)改变释放点的位置,求小球落到轨道时动能的最小值.

解析 (1)小球离开O 点后做平抛运动,设初速度为v 0落在B 点,有 R cos 37°=v 0t , R sin 37°=1

2gt 2,

解得v 0=

8

15

gR , 由机械能守恒,得弹簧的弹性势能 E P =12m v 20=415

mgR . (2)设落点与O 点的连线与水平方向的夹角为θ,小球做平抛运动,有R cos θ=v 0t ,R sin θ=1

2

gt 2, 位移方向与圆弧垂直,且 tan θ=12gt 2v 0t =gt 2v 0

设速度方向与水平方向的夹角为α,则 tan α=v y v 0=gt

v 0

=2tan θ,

所以小物块不能垂直击中圆弧.

(3)设落点与O

点的连线与水平方向的夹角为θ,小球做平抛运动,有

R cos θ=v 0t ,R sin θ=1

2

gt 2,

由动能定理,有mgR sin θ=E k -1

2m v 20,

解得E k =mgR ????34sin θ+14sin θ, 当sin θ=3

3

时,E k 取最小值 E kmin =

3

2

mgR . 答案 (1)415mgR (2)不能 (3)3

2

mgR

12.如图所示,一质量m =2 kg 的长木板静止在水平地面上,某时刻一质量M =1 kg 的小铁块以水平向左v 0=9 m /s 的速度从木板的右端滑上木板.已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g =10 m/s 2,木板足够长,求:

(1)铁块相对木板滑动时木板的加速度的大小;

(2)铁块与木板摩擦所产生的热量Q 和木板在水平地面上滑行的总路程x .

解析 (1)设铁块在木板上滑动时,木板加速度为a 2,由牛顿第二定律可得μ2Mg -μ1(M +m )g =ma 2,

解得a 2=0.4×1×10-0.1×3×10

2

m /s 2=0.5 m/s 2.

(2)设铁块在木板上滑动时,铁块的加速度为a 1,由牛顿第二定律得μ2Mg =Ma 1,解得a 1=μ2g =4 m/s 2.

设铁块与木板相对静止达共同速度时的速度为v ,所需的时间为t ,则有v =v o -a 1t ,v =a 2t ,解得v =1 m/s ,t =2 s.

铁块相对地面的位移x 1=v 0t -12a 1t 2=9×2 m -1

2×4×4 m =10 m.

木板运动的位移x 2=12a 2t 2=1

2×0.5×4 m =1 m ,

铁块与木板的相对位移 Δx =x 1-x 2=10 m -1 m =9 m ,

则此过程中铁块与木板摩擦所产生的热量 Q =F f Δx =μ2Mg Δx =0.4×1×10×9 J =36 J.

达共同速度后的加速度为a 3,发生的位移为s ,则有

a3=μ1g=1 m/s2,s=v2-0

2a3=

1

2m=0.5 m.

木板在水平地面上滑行的总路程x=x2+s=1 m+0.5 m=1.5 m.答案(1)0.5 m/s2(2)36 J 1.5 m

功能关系能量守恒定律专题

功能关系能量守恒定律专题 一、功能关系 1.内容 (1)功是的量度,即做了多少功就有发生了转化. (2)做功的过程一定伴随着 ,而且必通过做功来实现. 2.功与对应能量的变化关系 说明 每一种形式的能量的变化均对应一定力的功. 二、能量守恒定律 1.内容:能量既不会消灭,也 .它只会从一种形式为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量 . 2.表达式:ΔE减= . 说明ΔE增为末状态的能量减去初状态的能量,而ΔE减为初状态的能量减去末状态的能量. 热点聚焦 热点一几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式:W合=E k2-E k1 , 即动能定理. 2.重力做正功,重力势能减少;重力做负功,重力势能增加.由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量 的负值,表达式:W F=-ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. (3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒.

特别提示 1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用“1”,如果只涉及重力势能的变化用“2”,如果只涉及机械能变化用“4”,只涉及弹性势能的变化用“3”. 2.在应用功能关系时,应首先弄清研究对象,明确力对“谁”做功,就要对应“谁”的位移,从而引起“谁”的能量变化.在应用能量的转化和守恒时,一定要明确存在哪些能量形式,哪种是增加的,哪种是减少的,然后再列式求解. 热点二对能量守恒定律的理解和应用1.对定律的理解 (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用定律解题的步骤 (1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式. (3)列出能量守恒关系式:ΔE减=ΔE增. 特别提示 1.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE减和增加的总能量ΔE增,然后再依据能量守恒定律列式求解. 2.高考考查该类问题,常综合平抛运动、圆周运动以及电磁学知识考查判断、推理及综合分析能力. 热点三摩擦力做功的特点

教科版小学六年级科学上册能量守恒定律简介

能量守恒定律简介 世界是由运动的物质组成的,物质的运动形式多种多样,并在不断相互转化正是在研究运动形式转化的过程中,人们逐渐建立起了功和能的概念能是物质运动的普遍量度,而功是能量变化的量度。 这种说法概括了功和能的本质,但哲学味道浓了一些在物理学中,从19世纪中叶产生的能量定义:“能量是物体做功的本领”,一直延用至今但近年来不论在国外还是国内,物理教育界却对这个定义是否妥当展开过争论于是许多物理教材,例如现行的中学教材,都不给出能量的一般定义,而是根据上述定义的思想,即物体在某一状态下的能量,是物体由这个状态出发,尽其所能做出的功来给出各种具体的能量形式的操作定义(用量度方法代替定义)。 能量概念的形成和早期发展,始终是和能量守恒定律的建立过程紧密相关的由于对机械能、内能、电能、化学能、生物能等具体能量形式认识的发展,以及它们之间都能以一定的数量关系相互转化的逐渐被发现,才使能量守恒定律得以建立这是一段以百年计的漫长历史过程随着科学的发展,许多重大的新物理现象,如物质的放射性、核结构与核能、各种基本粒子等被发现,都只是给证明这一伟大定律的正确性提供了更丰富的事实尽管有些现象在发现的当时似乎形成了对这一定律的冲击,但最后仍以这一定律的完全胜利而告终。能量守恒定律的发现告诉我们,尽管物质世界千变万化,但这种变化决不是没有约束的,最基本的约束就是守恒律也就是说,一切运动变化无论属于什么样的物质形式,反映什么样的物质特性,服从什么样的特定规律,都要满足一定的守恒律物理学中的能量、动量和角动量守恒,就是物理运动所必须服从的最基本的规律与之相较,牛顿运动定律、麦克斯韦方程组等都低了一个层次。 定律内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。能量守恒定律如今被人们普遍认同,但是并没有严格证明。 1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等

能量守恒定律及应用

【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。

3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中: (1)木板增加的动能; (2)小铁块减少的动能; (3)系统机械能的减少量; (4)系统产生的热量 解析:在此过程中摩擦力做功的情况:A 和B 所受摩擦力分别为F 、F ',且F =mg μ,A 在F 的作用下减速,B 在F '的作用下加速,当A 滑动到B 的右端时,A 、B 达到一样的速度A 就正好不掉下 (1)根据动能定理有:mgs s f E B KB μ=?=? (2)滑动摩擦力对小铁块A 做负功,根据功能关系可知)(l s mg s f E A KA +=?=?μ (3)系统机械能的减少量mgl mv mv mv E E E μ=+-= -=?)2121(212220末初 (4)m 、M 相对位移为l ,根据能量守恒mgl s f Q μ=?=相对动 例2:物块质量为m ,从高为H 倾角为θ的斜面上端由静止开始沿斜面下滑。滑至水平面C 点处停止,测得水平位移为x ,若物块与接触面间动摩擦因数相同,求动摩擦因数。 解析:以滑块为研究对象,其受力分析如图所示,根据动能定理有0)cot (sin cos =---θμθθμH x mg H mg mgH 即0=-x H μ x H = μ 例3:某海湾共占面积7100.1?2m ,涨潮时平均水深20m ,此时关上水坝闸门,可使水 位保持在20 m 不变。退潮时,坝外水位降至18 m (如图所示)。利用此水坝建立一座水力发电站,重力势能转化为电能的效率为10%,每天有两次涨潮,该发电站每天能发出多少

能量守恒定律应用

【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。 3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中:

功能关系能量守恒定律

一.几种常见的功能关系及其表达式 二、两种摩擦力做功特点的比较 [深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗?

答案 不能,因做功代数和为零. 三、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( ) (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( ) (3)能量正在消失.( ) (4)只有动能和重力势能的相互转化.( ) 2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功1 2 mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( ) A .两个阶段拉力做的功相等

九年级物理全册 第十四章 第三节 能量的转化和守恒教学设计 (新版)新人教版

能量的转化和守恒 教学目标 1.知道能量守恒定律。 2.能举出日常生活中能量守恒的实例。 3.有用能量守恒的观点分析物理现象的意识。 教学重难点 1.分析能量的转化,知道能量守恒定律。 2.用能量守恒的观点分析物理现象。 教学过程 导入新课 复习设疑,导入新课 出示以下两个问题,学生思考回答: (1)通过前面的学习,我们已知道的能的形式有哪几种?(机械能、内能、电能、化学能、光能、生物能,等等) (2)在“机械功和机械能”的学习中,我们分析了机械能的转化问题,请你对此谈谈自己的认识,并举例加以说明。 设疑引学:既然动能和势能可以相互转化,那么,自然界中不同形式的能量之间是否也可以互相转化呢?在转化过程中能量又遵循何种规律呢? 这就是今天我们要一起来研究的问题。 推进新课 一、能的转化 1.指导学生完成下面四个小实验,观察实验发生的现象,讨论其能量转化情况: (1)来回迅速摩擦双手。 (2)黑塑料袋内盛水,插入温度计后系好,放在阳光下。 (3)将连在小电扇上的太阳电池对着阳光。 (4)用钢笔杆在头发或毛衣上摩擦后再靠近细小的纸片。 讨论得出:(1)机械能转化为内能。(2)光能转化为内能。(3)光能转化为电能再转化为机械能。(4)机械能转化为电能及内能。 教师分析:摩擦生热,摩擦是机械运动现象,生热是热现象,摩擦能够生热,说明机械运动现象和热现象有联系。 学生分析其他实验后得出:光现象、热现象、电现象与机械运动现象之间都有联系。 2.除了电能与化学能之间可以相互转化外,还能举出其他形式的能相互转化的例子吗?请分别对机械能和内能、机械能和电能、电能和内能、电能和光能进行讨论。 (学生讨论,教师巡回指导,具体事例参照如下: 机械能→内能:自行车、汽车在刹车时摩擦生热;汽油机、柴油机在压缩冲程中,汽缸内气体因被压缩而发热等。 内能→机械能:内燃机在做功冲程中,高温高压燃气推动活塞做功;爆竹爆炸时,火药燃烧产生的内能使爆竹炸飞和升空。 机械能→电能:水电站的水力发电,水的机械能转化为电能。 电能→机械能:电动机通电后转动,电能转化为机械能。 电能→内能:电炉、电熨斗、电热水壶等通电后,电能转化为内能。 电能→光能:白炽灯通电后发光,发光二极管通电后发光等。 光能→电能:太阳能电池等。) 二、能量守恒定律 演示实验:将乒乓球从一定高度落下 观察分析:为什么乒乓球弹起的高度越来越低?损失的能量到哪儿去了? 讨论得出:机械能越来越小,通过摩擦把机械能转化成了内能。 从而引出能量守恒定律:能量既不会凭空消灭,也不会凭空产生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量

能量守恒定律及应用讲课讲稿

能量守恒定律及应用 【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。 3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中:

考点三 能量守恒定律及应用(高频31)

考点三能量守恒定律及应用(高频31) 1.能量转化和守恒定律的内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变. 2.对能量守恒定律的两点理解 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 3.能量转化问题的解题思路 (1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律. (2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减与增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解. [诊断小练] 上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.() (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.() (3)能量正在消失.() (4)只有动能和重力势能的相互转化.() 【答案】(1)×(2)√(3)×(4)× 命题点1利用能量守恒定律定性分析 7.(2018·苏州高三调研)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连,弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ,现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零,重力加速度为g.则上述过程中() A.物块在A点时弹簧的弹性势能一定大于在B点时的弹性势能 B.物块在O点时动能最大

能量守恒定律

能量守恒定律 定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。 1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。 (2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。 (3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三维空间的直角坐标系 1.作为坐标系必须满足三要素:原点、单位和方向,三维空间的直角坐标系关键一个问题是方向,二维平面直角坐标系怎么排列都行,三维时三个相互垂直的坐标轴方向该如何排列呢,出现了两种情况,为了明确,我们采用的是右手螺旋法则,即的方向顺序按拇、食、中指排列见图7-12.空间直角坐标系建立以后。涉及一系列术语,它们的坐标表达()为1)、原点(0,0,0)2)、坐标轴X轴(,0,0) Y轴(0,,0) Z轴(0,0,)3)、坐标面 XOY 面(,,0 ) YOZ面(0,,) ZOX面(,0,)4)、卦限:三个相互垂直的坐标面把三维空间分成了八个卦限,各卦限内点()由其取值的正负来分见图7-2。3.注意同一个解析式在不同的空间坐标系下有不同的含义。例如:一维直线上表示一个点二维平面上表示一条直线三维空间上表示一个平面在三维几何空间这个点集与三元数组集合由坐标系的建立使之成为一一对应了,以后不引起混淆时,我们常不加区别的说()为几何空间中的一点,或几何空间的点是()。二、上两点间的距离、邻域、区域等概念1.上两点间的距离一维直线上的两点间的距离是绝

能量守恒定律

一. 教学内容: 第九节实验:验证机械能守恒定律 第十节能量守恒定律与能源 二. 知识要点: 1. 会用打点计时器打下的纸带计算物体运动的速度。掌握验证机械能守恒定律的实验原理。通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。培养学生的观察和实践能力,培养学生实事求是的科学态度。 2. 理解能量守恒定律,知道能源和能量耗散。通过对生活中能量转化的实例分析,理解能量守恒定律的确切含义。 三. 重难点解析: 1. 实验:验证机械能守恒定律 实验目的:验证机械能守恒定律。 实验原理: 通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量。若二者相等,说明机械能守恒,从而验证机械能守恒定律:△EP=△EK 实验器材 打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线。 实验步骤: (1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器。

(2)用手握着纸带,让重物静止地靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点。 (3)从打出的几条纸带中挑选第一、二点间的距离接近2mm且点迹清晰的纸带进行测量,记下第一个点的位置O,并在纸带上从任意点开始依次选取几个计数点1、2、3、4…,并量出各点到O点的距离h1、h2、h3…,计算相应的重力势能减少量,mgh。如图所示。 (4)依步骤(3)所测的各计数点到O点的距离hl、h2、h3…,根据公式vn= 计算物体在打下点l、2…时的即时速度v1、v2…。计算相应的动能 (5)比较实验结论: 在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒。 选取纸带的原则: (1)点迹清晰。 (2)所打点呈一条直线。 (3)第1、2点间距接近2mm。 本实验应注意的几个问题: (1)安装打点计时器时,必须使两个纸带限位孔在同一竖直线上,以减小摩擦阻力; (2)实验时必须保持提起的纸带竖直,手不动。待接通电源,让打点计时器工作稳定后再松开纸带,以保证第一点是一个清晰的点; (3)打点计时器必须接50Hz的4V?D6V的交流电; (4)选用纸带时应尽量挑选第一、二点间距接近2mm的点迹清晰且各点呈一条直线的纸带;

九年级物理能量守恒定律

能量守恒定律学案 学习目标 一、知识与技能 1.知道能量守恒定律。 2.能举出日常生活中能量守恒的实例。 3.有用能量守恒的观点分析物理现象的意识。 二、过程与方法 1.通过学生自己做小实验,发现各种现象的内在联系,体会各种形式能量之间的相互转化。 2.通过学生讨论体会能量不会凭空消失,只会从一种形式转化为其他形式,或从一个物体转移到另一个物体。 三、情感、态度与价值观 1.通过学生自己做小实验,激发学生的学习兴趣。 2.对能量的转化和守恒有一个感性的认识,为建立科学世界观和科学思维方法打基础。 3.通过学生讨论锻炼学生分析问题的能力。 学习重点: 能的转化和守恒定律,强调能的转化和守恒定律是自然科学中最基本定律。学习运用能的转化和守恒原理计算一些物理习题。 学习难点: 运用能的转化和守恒定律对具体的自然现象进行分析,说明能是怎样转化的。

学习过程: 一、思考: 我们知道刀具在砂轮上磨削时,刀具发热是因为通过摩擦力做功,机械能转化为内能。在暖气片上放有一瓶冷水,过一段时间后水变热,这是通过热量传递使这瓶水内能增加。 思考:这些实例中,物体的内能为什么增加了?是凭空产生的还是由其他形式能转化来的? 二、新课学习 1.能的转化 想想做做:按照书中的操作,观察发生的现象,说一说发生了那些能量的转化。 (1)摩擦手,手发热:能转化为能。 (2)黑塑料袋盛水,阳光下,温度升高:能转化为能。 (3)连在太阳电池的小电扇对着阳光,转动起来:能转化为能。 (4)钢笔杆摩擦后会吸引小纸片:能转化为能。 看来各种形式的能,在一定的条件下是可以相互转化的,仔细观察下面的能量相互转化的图示,你能不能找到更多的实例?

11能量守恒定律的理解和应用

能量守恒定律 考点规律分析 (1)能量守恒定律的理解 某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 (2)能量守恒定律的适用范围 能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适用的一条规律。 (3)能量守恒定律的表达式 ①从不同状态看,E 初=E 末 。 ②从能的转化角度看,ΔE 增=ΔE 减 。 ③从能的转移角度看,ΔE A增=ΔE B减。 典型例题 例(多选)从光滑斜面上滚下的物体,最后停止在粗糙的水平面上,说明() A.在斜面上滚动时,只有动能和势能的相互转化 B.在斜面上滚动时,有部分势能转化为内能 C.在水平面上滚动时,总能量正在消失 D.在水平面上滚动时,机械能转化为内能,总能量守恒 [规范解答]在斜面上滚动时,只有重力做功,只发生动能和势能的相互转化,A正确,B错误;在水平面上滚动时,有摩擦力做功,机械能转化为内能,总能量是守恒的,C错误,D正确。 [完美答案]AD 利用能量守恒定律解题的基本思路 (1)明确研究对象及研究过程。 (2)分清有哪几种形式的能(如机械能、内能等)在变化。 (3)分别列出减少的能量ΔE减和增加的能量ΔE增的表达式。 (4)列等式ΔE减=ΔE增求解。 利用能量守恒定律解题的关键是正确分析有多少种能量变化,分析时避免出现遗漏。 举一反三 1.自由摆动的秋千摆动幅度越来越小,下列说法中正确的是()

A .机械能守恒 B .能量正在消失 C .只有动能和重力势能的相互转化 D .减少的机械能转化为内能,但总能量守恒 答案 D 解析 秋千在摆动过程中受阻力作用,克服阻力做功,机械能减小,内能增加,但总能量不变。故选D 。 2.如图所示,一个粗细均匀的U 形管内装有同种液体,液体质量为m 。在管口右端用盖板A 密闭,两边液面高度差为h ,U 形管内液体的总长度为4h ,拿去盖板,液体开始运动,一段时间后管内液体停止运动,则该过程中产生的内能为 ( ) A.116mgh B.18mgh C.14mgh D.12 mgh [规范解答] 去掉右侧盖板之后,液体向左侧流动,最终两侧液面相平,液体的重力势能减少,减少的重力势能转化为内能。如图所示,最终状态可等效为 右侧12h 的液柱移到左侧管中,即增加的内能等于该液柱减少的重力势能,则Q =12h 4h mg ·12h =116mgh ,故A 正确。 [完美答案] A

教科版九年级物理11.1《能量守恒定律》优质教案

1.能量守恒定律 教学目标 教学过程 情景导入 出示课件:五一假期,我们会去逛公园放松心情,而荡秋千图片便是其中的一个项目.荡秋千时若不加外力自己会停下来,这是为什么?那么怎样才能使秋千越荡越高?从学生的交流、讨论中引入新课。 合作探究 探究点一形形色色的能量 展示教材图 11 - 1 - 1 ,让学生观察并寻找能量的足迹,并思考:这些过程中,能量都由什么形式变成了什么别的形式?它们遵循什么规律呢? 对学生的回答给予肯定或者纠正。

教师:我们今天就要找出,在能量不断转化、转移的过程中遵循的规律。 学生观察,并展开积极讨论。 指出能量转化的过程中,能量的各种形式。 探究点二不同形式能量的相互转化 1.能量是可以互相转化的。 举出一些例子,如:太阳灶将太阳能转化为水的内能;人踢球,人自身储存的化学能通过人体做功,转化为皮球的机械能,等等。要求学生回忆,并举出一些例子。 2.能量是可以转移的。 举出一些例子,如:打台球时,两颗台球之间发生了动能的转移;人们通过热水袋取暖,就是热水的内能转移至人体。要求学生回忆,并举出一些例子。 教师:那么,大家就根据你们的理解,寻找能量的足迹吧! 让学生以小组为单位,根据图 11 - 1 - 2 ,开展“能源转化的识别”活动。 对于这个活动,教师可以在课前提供一个表格,以供各个小组填写。让小组代表回答本小组的讨论结果,并进行总结:能量是可以在不同的物体之间转移的,也可以转化成其他不同的形式的能。 学生思考,并抢答。学生思考,并举出一些例子。 学生以四个人为一个小组,讨论分析图 11 - 1 - 2 中各种能量的名称。并分析其中的转化与转移过程。推举代表,表述本小组的讨论结果。 探究点三能量守恒定律 首先,让学生自行阅读教材中的对话部分。进而,配合多媒体,向学生简单介绍焦耳测定热功当量的实验。并举一些别的例子,如荡秋千过程中,如果没有别的损耗,每次秋千总是能够回到原来的高度等等。举例中,也可以向学生指出,能量转化过程中,往往存在损耗,

高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

功能关系能量守恒定律

第4课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 3、如图2所示,ABCD是一个盆式容器,盆侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、

C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆来回滑动,最后停下来,则停下的位置到B的距离为 A.0.5 m B.0.25 m C.0.1 m D.0 【课堂合作探究】 考点一功能关系的应用 【例1】如右上图所示,在升降机固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中 A.物块A的重力势能增加量一定等于mgh B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和 【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量 B.物块重力势能的减少量 C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D.物块动能的增加量与物块克服摩擦力做的功之和 考点二摩擦力做功的特点及应用 1.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

第二十章 能源与能量守恒定律

一、关于栏目 1.思维点拨:主要是介绍本节的重要知识点和应注意的事项,一般在200-300字左右。 2.轻松练习:主要是与本节知识相关的基础训练题,题型能够是选择、填空、连线等题型,一般控制在8个小题,题号连续编排。 3.实验探究:主要是与本节知识相关的科学探究试题,能够是实验题、简答题、计算题,一般控制在2-3个试题。 4.自我评价:是一章后面的自我评价,一般适合45分钟,题型能够是选择题(6-8个)、填空题(4-5)、探究题(1-2)、计算题(2-3)。其中实验题包含在所列的题型中,总题量在13-18个左右。 5.图的序号例如:用6-1表示,一次类推 二、关于其它 (一)编写进程 1.2012年5月11日以前交稿件,要做到齐、清、定“ 3.2012年5月15日以前审定完稿件, (二)稿件要求 1.按照编写范例实行编写。 2.稿件的呈交方式为电子文件,录入采用word文档的形式。页面设置纸张规格:采用A4;页边距上下均采用2.54、左右采用2.50。答案按照字数的1:1.5留空。答案放在最后,计算、简答、探究只要最后结果或提示。不能略。 2012年4月26日 第二章声音与环境 2.1 我们怎样听见声音 【思维点拨】 1.声音的发生 声音的发生是因为发声体的振动而发生的,振动停止,发声也停止. 2.声音的传播 真空不能传声,声音必须靠物质传播,这种物质我们称之为介质.一切气体、液体、固体物质都能做传播声音的介质. 3.声速 声音在各种不同的介质中,传播的速度是不同的;同一种物质中,因为温度的不同,其声音的

传播速度也不同. 声音在15℃的空气中的传播速度是340m/s,通常我们说话的声音在空气中的传播速度就是指这个速度. [注意] 1.一切发声的物体都在振动,但物体的振动不一定能引起人耳的听觉;另外,有物体振动,但没有传播声音的介质,人耳听不到声音. 2.声音在固体、液体、气体中的传播速度是不同的,一般情况下,声音在固体中传播速度最大,在气体中最小. 3.发声的振动记录下来,需要时再让物体按照记录下来的振动规律去振动,就会产生 与原来一样的声音,这样就能够将声音保存下来. 【轻松练习】 1.“山间铃响马帮来”这句话中,铃响是因为铃身受金属珠子的撞击而发声,在山间小路上人们听到远处传来的铃声,是通过传入人耳。 2.音叉振动时,邻近的空气粒子随音叉振动,形成一系列疏密相间的形状向四周传播,这就是 。 3.人潜入水中,仍然能听到岸上人的讲话声,著名音乐家贝多芬晚年失聪,他将硬捧一端抵在钢琴盖板顶上,另一端咬在牙齿中间,通过硬棒来“听”钢琴的弹奏,根据以上两例,请说出传声物质除了气体外,还有和。 4.科学家为了探测海底某处的深度,向海底垂直发射超声波,经过4s收到回波信号,海洋中该处深度为 m。(声音在海水中传播速度是1500m/s),用这种方法不能用来测量月亮与地球之间的距离,其原因是。 5.玻璃鱼缸中盛有金鱼,用细棍轻轻敲击鱼缸上沿,金鱼立即受惊,这时鱼接收到声波的主要途径是。 A.鱼缸——空气——水——鱼 B.空气——水——鱼 C.鱼缸——水——鱼 D.水——鱼 6.雷雨来临时,电光一闪即逝,雷声却隆上持续,这是因为。 A.雷打个不停 B.雷声经过地面、山岳、云层多次反射造成 C.电光比雷声的速度快 D.以上说法都不对 7.人们倾听地声,利用岩层发生形变时的地声异常来预报地震这是利用了。 A.地震声不能由空气传到人耳 B.固体传播声音快 C.固体传播声音慢 D.以上说法都不对 8.百米赛跑时,终点计时员必须看发令枪的烟火就开始计时,如果计时员听到枪声才开始计时,所记录的成绩与运动员的实际成绩相比,一定。 A.少了0.294S B.多了0.294S C.一样 D.少了2.94S 9.把一个鼓平放后,在上面放上一些纸屑,然后用力敲打鼓面使之发声,这时会看到什么现象?此现象说明了什么? 10.有经验的土著居民在打猎时,经常伏身贴地,他能听到一般人站立时不易觉察的动静,并且能即时发现猎物,结合所学知识,试分析其道理。 【探究实验】 10.有经验的土著居民在打猎时,经常伏身贴地,他能听到一般人站立时不易觉察的动静,并且能即时发现猎物,结合所学知识,试分析其道理。

能量守恒定律与能

高中物理课堂教案教案年月日

生:能量耗散和能量守恒并不矛盾,能量耗散表明,在能源利用的过程中,即在能量的转化过程中,能量在数量上并没有减少.但是可利用的品质上降低了,从便于利用变为不便于利用了. 师:这说明什么问题? 生:这说明能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性.师:我们为什么要节约能源呢? 生:正是因为能量转化的方向性,能量的利用受这种方向性的制约,所以能量的利用是有条件的,也是有代价的. 生:节约能源同时开发可再生能源. 师:通过下面材料的阅读。加深你对能源的理解. (多媒体播放世界能源的解决途径)(参考案例) 世界能源问题的解决途径是什么?能源,是人类敕以生存和进行生产的不可缺少的资源.近年来,随着生产力的发展和能源消费的增长.能源问题已被列为世界上研究的重大问题之一.解决世界能源问题的根本途径,主要有两个方面:其一是广泛开源,其二是认真节流.所谓开源,就是积极开发和利用各种能源.在继续加紧石油勘探和寻找新的石油产地的同时,积极开发丰富的煤炭资源,还要大力开发水能,生物能等常规能源,加强核能、太阳能,风能、沼气,海洋能,地热能以及其他各种新能源的研究和利用,从而不断扩大人类的能源资源的种类和来源.所谓节流,就是要大力提倡节约能源.节能是世界上许多国家关心和研究的重要课题,甚至有人把节能称为世界的“第五大能源”,与煤、石油和天然气、水能、核能等并列.在节能方面,在有计划地控制人口增长的同时,重点要发挥先进科学技术的优势,提高各国的能源利用效率.如果世界各国家和各地区都能改进各种用能设备,不断提高能源的质量规范和降低单位产品的能耗,加强科学经管,适当控制生活能源的合理使用,就能使能源更加有效地用于生产和生活之中,从而解决人类面临的能源问题. [小结] 新课程更多地与社会实际相联系,鼓励学生提出问题.本节“思考与讨论”对能源问题做了讨论,这是一个质疑的范例.它引导我们考虑能量转化和转移的方向性.从物理学的角度研究宏观过程的方向性,在现阶段只需用一些简单的实例,让学生初步地体会一下就可以了.例如:摩擦力做功的过程,要损耗机械能而生热,产生的热不可能全部转化为机械功.在其他的宏观过程中也是如此,例如:两种气体放到一个容器内,总会均匀地混合到一起,但不会再自发地分离开来.通过实例说明.在能量的转化和转移过程中,能量是守恒的,但能量的品质却降低了,可被人直接利用的能在逐渐减少,这是能量耗散现象.所以,能量虽然守恒,但我们还要节约能源.对功能关系的理解 [例1]一小滑块放在如图所示的凹形斜面上,用力F沿斜面向下拉小滑块,小滑块沿斜面运动了一段距离。若已知在这过程中,拉力F所做的功的大小(绝对值)为A,斜面对滑块的作用力所做的功的大小为B,重力做功的大小为G,空气阻力做功的大小为D。当用这些量表达时,小滑块的动能的改变(指末态动能减去初态动能)等于多少?,滑块的重力势能的改变等于多少?滑块机械能(指动能与重力势能之和)的改变等于多少? 解读:根据动能定理,动能的改变等于外力做功的代数和,其中做负功的有空气阻力,斜面对滑块的作用力的功(因弹力不做功,实际上为摩擦阻力的功),因此ΔE k=A - B+C - D;根据重力做功与重力势能的关系,重力势能的减少等于重力做的功,因此ΔE p= - C;滑块机械能的改变等于重力之外的其他力做的功,因此ΔE = A – B – D

相关文档
最新文档