轴类零件应力集中系数的理论研究

轴类零件加工工艺过程【详解】

轴类零件加工工艺过程 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 轴类零件是常见的零件之一。按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。 台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。 1.零件图样分析

图A-1 传动轴 图A-1所示零件是减速器中的传动轴。它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。轴肩一般用来安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。 根据工作性能与条件,该传动轴图样(图A-1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予得到确保。因此,该传动轴的关键工序是轴颈M、N和外圆P、Q 的加工。 2.确定毛坯 该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。 本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。 3.确定主要表面的加工方法 传动轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。外圆表面的加工方案(参考表A-3)可为: 粗车→半精车→磨削。

机械制造技术基础轴的设计(课程设计) 3

湖南工业大学 课程设计 资料袋 机械工程学院学院(系、部)2013 ~ 2014 学年第 1 学期课程名称机械制造基础技术指导教师***** 学生姓名野人专业班级机械1班学号 题目阶梯轴 成绩起止日期2013年9 月26 日~2014 年10 月 4 日湖南工业大学院教务部制

湖南工业大学 课程设计说明书 课程名称:机械制造基础技术 设计题目:阶梯轴 专业:机械设计制造及其自动化 学生姓名:野人学号: 指导教师:***** 湖南工业大学教务部制

目录 第零章前言 (05) 第一章零件的工艺分析 (06) 第二章生产纲领的计算与生产类型的确定······第三章确定毛坯、绘制毛坯图·················第四章拟定轴的工艺路线·····················第五章选择加工设备及工艺装备·············· 第六章加工工序设计························· 第七章加工后零件的三维图···················第八章参考资料······························第九章设计小结······························第十章致谢··································

第一章概述 机械制造技术基础课程设计,是以切削理论为基础、制造工艺为主线、兼顾工艺装备知识的机械制造技术基本能力的培养;是综合运用机械制造技术的基本知识、基本理论和基本技能,分析和解决实际工程问题的一个重要教学环节;是对学生运用所掌握的“机械制造技术基础”知识及相关知识的一次全面训练。 机械制造技术基础课程设计,是以机械制造工艺及工艺装备为内容进行的设计。即以所选择的一个中等复杂程度的中小型机械零件为对象,编制其机械加工工艺规程,并对其中某一工序进行机床专用夹具设计。 一、课程设计的目的 机械制造技术基础课程设计是作为未来从事机械制造技术工作的一次基本训练。通过课程设计培养学生制定零件机械加工工艺规程和分析工艺问题的能力,以及设计机床夹具的能力。在设计过程中,学生应熟悉有关标准和设计资料,学会使用有关手册和数据库。 1、能熟练运用机械制造技术基础课程中的基本理论以及在生产实践中学到的实践知识,正确地解决一个零件在加工中的定位、夹紧以及工艺路线安排、工艺尺寸确定等问题,保证零件的加工质量。 2、学会使用手册、图表及数据库资料。掌握与本设计有关的各种资料的名称、出处,能够做到熟练运用。

轴类零件的加工工艺资料

轴类零件的加工工艺 绪论 本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。经过总结了生产上出现的问题,写下了这篇论文。 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。 图轴的种类 a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴 h)曲轴 i) 凸轮轴 1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩

和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2 轴类零件一般加工要求及方法 2.1 轴类零件加工工艺规程注意点

应力集中分析

应力集中与失效分析 刘一华 (合肥工业大学土木建筑工程学院工程力学系,安徽合肥 230009) 1 引言 由于某种用途,在构件上需要开孔、沟槽、缺口、台阶等,在这些部位附近, 因截面的急剧变化,将产生局部的高应力,其应力峰值远大于由基本公式算得的 应力值。这种现象称为应力集中,引起应力集中的孔、沟槽、缺口、台阶等几何 体称为应力集中因素[1]。 因孔、沟槽、缺口、台阶等附近存在应力集中,从而,削弱了构件的强度, 降低了构件的承载能力。应力集中处往往是构件破坏的起始点,应力集中是引起 构件破坏的主要因素[2-9]。应力集中现象普遍存在于各种构件中,大部分构件的 破坏事故是由应力集中引起的。因此,为了确保构件的安全使用,提高产品的质 量和经济效益,必须科学地处理构件的应力集中问题。 2 产生应力集中的原因[1] 构件中产生应力集中的原因主要有: (1) 截面的急剧变化。如:构件中的油孔、键槽、缺口、台阶等。 (2) 受集中力作用。如:齿轮轮齿之间的接触点,火车车轮与钢轨的接触点 等。 (3) 材料本身的不连续性。如材料中的夹杂、气孔等。 (4) 构件中由于装配、焊接、冷加工、磨削等而产生的裂纹。 (5) 构件在制造或装配过程中,由于强拉伸、冷加工、热处理、焊接等而引 起的残余应力。这些残余应力叠加上工作应力后,有可能出现较大的应力集中。 (6) 构件在加工或运输中的Array意外碰伤和刮痕。 3 应力集中的物理解释[1] 对于受拉构件,当其中无裂 纹时,构件中的应力流线是均匀 分布的,如图1a所示;当其中有

一圆孔时,构件中的应力流线在圆孔附近高度密集,产生应力集中,但这种应力集中是局部的,在离开圆孔稍远处,应力流线又趋于均匀,如图1b 所示。 4 应力集中的弹性力学理论 根据弹性力学理论,可以求得圆孔、裂纹尖端以及集中力附近的应力分布情况,分别如下: 4.1 圆孔边缘附近的应力[10] 圆孔附近A 点(图2)的应力为 ???????????? ??---=???????????? ??--+=???????????? ??-+=θθστθθσσθθσσ4sin 322sin 24cos 322cos 3224cos 322cos 2442222442222 442222r a r a r a r a r a r a r a r a r a xy y x (1) 式中a 为圆孔的半径。 由(1)式可见,在孔边a r =、0=θ处,σσ3=y 。 4.2 裂纹尖端附近的应力[11] I 型裂纹尖端A 附近(图3)的应力为 ??? ??-=23sin 2sin 12cos 2I θθθπσr K x ?? ? ??+=23sin 2sin 12cos 2I θθθπσr K y (2) 23cos 2sin 2cos 2I θ θ θ πτr K xy = 式中I K 称为I 型裂纹的应力强度因子,它是裂纹尖端应力强度的度量,与载荷的大小、构件与裂纹的尺寸与形状有关,对于无限大板,a K πσ=I 。 (2)式表明,裂纹尖端附近的应力与r /1成比例,即当0→r 时,x σ、y σ、 ∞→xy τ。

轴类零件加工工艺过程分析

2016-2017学年第二学期课程论文 《机械制造工艺学》 专业:机械设计制造及其自动化班级:2014级机设1班 学号:201410470129 姓名:夏正懿 成绩: 机械工程学院

轴类零件加工工艺过程分析 摘要:轴类零件是比较常用极其重要的零件之一,好的加工工艺是决定轴类零件表面精度、粗糙度,能缩短生产时间从而降低成本,带来巨大经济效益,本论文从加工路线,刀具选择,切削量等的选用等概要说明了轴类工件的加工工艺。 关键词:数控加工轴类零件加工 1 轴类零件的功用、结构特点及技术要求 轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 2 轴类零件的毛坯和材料 2.1轴类零件的毛坯 轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。 2.2轴类零件的材料 轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性

和耐磨性。 3 轴类零件加工的定位基准和装夹 3.1以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时, 还能够最大限度地在一次装夹中加工出多个外圆和端面。 3.2以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 4 轴类零件的加工工艺分析 轴类零件的加工顺序安排,数控车床与普通车床基本一样,即遵循“先粗后精,由大到小”的基本原则。先粗后精,就是先后对零件整体进行粗加工,精加工;由大到小,就是先从最大直径处开始车削,然后依次往小直径处加工。在数控车床精车轴类零件时,一般从零件右端开始连续不断地完成整个零件的切削。 4.1分析 如图1所示,这是一个由螺纹.外圆和槽构成的轴类零件,其中ф

轴类零件楔横轧三维数值模拟

第37卷第3期 2011年3月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Vol.37No.3Mar.2011轴类零件楔横轧三维数值模拟 王南,张庆恒,张乃伟,岳龙山 (河北工程大学机电学院,河北邯郸056038) 摘要:利用Pro /E 建立楔横轧模具和轧件的三维参数化模型,将其导入ANSYS /LS-DYNA 有限元软件中,建立楔横轧轧制阶梯轴的有限元模型,对轴类零件楔横轧成形过程进行了三维数值模拟,得到轴类零件轧制过程中轧件内部的应变场、轧件表面变形形状等信息,为研究其他零件的轧制成形机理及变形规律提供了参考和理论依据. 关键词:楔横轧;轴类零件;有限元;ANSYS /LS- DYNA 中图分类号:TG 355.19文献标志码:A 文章编号:0254-0037(2011)03-0330-05 收稿日期:2009- 05-26.作者简介:王南(1957—),男,河北昌黎人,教授. 随着我国汽车工业的快速发展,轴类零件的需求与日俱增,传统的机加工、铸造、锻造等轴类零件生产 方法已不能适应当前汽车对轴类零件发展的要求[1].楔横轧作为一种先进的轴类零件成形方法,被广泛 地应用于轴类零件的生产过程中.零件轧制属于复杂的三维非线性塑性成形过程,准确获得轧件上每一 点的应力、应变与金属流动规律,对认识零件成形规律、了解缺陷产生的原因具有重要的意义 [2-4].本文采用三维参数化软件Pro /E 建立零件轧坯与轧辊的三维实体模型,通过Pro /E 和ANSYS /LS-DYNA 的接口将三维实体模型导入三维非线性有限元分析软件ANSYS /LS-DYNA 中,合理确定材料特性参数、接触条件、各种约束条件及载荷,建立零件轧坯与楔形轧辊的三维有限元模型,进行动态数字仿真, 通过ANSYS /LS-DYNA 软件的后处理功能得到轧件内部的应力、应变云图,分析金属的流动规律. 1有限元 模型的建立 图1模具和轧件的有限元模型Fig.1The finite element model of mold and workpiece 首先根据轧件特征参数设计模具,选择合理的成 形角、展宽角等工艺参数,完成模具设计,然后利用 Pro /E 建立楔横轧模具和轧件的三维参数化模型,将 其导入ANSYS /LS-DYNA 中,建立楔横轧三维非线性 有限元模型.建立的模具和轧件的有限元模型如图1 所示. 为了得到变形过程比较真实的描述,建立有限元 模型过程时做如下假设 [5-9]:1)轧辊与模具为刚体,采用刚性壳单元(shell 163)对模具进行网格划分,轧辊的弹性模量E =210 GPa ,密度ρ=7.82t /m 3,泊松比μ=0.3,轧辊轴线完 全约束,两轧辊施以相同方向的旋转载荷.2)轧件为多段线性弹塑性材料模型,输入与应变率相关的应力-应变曲线,采用8节点实体单元 (solid 164)进行网格划分,轧件弹性模量E =90GPa ,密度ρ=7.82t /m 3,泊松比μ=0.3,在轧件对称面上 给予轴向几何约束.

典型轴类零件加工工艺分析

典型轴类零件加工工艺分 析 Revised final draft November 26, 2020

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。 (一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔; ②当轴有圆柱孔时,可采用图6—35a所示的锥堵,取1∶500锥度;当轴孔锥度较小时,取锥堵锥度与工件两端定位孔锥度相同;

ug-考试题及答案3

一、填空题(每题1分,共20分) 1、CAD系统一般应具有几何建模、工程分析、、工程绘图等主要功能。 2、随着CAD/CAM技术应用的日益广泛和深入,CAD/CAM技术的未来发展主要体现在集成化、网络化、智能化和的实现上。 3、参数化建模技术和变量化建模技术的共同特点为基于特征、全数据相关以及。 4、在投影变换中,三视图是将三维空间物体分别对正面、水平面和侧面进行得到的。 5、实体建模中基本实体的生成方法有体素法和扫描法,其中法是将平面内的任意曲线进行“扫描”(拉伸、旋转等)形成复杂实体的方法。 6、对刀点是数控编程中刀具相对工件运动的,对刀点的选择应使编程简单、加工过程便于检查。 7、在数控编程中确定刀具加工路线时,要保证被加工零件获得良好的加工精度和表面质量,并兼顾走刀路线等方面。 8、CAD/CAM系统数控编程的基本步骤为几何建模、加工工艺分析、刀具轨迹生成、刀位验证和、后置处理以及数控程序的输出。 9、UG NX软件界面的提示行和状态行是重要的信息反馈源,其中行用来显示系统状态以及操作执行的情况。 10、UG NX提供的8种标准视图有前(主)视图、后视图、顶(俯)视图、底(仰)视图、左视图、右视图、图和三角轴测图。 11、在应用UG NX建模时,为简化建模环境的设置,常常建立按相关标准规定预先设定好应用环境参数(如层、线型、颜色等)的空白部件文件,即文件。 12、UG NX中的键槽特征的截面类型包括槽、球形槽、U型槽、T型槽和燕尾槽等。 13、UG NX软件中的特征是采用指针方式复制或者镜像已有特征,生成的特征与已有特征相关联。 14、应用UG NX软件生成的二维工程图是由得到的,工程图的尺寸直接引用三维模型的尺寸。 15、装配建模中的由一个或多个关联约束组成,用来限制组件在装配中的自由度。 16、在装配建模中,应用,可将部件文件中选定的部分几何对象作为该部件的一个替代装入装配件中。 17、在UG NX中对工程图进行尺寸标注时,应用图标可以在用户指定的两条不平行直线之间进行标注。 18、在UG NX的CAM模块中,是指定不允许刀具切削的部位,既避免与刀具相碰撞的几何对象。 19、型腔铣用于粗加工型腔或型芯区域,切削区域的底面可以是曲面、侧壁可以不垂直底面,但铣削时要求刀具轴线与切削层。 20、应用UG NX的CAM模块,在创建操作前需指定的父节点包括程序父节点、刀具父节点、父节点和方法父节点。 1、模拟仿真 2、标准化 3、尺寸驱动设计修改 4、正投影变换 5、扫描法 6、起点 7、最短 8、刀具轨迹编辑 9、状态行10、等轴测图11、种子12、矩形槽13、引用14、三维模型15、关联条件16、引用集17、角度18、检查几何19、垂直20、几何体 二、名称解释(每题3分,共15分) 21、计算机图形处理技术? 21、答:是利用计算机的高速运算能力和实时显示功能来处理各类图形信息,包括图形的存储、生成、处理、显示、输出,以及图形的变换、组合、分解、运算等,并在计算机控制下,将过去由人工完成的绘图工作由绘图仪等图形输出设备来完成。 22、可见层? 22、答:层是建模时为了方便选择和显示不同种类的几何对象而设定的。可见层是指该层上的几何对象和视图可见但不可选择操作。 23、特征建模? 23、答:特征建模是建立在实体建模的基础上,通过计算机将工程图样所表达的产品信息抽象为特征的有

应力集中的分析

1.应力集中的现象及概念 材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。 承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无急剧变化的区域内,横截面上的应力才是均匀分布的。然而工程中由于实际需要,某些零件常有切口、切槽、螺纹等,因而使杆件上的横截面尺寸发生突然改变,这时,横截面上的应力不再均匀分布,这已为理论和试验所证实。 如图 2-31[a] 所示的带圆孔的板条,使其承受轴向拉伸。由试验结果可知 : 在圆孔附近的局部区域内,应力急剧增大,而在离开这一区域稍远处,应力迅速减小而趋于均匀( 图 2 — 31[b]) 。这种由于截面尺寸突然改变而引起的应力局部增大的现象称为应力集 中。在 I — I 截面上,孔边最大应力与同一截面上的平均应力之比,用表示 称为理论应力集中系数,它反映了应力集中的程度,是一个大于 1 的系数。而且试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈大。因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡。

在静荷作用下,各种材料对应力集中的敏感程度是不相同的。像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,使截面上其它点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32 所示。因此,用塑性材料制作的零件,在静荷作用下可以不考虑应力集中的影响。而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。因此用脆性材料制作的零件,应力集中将大大降低构件的强度,其危害是严重的。这样,即使在静载荷作用下一般也应考虑应力集中对材料承载能力的影响。然而,对于组织不均匀的脆性材料,如铸铁,其内部组织的不均匀性和缺陷,往往是产生应力集中的主要因素,而截面形状改变引起的应力集中就可能成为次要的了,它对构件承载能力不一定会造成明显的影响。 要想搞明白这个问题,我想先要搞明白什么是荷载力、什么是应力?简单地来说荷载力来源于动力源作用于工作终端,其力的大小为工作终端负荷加传动损耗,而应力则是由材料内部的分子发生错位(部分分子受拉力或热力作用其分子链被拉长、而有些分子则受压缩力或冷凝力的作用其分子被压缩,同时这两种变形的分子又相互作用在其过渡区域就会受两种作用力的影响,分子链也会受到破坏产生裂纹)而产生的作用力。人们在生产实践中发现材料在受力情况下都会发生变形,其变形量与受力的大小及受力的区城大小有关,卸载后的剩余应力与局剖的变形量成正比,对台阶轴而言若不加任何措施、由于作用区域小其作用力仅在轴的圆周面上产生作用,轴芯部分并不受力,这种现象本人称它为集肤效应。因此此时的轴肩处的圆周面受到剪切变形,分子链相继受到破坏并向轴芯延伸最终导至轴颈断裂。若在轴肩处采用圆弧过度等措施,相对来说增加了作用区域(两作用力之间的距离增加,材料所允许的扭转角度就变大,随着轴的扭转角度的增加使得轴芯部分有更多的分子链来参加传递动力,这样每个分子链的负荷也就变小很多,轴的寿命也得以延长,值得注意的是这并不意味着此轴可永久使用,因为材料在受力的情况下都会受损,只不过程度不同,程度大的寿命短、程度小的寿命长,这也就是人们常说的疲劳寿命。 现在再来解释过盈配合为什么在边缘处产生应力集中? 因为是过盈,所以内外圈在接触表面都要产生变形,而不接触的其它表面不会变形。这样接触面区域是压应力,而在接触边缘处轴的材料必然出现拉应力以阻止轮毂边缘和接触区外的材料进一步变形。但配合面的母线是直线,在外力作用下必然要产生相同的变形量,为了协

基于有限元理论的疲劳热点应力集中系数计算方法研究

490
第十五届中国海洋(岸)工程学术讨论会论文集
基于有限元理论的疲劳热点应力集中系数 计算方法研究*
黄怀州,尹光荣,孟庆政,宋晓秋,王海龙
(海洋石油工程股份有限公司,天津 300451) 摘要:疲劳损伤是造成海洋结构物破坏的主要形式之一。主要讨论了基于有限元理论的疲劳热点应力的不同计算方法的优 劣,研究并分析在不同计算方法下的结果合理性。通过运用 ANSYS 有限元软件计算对比实验结果和公式推导,首次提出并 验证了利用高斯点积分应力外推热点应力的方法, 并运用最小二乘法推导出应力集中系数外推值与实验值的线性关系, 对利 用有限元方法分析海洋结构物的疲劳寿命具有一定的指导意义和参考价值。 关键词:疲劳;热点应力;有限元;应力集中系数 随着海洋石油工业的发展,通常要在恶劣的海况条件下建造各种平台,以适应海上钻井采油作业的需 要。海洋平台在工作时受到的环境包括风、波、流、潮汐、冰等情况,其中波浪力不仅能引起巨大的水平 方向交变荷载,且循环次数也非常频繁,是造成结构疲劳破坏的主要因素。如图 1 所示典型的管结构的疲 劳破坏。 可靠的疲劳热点应力的获得,一直都是工程界的难点。在文献[1]实验数据基础上,用有限元方法分析 了八种不同的疲劳热点应力集中系数计算方法的优劣,对比验证高斯点积分应力外推热点应力方法的准确 性和稳定性,并运用最小二乘法推导出应力集中系数外推值与实验值的线性关系,得到一套可靠的分析方 法。
图 1 管结构的疲劳破坏
1 基本理论和基本假定
1.1 基本理论 通常疲劳分析建立在 S-N 曲线和线性损伤假设基础上,公式为:
D =

k
i=1
式中: D 为累积疲劳损伤; a 为设计 S ? N 曲线在 log N 轴上的截距;m 为 S ? N 曲线斜率的负倒数;k 为应力组块数量; ni 为应力组 i 的应力循环次数; Ni 为常应力幅值 Δσ i 作用下的疲劳失效循环次数;η 为 利用率,设计疲劳系数的倒数[2-3]。 理论上应力幅值 Δ σ 是由局部应力 σ local 决定,但是由于局部应力非常难以获得,工程上常采用热点
*
ni 1 = N i a

k
i=1
n i ? (Δ σ
i
)m
≤ η
(1)
作者简介:黄怀州,男,结构工程师,主要从事导管架结构设计工作。Email:huanghz@https://www.360docs.net/doc/59736912.html,

轴类零件机械加工工艺规程设计

轴类零件机械加工工艺规程设计 零件图七

摘要 本设计所选的题目是有关轴类零件的设计与加工,通过设计编程,最终用数控机床加工出零件,数控加工与编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,它是运用数控原理,数控工艺,数控编程,制图软件和数控机床实际操作等专业知识对零件进行设计,是对所学专业知识的一次全面训练。熟悉设计的过程有利于对加工与编程的具体掌握,通过设计会使我们学会相关学科的基本理论,基本知识,进行综合的运用,同时还会对本专业有较完善的系统的认识,从而达到巩固,扩大,深化知识的目的。 此次设计也是我们走出校园之前学校对我们的最后一次全面的检验以及提高我们的素质和能力。毕业设计和完成毕业论文也是我们获得毕业资格的必要条件。 设计是以实践为主,理论与实践相结合的,通过对零件的分析与加工工艺的设计,提高我们对零件图的分析能力和设计能力。达到一个毕业生应有的能力,使我们在学校所学的各项知识得以巩固,以更好的面对今后的各种挑战。 此次设计主要是围绕设计零件图七的加工工艺及操作加工零件来展开的,我们在现有的条件下保证质量,加工精度及以及生产的经济成本来完成,对我们来说具有一定的挑战性。其主要内容有:分析零件图,确定生产类型和毛坯,确定加工设备和工艺设备,确定加工方案及装夹方案,刀具选择,切削用量的选择与计算,数据处理,对刀点和换刀点的确定,加工程序的编辑,加工时的实际操作,加工后的检验工作。撰写参考文献,组织附录等等。 关键词 加工工艺、工序、工步、切削用量:切削速度(m/min)、切削深度(mm)、进给量(mm/n、mm/r)。

机械设计习题集(3)

第1章机械设计概论 思考题 1. 什么是部件?什么是零件?什么是构件?什么是通用零件?什么是专用零件?机械设计课程研究的是哪 类零件?从哪几个方面来研究这类零件? 2. 机械设计应满足哪些基本要求?机械零件设计应满足哪些基本要求? 3. 机械设计的一般步骤是怎样的? 第2章机械零件的工作能力和计算准则填空题 1. 在压力作用下,以点、线相接触的两物体在接触处产生的应力称为应力。 2. 零件在变应力作用下的强度计算属于强度计算,它不同于静强度计算。 3. 零件的计算载荷与名义载荷的关系是。 4. 零件的名义载荷是指载荷。 5. 零件的实际载荷与计算载荷的差异对零件的强度影响,将在中考虑。 二、简答与思考题 1. 解释下列名词:静载荷、变载荷、稳定循环变载荷、动载荷、工作载荷、额定载荷、计算载荷、静应 力、变应力、疲劳及疲劳极限。静载荷是否一定产生静应力?变载荷是否一定产生变应力? 2. 什么是变应力的循环特性r?对于静应力、脉动循环变应力和对称循环变应力,其r值各等于多少? 3. 在一定的循环特性r下工作的金属试件,其应力循环次数与疲劳极限之间有怎样的内在联系?怎样区分 试件的无限工作寿命和有限工作寿命?怎样计算在有限寿命下工作的试件的疲劳极限? 4. 两个曲面形状的金属零件相互压紧,其表面接触应力的大小由哪些因素确定?如果这两个零件的材料、 尺寸都不同,其相互接触的各点上彼此的接触应力值是否相等? 三、计算题 1. 图示为对心直动滚子从动件凸轮机构。从动件顶端承受压力F=12kN。当压力角α达到最大值αmax=250 时,相应的凸轮轮廓在接触点上的曲率半径为R=75mm。已知:滚子半径r=15mm,凸轮与滚子的宽度b=20mm;两者材料的弹性模量和泊松比均为E=2.1×105Mpa和μ=0.3;许用接触应力[σ]H=1500Mpa。试校核凸轮与滚子的表面接触强度。

轴的加工工艺

课题:轴类零件加工工艺 一、一、教学目的:熟悉轴类零件加工的主要工艺,其中包括 结构特点、技术要求分析、定位基准选择用一般工艺 路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线 二、二、教学重点:轴类零件加工工艺分析 三、三、教学难点:轴类零件加工工艺路线的拟定 四、教学时数: 2 学时,其中实践性教学学时。 五、习题: 六、教学后记: 第六章第六章典型零件加工 第一节第一节轴类零件加工 一、一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及

保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯 轴、空心轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。 图轴的种类 a)光轴b)空心轴c)半轴d)阶梯轴e)花键轴f)十字轴g)偏心轴 h)曲轴i) 凸轮轴 若按轴的长度和直径的比例来分,又可分为刚性轴(L/d<12=和挠性轴(L/d >12)两类。 3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔 (二)主要技术要求: 1、尺寸精度 轴颈是轴类零件的主要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用要求通常为IT6~9,精密轴颈可达IT5。 2、几何形状精度 轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度要求较高时,可在零件图上另行规定其允许的公差。 3、位置精度 主要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表示的;根据使用要求,规定高精度轴为0.001~0.005mm,而一般精度轴为0.01~0.03mm。 此外还有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度要求等。 4.表面粗糙度 根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.16~0.63um,配合轴颈的表面粗糙度为Ra0.63~2.5um,随着机器运转速度的增大和精密程度的提高,轴类零件表面粗糙度值要求也将越来越小。

有效应力集中系数 Kσ

有效应力集中系数Kσ、Kτ σb (MPa ) 螺纹 (Kτ=1 ) Kσ 键槽花键横孔配合 KσKτ Kσ KτKσKτH7/r6 H7/k6 H7/h6 A 型 B 型 A、 B 型 矩 形 渐 开 线 型 d0/d=0.05-0.1 5 d0/d=0.15-0.2 5 d0/d=0.05-0.2 5 KσKτKσKτKσKτ 400 1.45 1.5 1 1.3 1.2 1.3 5 2.1 1.4 1.90 1.70 1.70 2.0 5 1.5 5 1.5 5 1.2 5 1.3 3 1.1 4 500 1.78 1.6 4 1.3 8 1.3 7 1.4 5 2.2 5 1.4 3 1.95 1.75 1.75 2.3 1.6 9 1.7 2 1.3 6 1.4 9 1.2 3 600 1.96 1.7 6 1.4 6 1.5 4 1.5 5 2.3 5 1.4 6 2.00 1.80 1.80 2.5 2 1.8 2 1.8 9 1.4 6 1.6 4 1.3 1 700 2.20 1.8 9 1.5 4 1.7 1 1.6 2.4 5 1.4 9 2.05 1.85 1.80 2.7 3 1.9 6 2.0 5 1.5 6 1.7 7 1.4 800 2.32 2.0 1 1.6 2 1.8 8 1.6 5 2.5 5 1.5 2 2.10 1.90 1.85 2.9 6 2.0 9 2.2 2 1.6 5 1.9 2 1.4 9 900 2.47 2.1 4 1.6 9 2.0 5 1.7 2.6 5 1.5 5 2.15 1.95 1.90 3.1 8 2.2 2 2.3 9 1.7 6 2.0 8 1.5 7 1000 2.61 2.2 6 1.7 7 2.2 2 1.7 2 2.7 1.5 8 2.20 2.00 1.90 3.4 1 2.3 6 2.5 6 1.8 6 2.2 2 1.6 6 1200 2.90 2.5 1.9 2 2.3 9 1.7 5 2.8 1.6 2.30 2.10 2.00 3.8 7 2.6 2 2.9 2.0 5 2.5 1.8 3 1.滚动轴承与轴的配合按H7/r6选择计算。螺纹的Kτ=1。 2. 蜗杆螺旋根部有效应力集中系数Kσ=2.3~2.5Kτ=1.7~1.9

轴类零件机械加工工艺规程制定

轴类零件机械加工工艺规程制定 发表时间:2013-12-03T10:54:32.420Z 来源:《赤子》2013年10月下总第292期供稿作者:江灵智[导读] 对一些适用于特殊场合、对其加工条件及方式存在多种限制的零部件,可对其进行此操作 江灵智 (浙江申林汽车部件有限公司,浙江温岭 317507) 摘要:在机械运动装置传递运动形式中,轴类零件是不可或缺的部件之一。各传动件不仅通过轴类零件传递扭矩带动运动,另外也通过其承受载荷。轴类零件的加工质量决定着它在机械运动中的性能,本文就轴类加工工艺规程予以讨论,以求获得更为完善的产品,提高其利用率,延长使用寿命。 关键词:轴类零件;加工工艺;规程 中图分类号:TH162 文献标识码:A 文章编号:1671-6035(2013)10-0000-01 轴类零件是机械装置中的典型零件之一。它不仅是传动零部件的载体,还具有扭矩和运动形式传送的作用,实现机械装置间连续运动。轴类零件根据外形的差异,有直轴、曲轴和软轴之分,这里讨论的主要以直轴为主。其包括有光轴、阶梯轴等。由于轴类零件在机械传动中至关重要,其精度、表面粗糙度等需符合使用标准,因而其加工工艺流程必须经过严格的工艺规程。无论是加工光轴、阶梯轴或是空心轴等其他轴类零件,其加工工艺基本上是一致的,针对不同的结构,只需要在细节上做些处理。 一、毛坯及材料的选择 加工轴类零件之前,首先应该挑选使用哪种材料的毛坯。毛坯是否选取适当,将决定后期加工难度和工作量。轴类毛坯根据轴类现场使用场合、加工制造分类、加工预期成本、现有加工车床的限制等而定,一般常使用棒料、锻件等,棒料适用于阶梯不太明显趋近于光轴的轴类零件,相反地,若是外圆间变化较大的阶梯轴或是起到关键作用的轴类,通常是选取锻件毛坯。另在选择毛坯时,优先选择外形形状和大小贴近于制造零件的毛坯,这样可减少零件加工所需的冗余工作,提高生产效率,同时也降低了生产成本。毛坯材料的选择需根据实际使用中轴类零件工作而定,如其支承的传动件的重量,其传递的扭矩等。因而,在选择毛坯材料时,其抗变形能力、抗弯曲能力、耐磨度等是重要参数,并需经过不同的热处理来强化这些参数。[1] 二、定位及装夹方式的确定 待选定使用哪种毛坯后,需通过定位和装夹装置标记最优的加工点。基准表面及装夹方式的确定,决定着零件经过车削后其大小和切削位置与理论上的偏移程度。在选择参考平面用作基准时,主要有粗基准和精基准类型,根据零件各位置不同功能而定的误差范围值,选取合适的基准。一般粗基准使用可加工范围广、表面平滑、较为重要的未加工表面;优先使用已加工处理的表面作为精基准的参考面,尤其是其他未进行修改的面都能以此为准的表面。在一些情况下,也可采用互为基准和自为基准等方式确定基准面。[2] 毛坯零件的装夹方式根据待加工零件的形状而定,针对矩形的零件,使用合适的平口钳夹住固定;针对圆状零件,使用三爪卡盘压在铣床床面上;针对特殊形状的零件,可制作专用的铣床夹具。 三、加工工艺分析 轴类零件加工遵循的原则与其他加工类似,切削工艺安排严格按照“先攻基准、先粗后精、先主后次、先面后孔”的原则执行。使用数控车床车削误差变化范围较小的零件时,起始位置点选择为轴的最右端。 1.首先分析零件样图。 零件图样中给出的一些使用参数,以及表面粗糙度、平行度、同心度等数值要求,是我们在作加工工艺的指导依据。 2.加工路线的拟定。 对零件图分析后,可确定零件的定位基准。根据加工工序中“基准先行”的规则要求,在设计中作为基准使用的外围面需优先进行,方便其他表面的加工。此加工可采用外圆车削的方式,包括有粗车、半粗车、精车等阶段;其次,根据“先主后次”的原则,优先处理尺寸接近于理想状态约束较多的零件外围部分。而轴上的矩形键槽、花型键槽及螺孔等在外围表面加工到某个精度后执行;再次,当零件要求钻孔时,需先加工端面,然后再钻孔,这样就可确保一些情况下指定的同心度、平行度等条件,提高孔的加工精度。 四、工艺过程 确定了轴类零件的主要基准面和实施方案,待毛坯正确地装上和固定时,其操作流程可开始执行。轴类零件常用的加工方法为车削和磨削。前者适用于粗加工场合,相反地,后者则在精加工上占有优势。零件成型历时三种时期,即预加工处理、半精加工处理、精加工处理时期,若是对零件的尺寸等有更严格限制,可再加上光整加工工序。[3] 1.毛坯的预加工。 在选择毛坯时,其与成品是有差别的,通过粗加工切除毛坯上的多余存量,使得毛坯的形状和大小接近于成品,为后续加工提供便利,节约生产成本。预加工主要包括有对毛坯的校正,主要针对毛坯在各种条件下产生的变形弯曲等情况;另有当使用棒料时,应切除毛坯与实际成品相比的多余部分;当一些零件需要钻孔时,需先切端面然后钻孔;若是使用锻件或是尺寸较大的铸件,还需拉荒处理,除去其表面的氧化层,减少加工余量。 2.轴类零件的半精加工。 半精加工方案实施在粗加工之后,进一步缩小与理论上的差距,使成品更接近于要求。在使用半精方式加工前,需添加一道工序,即对零件实行调质,改变物理结构,进而改善其抗弯曲和抗变形能力。 3.精加工。 零件经过半精加工后还会存在较小范围的误差,此时需要通过精加工处理零件,以符合零件图样中的指标。同样地,在进行精加工前,其物理结构也需改变,对零件的一些部分需进行加热升温处理;并通过对外圆表面和一些锥面进行精磨,以确保主轴中最重要表面的精度要求。精加工一般选择使用磨具,其对零件的切除操作影响甚微,可实现趋近与理想状态下的成品。 4.光整加工。 对一些适用于特殊场合、对其加工条件及方式存在多种限制的零部件,可对其进行此操作。

机械制造技术期末试卷3

一、填空 1.在标注刀具角度的正交平面参考系中,通过主切削刃上某一指定点,同时垂直于该点及面和切削平面的平面是正交平面。 2.研磨可降低加工表面的粗糙度,但不能提高加工精度中的位置精度。 3.机床主轴回转误差的基本形式包括主轴径角度摆动、轴线窜动和径向圆跳动。 4.机械加工表面质量包括表面粗糙度、波度、化学和表面层物理机械性能的变化。 5.在机械加工中,自激振动的激振机理通常包括负摩擦颤振原理、再生颤振原理和振纹耦合。 6.机械加工中选择机床时,要求机床的尺寸规格、功率、加工效率及机床精度等与工件本工序加工要求相适应。 7.机械加工中定位基准与设计基准不重合时,工序尺寸及其偏差一般可利用尺寸链进行计算获得。 8.在车床上用两顶尖装夹加工细长轴时,工件会产生鼓形误差。 切削加工45钢时通常应采用YT 类或YW类硬质合金刀具。 1、影响切削温度的主要因数有刀具的几何参数、切削液、刀具磨损、切削用量和工件 2 3

2. 刀具标注后角:在刀具标注角度参考系中,在正交平面内测量的主后刀面与切削平面的夹角。 3. 砂轮的组织:指磨粒、结合剂、气孔三者之间的比例关系。 4. 工序余量:上工序与本工序基本尺寸差值为本工序的工序余量。 5. 工艺规程:把合理工艺过程的有关内容写在工艺文件中,用以指导生产,这些工艺文件就是工艺规程。 三、单项选择题(选择正确答案的字母填入括号,每小题1分,共10分) 1. 精基准的主要作用是( A )。 A. 保证技术要求 B. 便于实现粗基准 C. 尽快加工出精基准 D. 便于选择精基准 2. 夹具精度一般是零件精度的( A ) A. 1/3~1/5 B. 1/2 C. 相同 D. 1/10 3. 从概念上讲加工经济精度是指( B ) A.成本最低的加工精度 B.正常加工条件下所能达到的加工精度 C.不计成本的加工精度 D. 最大生产率的加工精度 4. 控制积屑瘤生长的最有效途径是( A ) A. 改变切削速度 B. 改变切削深度 C. 改变进给速度 D. 使用切削液 5. 在麻花钻头的后刀面上磨出分屑槽的主要目的是( A )。 A.利于排屑及切削液的注入 B.加大前角,以减小切削变形 C. 减小与孔壁的摩擦 D. 降低轴向力 6. 自为基准是以加工面本身为精基准,多用于精加工工序,这是为了(C )。 A. 保证符合基准重合原则 B. 保证符合基准统一原则 C. 保证加工面的余量小而均匀D 保证加工的形状和位置精度 7. 在切削铸铁时,最常见的切屑类型是(D)。 A.带状切屑B. 挤裂切屑C. 单元切屑D.崩碎切屑 8.(C)加工是一种容易引起工件表面金相组织变化的加工方法。

相关文档
最新文档