硅片加工

硅片加工
硅片加工

硅片加工技术

1. 硅的主要性质:原子序数:14、现对原子质量:08.28、晶体结构:金刚石结构、熔点:℃1420、颜色:银白色。

2. 硅片按生产工艺分为:切割片、研磨片、化腐片和抛光片。

3. 硅片加工第一道工序:定向、滚磨开方。

4. 滚磨开方的设备:单晶切方滚磨机、带锯、线锯。

5. 硅单晶主参考面方位的确定方法:光图定向法和晶棱连线法。

6. 硅单晶定向切割可分为:多线切割和内圆切割。

7. 硅片的研磨方式有:单面研磨和双面研磨。

8.

硅片抛光的方法分为:机械抛光、化学抛光、化学机械抛光、最常用的方法是化学机械抛光。 9. 吸附分为:化学吸附和物理吸附。 10. 环境洁净度等级标准:美国联邦标准。 11. 硅片表面污染类型:有机杂质玷污、颗粒类杂质玷污和金属杂质玷污。 12. 化学试剂按纯度分为:优级纯、分析纯、化学纯。 13. 超声波清洗系统的组成:超声波电源、清洗槽和换能器。 14. 纯水制备系统的组成:预处理系统、初级处理系统和精处理系统。 15. 硅片电学参数:导电类型、电阻率、电阻率变化及电阻率条纹。 16. 硅晶体两种切割工艺比较:

内圆切割:内圆刀片、一片一片切割、刀缝m 350280μ→、品种变换简单方便、灵活,风险低、效率低、原料损耗高、硅片体型变大、加工参数一致性差。

线切割:钢丝切割线、整锭同时切割、线缝m 220180μ→、效率高、原料损耗小、硅片体型变小、加工参数一致性好、风险高。

17. 硅单晶内圆切割与多线切割的工艺过程:

内圆切割:

送清洗冲洗与去胶上机切割定向与校对粘结准备工作→→→→→。 多线切割:

送清洗冲洗去胶上机切割系统调整粘结定向准备工作→→→→→→。

18. 磨削液的作用:冷却、排渣、润滑、防锈。

19. 研磨工艺过程:

送清洗研磨设置修盘配置研磨液硅片厚度分选→→→→→。

20. 研磨前为什么要进行厚度分选?

答:经切割的硅片厚度较分散,为使研磨后的硅片厚度较一致,并且总厚度变化TTV 小,需要对切割后的硅片进行厚度分选,将厚度一致的硅片放在同盘进行研磨。

21. 硅边缘倒角的目的、形状、工艺过程。

答:硅片倒角的目的为了有效的释放内部应力、以减少后续的加工损伤;

倒角形状:圆弧形、梯形;

工艺过程:结束工作自动磨削校准调整准备工作→→→。

22. 硅片热处理的作用、范围、工艺条件、步骤。

答:

作用:

◆ 消除氧的施主效应;

◆ 释放应力;

范围:直拉非重掺硅片;

工艺条件:

◆ 温度:℃650左右;

◆ 时间:min 4030→。

步骤:结束工作出炉恒温入炉装片准备工作→→→→→。

23. 硅片化学减薄的作用与意义、方法、工艺过程

答:

作用与意义:

◆ 使硅片表面洁净;

◆ 提高抛光效率;

◆ 消除硅片内应力;

方法:酸腐蚀、碱腐蚀;

工艺过程:送检冲洗甩干化学腐蚀硅片厚度分选准备工作→→→→。

24. 抛光布垫技术要求、作用及存放。

答:

技术要求:

质地柔软;

吸水量大;

耐磨、耐化学腐蚀。

作用:存储及运输抛光液;

存放:

环境要求:

环境温度:℃2410→;

相对湿度:%50左右;

洁净等级:10000级。

平放存储;

避免过期存放而变质失效。

25. 硅片抛光方式,工艺过程。

答:

方式:碱性二氧化硅抛光;

工艺过程:结束工作取片精抛粗抛粘片厚度分选抛前准备→→→→→→。

26. 碱性二氧化硅抛光方法与原理。

答:

◆ 碱对硅的腐蚀反应;

◆ 胶粒见的吸附作用;

◆ 抛光衬垫与硅片的机械摩擦作用;

◆ 碱的络合作用。

27. 抛光速率的影响因素。

答:

抛光压力:在其他条件不变时,随着压力的提高,抛光速率也随之上升,但在实际生产中,当压力到达临界点时,若继续提高压力,抛光效率不但不会弄上升,反而会下降。 抛光温度:温度越高,化学反应速率越快,抛光速率越高;

PH 值:抛光速率与PH 值成指数函数关系,提高PH 值,可以加快硅片与抛光液的化学反应速率,提高抛光速率;

硅片晶体结构:不同型号、不同晶向及不同电阻率的硅片,其面密度及原子、结合力都不同,因此抛光过程中的化学腐蚀速率有所不同;

摩擦力:μρ=f ,μ为摩擦系数,ρ为抛光压力。

28. 抛光前为什么要进行厚度分选?

答:为了保证抛光后硅片的几何特性,需进行厚度分选,然后分档装片加工。

29. 硅片切割片、研磨片、抛光片清洗过程。

答:

切割片:结束工作甩干超声波清洗去除胶粘结剂和石墨准备过程→→→→。 研磨片:结束工作甩干超声波清洗浸泡粗洗准备工作→→→H →→F 。

抛光片:结束工作送检(二)清洗送检(一)

去蜡准备工作→→→→→。 30. 硅片检验的内容、方法、意义。

答:

内容:电学参数、结晶学参数、几何参数和表面洁净度参数;

方法:接触式和非接触式;

意义:预防,把关。

31. 硅片检验的环境条件:

答:

环境温度:℃℃523±

相对湿度:%65≤

电源:V V 10220±和V V 20380±,Z H 50交流电;

环境洁净度:10000100→级

光源:

高强度狭束光源:离光源mm 100处光照度ux l 216;

大面积散射光源:检测面上光照度为lux 630430→。

32. 当你领到一批硅片时,应如何实施研磨。

答:倒角

硅片生产工艺流程及注意要点

硅片生产工艺流程及注意要点 简介 硅片的准备过程从硅单晶棒开始,到清洁的抛光片结束,以能够在绝好的环境中使用。期间,从一单晶硅棒到加工成数片能满足特殊要求的硅片要经过很多流程和清洗步骤。除了有许多工艺步骤之外,整个过程几乎都要在无尘的环境中进行。硅片的加工从一相对较脏的环境开始,最终在10级净空房内完成。 工艺过程综述 硅片加工过程包括许多步骤。所有的步骤概括为三个主要种类:能修正物理性能如尺寸、形状、平整度、或一些体材料的性能;能减少不期望的表面损伤的数量;或能消除表面沾污和颗粒。硅片加工的主要的步骤如表1.1的典型流程所示。工艺步骤的顺序是很重要的,因为这些步骤的决定能使硅片受到尽可能少的损伤并且可以减少硅片的沾污。在以下的章节中,每一步骤都会得到详细介绍。 表1.1 硅片加工过程步骤 1.切片 2.激光标识 3.倒角 4.磨片 5.腐蚀 6.背损伤 7.边缘镜面抛光 8.预热清洗 9.抵抗稳定——退火 10.背封 11.粘片 12.抛光 13.检查前清洗 14.外观检查

15.金属清洗 16.擦片 17.激光检查 18.包装/货运 切片(class 500k) 硅片加工的介绍中,从单晶硅棒开始的第一个步骤就是切片。这一步骤的关键是如何在将单晶硅棒加工成硅片时尽可能地降低损耗,也就是要求将单晶棒尽可能多地加工成有用的硅片。为了尽量得到最好的硅片,硅片要求有最小量的翘曲和最少量的刀缝损耗。切片过程定义了平整度可以基本上适合器件的制备。 切片过程中有两种主要方式——内圆切割和线切割。这两种形式的切割方式被应用的原因是它们能将材料损失减少到最小,对硅片的损伤也最小,并且允许硅片的翘曲也是最小。 切片是一个相对较脏的过程,可以描述为一个研磨的过程,这一过程会产生大量的颗粒和大量的很浅表面损伤。 硅片切割完成后,所粘的碳板和用来粘碳板的粘结剂必须从硅片上清除。在这清除和清洗过程中,很重要的一点就是保持硅片的顺序,因为这时它们还没有被标识区分。 激光标识(Class 500k) 在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标识。一台高功率的激光打印机用来在硅片表面刻上标识。硅片按从晶棒切割下的相同顺序进行编码,因而能知道硅片的正确位置。这一编码应是统一的,用来识别硅片并知道它的来源。编码能表明该硅片从哪一单晶棒的什么位置切割下来的。保持这样的追溯是很重要的,因为单晶的整体特性会随着晶棒的一头到另一头而变化。编号需刻的足够深,从而到最终硅片抛光完毕后仍能保持。在硅片上刻下编码后,即使硅片有遗漏,也能追溯到原来位置,而且如果趋向明了,那么就可以采取正确的措施。激光标识可以在硅片的正面也可在背面,尽管正面通常会被用到。

半导体工艺与制造技术习题答案(第四章 离子注入)

第四章 离子注入与快速热处理 1.下图为一个典型的离子注入系统。 (1)给出1-6数字标识部分的名称,简述其作用。 (2)阐述部件2的工作原理。 答:(1)1:离子源,用于产生注入用的离子; 2:分析磁块,用于将分选所需的离子; 3:加速器,使离子获得所需能量; 4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入; 6:法拉第杯,收集束流测量注入剂量。 (2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式: 决定。最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。 2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。 电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。 在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。 1 2 3 4 5 6

3.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么? 答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。 B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。 4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。 答:离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度要大于非损伤晶体,且存在大量间隙原子核其他缺陷,使扩散系数增大,扩散效应增强;故虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。 5.什么是离子注入中常发生的沟道效应(Channeling)和临界角?怎样避免沟道效应? 答:沟道效应,即当离子入射方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。由于沟道效应,使注入离子浓度的分布产生很长的拖尾;对于轻原子注入到重原子靶内是,拖尾效应尤其明显。 临界角是用来衡量注入是否会发生沟道效应的一个阈值量,当离子的速度矢量与主要晶轴方向的夹角比临界角大得多的时候,则很少发生沟道效应。临界角可用下式表示: 6.什么是固相外延(SPE)及固相外延中存在的问题? 答:固相外延是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。热退火的过程就是一个固相外延的过程。 高剂量注入会导致稳定的位错环,非晶区在经过热退火固相外延后,位错环的最大浓度会位于非晶和晶体硅的界面处,这样的界面缺陷称为射程末端缺陷。若位错环位于PN结耗尽区附近,会产生大的漏电流,位错环与金属杂质结合时更严重。因此,选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。 7.离子注入在半导体工艺中有哪些常见应用? 答:阱注入、VT调整注入,轻掺杂漏极(LDD),源漏离子注入,形成SOI结构。 8.简述RTP设备的工作原理,相对于传统高温炉管它有什么优势? 答:RTP设备是利用加热灯管通过热辐射的方式选择性加热硅片,使得硅片在极短的时间内达到目标温度并稳定维持一段时间。相对于传统高温炉管,RTP设备热处理时间短,热预算小,冷壁工艺减少硅片污染。 9.简述RTP在集成电路制造中的常见应用。 答:RTP常用于退火后损失修复、杂质的快速热激活、介质的快速热加工、硅化物和接触的形成等。 10.采用无定形掩膜的情况下进行注入,若掩膜/衬底界面的杂质浓度减少至峰值

单晶硅片从切片到抛光清洗的工艺流程

一、硅片生产主要制造流程如下: 切片→倒角→磨片→磨检→CP→CVD→ML→最终洗净→终检→仓入 二、硅片生产制造流程作业实习 1.硅棒粘接:用粘接剂对硅棒和碳板进行粘接,以利于牢固的 固定在切割机上和方位角的确定。 2.切片(Slice):主要利用内圆切割机或线切割机进行切割,以 获得达到其加工要求的厚度,X、Y方向角,曲翘度的薄硅片。 3.面方位测定:利用X射线光机对所加工出的硅片或线切割前 要加工的硅棒测定其X、Y方位角,以保证所加工的硅片的X、 Y方位角符合产品加工要求。 4.倒角前清洗:主要利用热碱溶液和超声波对已切成的硅片进 行表面清洗,以去除硅片表面的粘接剂、有机物和硅粉等。 5.倒角(BV):利用不同的砥石形状和粒度来加工出符合加工要 求的倒角幅值、倒角角度等,以减少后续加工过程中可能产 生的崩边、晶格缺陷、处延生长和涂胶工艺中所造成的表面 层的厚度不均匀分布。 6.厚度分类:为后续的磨片加工工艺提供厚度相对均匀的硅片 分类,防止磨片中的厚度不均匀所造成的碎片等。 7.磨片(Lapping):去除切片过程中所产生的切痕和表面损伤

层,同时获得厚度均匀一致的硅片。 8.磨片清洗:去除磨片过程中硅片表面的研磨剂等。 9.磨片检查:钠光灯下检查由于前段工艺所造成的各类失效模 式,如裂纹、划伤、倒角不良等。 10.ADE测量:测量硅片的厚度、曲翘度、TTV、TIR、FPD等。 11.激光刻字:按照客户要求对硅片进行刻字。 12.研磨最终清洗:去除硅片表面的有机物和颗粒。 13.扩大镜检查:查看倒角有无不良和其它不良模式。 14.CP前洗:去除硅片表面的有机物和颗粒。 15.CP(Chemical Polishing):采用HNO3+HF+CH3COOH溶液腐蚀去 除31um厚度,可有效去除表面损伤层和提高表面光泽度。 16.CP后洗:用碱和酸分别去除有机物和金属离子。 17.CP检查:在荧光灯和聚光灯下检查表面有无缺陷和洗污,以 及电阻率、PN判定和厚度的测量分类。 18.DK(Donar Killer):利用退火处理使氧原子聚为基团,以稳 定电阻率。 19.IG(Intrinsic Gettering):利用退火处理使氧原子形成二次 缺陷以吸附表面金属杂质。 20.BSD(Back Side Damage):利用背部损伤层来吸附金属杂质。 21.CVD前洗:去除有机物和颗粒。 22.LP-CVD(Low Pressure Chemical Vapor Deposition):高温分 解SiH4外延出多晶硅达到增强型的外吸杂。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

硅片生产工艺技术流程

顺大半导体发展有限公司太阳能用 硅单晶片生产技术 目录 一、硅片生产工艺中使用的主要原辅材料 1、拉制单晶用的原辅材料,设备和部件: 2、供硅片生产用的原辅材料,设备和部件: 二、硅片生产工艺技术 1、硅单晶生产部 (1)、腐蚀清洗工序生产工艺技术 对处理后原材料质量要求 (2)、腐蚀清洗生产工艺流程 ①多晶硅块料,复拉料和头,尾料处理工艺流程 ②边皮料酸碱清洗处理工艺流程 ③埚底料酸清洗处理工艺流程 ④废片的清洗处理工艺流程 (3)、硅单晶生长工艺技术 (4)、单晶生长中的必备条件和要求 ①单晶炉 ②配料与掺杂 (5),单晶生长工艺参数选择 (6)、质量目标: (7)、硅单晶生长工艺流程

2、硅片生产部 (1)、硅片加工生产工艺技术 (2)、硅片加工工艺中的必备条件和要求 ①切割机 ②切割浆液 (3)、质量目标 (4)、硅片加工工艺技术流程 ①开方锭生产工艺流程 ②切片生产工艺流程 (5)、硅片尺寸和性能参数检测

前言 江苏顺大半导体发展有限公司座落于美丽的高邮湖畔。公司始创生产太阳能电池用各种尺寸的单晶和多晶硅片。拥有国内先进的拉制单晶设备104台,全自动单晶炉112台。年产量可达到××××吨。拥有大型先进的线切割设备×××台。并且和无锡尚德形成了合作联盟(伙伴),每×可以向尚德提供×××硅单晶片。同时河北晶于2004年,占地面积××××。公司现在有×××名员工,从事澳、南京等光伏组件公司都和顺大形成了长年的合作关系。为了公司的进一步发展,扩大产业链,解决硅单晶的上下游产品的供需关系,2006年在扬州投资多晶硅项目,投资规模达到××亿。工程分两期建设,总规模年产多晶硅6000吨。2008年底首期工程已经正式投入批量生产,年产多晶硅×××吨。 太阳能用硅片生产工艺十分复杂,要通过几十道工序才能完成,只有发挥团队精神才能保证硅片的最终质量。编写该篇壮大资料的目的:首先让大家了解整个硅片生产过程,更重要的是让各生产工序中的每一位操作人员明确自己的职责,更自觉地按操作规程和规范做好本职工作,为顺大半导体发展有限公司的发展,尽自己的一份力量。

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

电池片生产工艺流程汇总

电池片生产工艺流程 一、制绒 a.目的 在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面; 用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。 b.流程 1.常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。 硅的氧化 硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化) Si+4HNO3=SiO2+4NO2+2H2O (慢反应 3Si+4HNO3=3SiO2+4NO+2H2O (慢反应 二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。 2NO2+H2O=HNO2+HNO3 (快反应 Si+4HNO2=SiO2+4NO+2H2O (快反应(第一步的主反应)

4HNO3+NO+H2O=6HNO2(快反应 只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。 二氧化硅的溶解 SiO2+4HF=SiF4+2H2O(四氟化硅是气体 SiF4+2HF=H2SiF6 总反应 SiO2+6HF=H2SiF6+2H2O 最终反应掉的硅以氟硅酸的形式进入溶液。 2.清水冲洗 3.硅片经过碱液腐蚀(氢氧化钠/氢氧化钾),腐蚀掉硅片经酸液腐蚀后的多孔硅 4.硅片经HF、HCl冲洗,中和碱液,如不清洗硅片表面残留的碱液,在烘干后硅片的表面会有结晶 5.水冲洗表面,洗掉酸液 c.注意

硅片多线切割技术详解

硅片多线切割技术详解 太阳能光伏网 2012-4-9 硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度

硅片生产流程

硅片生产流程 小组成员:吴国栋徐浩王汉杰王超 简介 硅片的准备过程从硅单晶棒开始,到清洁的抛光片结束,以能够在绝好的环境中使用。期间,从一单晶硅棒到加工成数片能满足特殊要求的硅片要经过很多流程和清洗步骤。除了有许多工艺步骤之外,整个过程几乎都要在无尘的环境中进行。硅片的加工从一相对较脏的环境开始,最终在10级净空房内完成。 工艺过程综述 硅片加工过程包括许多步骤。所有的步骤概括为三个主要种类:能修正物理性能如尺寸、形状、平整度、或一些体材料的性能;能减少不期望的表面损伤的数量;或能消除表面沾污和颗粒。硅片加工的主要的步骤如表1.1的典型流程所示。工艺步骤的顺序是很重要的,因为这些步骤的决定能使硅片受到尽可能少的损伤并且可以减少硅片的沾污。在以下的章节中,每一步骤都会得到详细介绍。 硅片加工过程步骤 1. 切片 2. 激光标识 3. 倒角 4. 磨片 5. 腐蚀 6. 背损伤 7. 边缘镜面抛光 8. 预热清洗 9. 抵抗稳定——退火 10. 背封 11. 粘片 12. 抛光 13. 检查前清洗 14. 外观检查 15. 金属清洗

16. 擦片 17. 激光检查 18. 包装/货运 切片(class 500k) 硅片加工的介绍中,从单晶硅棒开始的第一个步骤就是切片。这一步骤的关键是如何在将单晶硅棒加工成硅片时尽可能地降低损耗,也就是要求将单晶棒尽可能多地加工成有用的硅片。为了尽量得到最好的硅片,硅片要求有最小量的翘曲和最少量的刀缝损耗。切片过程定义了平整度可以基本上适合器件的制备。 切片过程中有两种主要方式——内圆切割和线切割。这两种形式的切割方式被应用的原因是它们能将材料损失减少到最小,对硅片的损伤也最小,并且允许硅片的翘曲也是最小。 切片是一个相对较脏的过程,可以描述为一个研磨的过程,这一过程会产生大量的颗粒和大量的很浅表面损伤。 硅片切割完成后,所粘的碳板和用来粘碳板的粘结剂必须从硅片上清除。在这清除和清洗过程中,很重要的一点就是保持硅片的顺序,因为这时它们还没有被标识区分。 激光标识(Class 500k) 在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标识。一台高功率的激光打印机用来在硅片表面刻上标识。硅片按从晶棒切割下的相同顺序进行编码,因而能知道硅片的正确位置。这一编码应是统一的,用来识别硅片并知道它的来源。编码能表明该硅片从哪一单晶棒的什么位置切割下来的。保持这样的追溯是很重要的,因为单晶的整体特性会随着晶棒的一头到另一头而变化。编号需刻的足够深,从而到最终硅片抛光完毕后仍能保持。在硅片上刻下编码后,即使硅片有遗漏,也能追溯到原来位置,而且如果趋向明了,那么就可以采取正确的措施。激光标识可以在硅片的正面也可在背面,尽管正面通常会被用到。 倒角 当切片完成后,硅片有比较尖利的边缘,就需要进行倒角从而形成子弹式的光滑的边缘。倒角后的硅片边缘有低的中心应力,因而使之更牢固。这个硅片边缘的强化,能使之在以后的硅片加工过程中,降低硅片的碎裂程度。图1.1举例说明了切片、激光标识和倒角的过程。 磨片(Class 500k) 接下来的步骤是为了清除切片过程及激光标识时产生的不同损伤,这是磨片过程中要完成的。在磨片时,硅片被放置在载体上,并围绕放置在一些磨盘上。硅片的两侧都能与磨盘接触,从而使硅片的两侧能同时研磨到。磨盘是铸铁制的,边缘锯齿状。上磨盘上有一系列的洞,可让研磨砂分布在硅片上,并随磨片机运动。磨片可将切片造成的严重损伤清除,只留下一些均衡的浅显的伤痕;磨片的第二个好处是经磨片之后,硅片非常平整,因为磨盘是极其平整的。 磨片过程主要是一个机械过程,磨盘压迫硅片表面的研磨砂。研磨砂是由将氧化铝溶液延缓煅烧后形成的细小颗粒组成的,它能将硅的外层研磨去。被研磨去的外层深度要比切片造成的损伤深度更深。

单晶硅生产工艺

什么是单晶硅 单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。 单晶硅产品包括φ3”----φ6”单晶硅圆形棒、片及方形棒、片,适合各种半导体、电子类产品的生产需要,其产品质量经过当前世界上最先进的检测仪器进行检验,达到世界先进水平。 相对多晶硅是在单籽晶为生长核,生长的而得的。单晶硅原子以三维空间模式周期形成的长程有序的晶体。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片 加工工艺: 加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力

硅工艺-《集成电路制造技术》课程-试题

晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。 2.单晶硅生长常用(CZ法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是整型、定向、标识。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111)。 6.CZ直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有确定晶向的)并且(被掺杂成p型或n型)的固体硅锭。 7.CZ直拉法的目的是(实现均匀掺杂的同时,并且复制仔晶的结构,得到合适的硅锭直径)。影响CZ直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1(制备工业硅);2(生长硅单晶);3(提纯)。 10.晶片需要经过切片、磨片、抛光后,得到所需晶圆。 氧化 10.二氧化硅按结构可分为()和()或()。 11.热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13.用于热氧化工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS和(STI )。 15.列出热氧化物在硅片制造的4种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。 16.可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、(蒸发)、退火和合金。 17.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18.卧式炉的工艺腔或炉管是对硅片加热的场所,它由平卧的(石英工艺腔)、(加热器)和(石英舟)组成。淀积 19.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。 20.淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。21.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。 22.在外延工艺中,如果膜和衬底材料(相同),例如硅衬底上长硅膜,这样的膜生长称为(同质外延);反之,膜和衬底材料不一致的情况,例如硅衬底上长氧化铝,则称为(异质外延)。 23.化学气相淀积是通过()的化学反应在硅片表面淀积一层()的工艺。硅片表面及其邻近的区域被()来向反应系统提供附加的能量。 金属化 24.金属按其在集成电路工艺中所起的作用,可划分为三大类:()、()和()。 25.气体直流辉光放电分为四个区,分别是:无光放电区、汤生放电区、辉光放电区和电弧放电区。其中辉光放电区包括前期辉光放电区、()和(),则溅射区域选择在()。 26.集成电路工艺中利用溅射现象主要用来(),还可以用来()。 27.对芯片互连的金属和金属合金来说,它所必备一些要求是:(导电率)、高黏附性、(淀积)、(平坦化)、可靠性、抗腐蚀性、应力等。 28.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铜),。 29.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。 30.阻挡层金属是一类具有(高熔点)的难熔金属,金属铝和铜的阻挡层金属分别是(W )和(W )。 31.被用于传统和双大马士革金属化的不同金属淀积系统是:()、()、()和铜电镀。 32.溅射主要是一个()过程,而非化学过程。在溅射过程中,()撞击具有高纯度的靶材料固体平板,按物理过程撞击出原子。这些被撞击出的原子穿过(),最后淀积在硅片上。 平坦化 33.缩略语PSG、BPSG的中文名称分别是()、()。 34.列举硅片制造中用到CMP的几个例子:()、LI氧化硅抛光、()、()、钨塞抛光和双大马士革铜抛光。 35.终点检测是指(CMP设备)的一种检测到平坦化工艺把材料磨到一个正确厚度的能力。两种最常用的原位终点检测技术是(电机电流终点检测)和(光学终点检测)。 36.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。 37.传统的平坦化技术有()、()和()。

晶体硅的生产过程

一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。 单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。 由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。 单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。 二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。 目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,

先进制造技术习题答案(DOC 32页)

先进制造技术习题答案(DOC 32页)

全国高职高专规划教材·精品与示范系列 先进制造技术 习题答案 孙燕华主编 电子工业出版社 Publishing House of Electronics Industry 北京·BEIJING

1-1论述先进制造技术及其主要特点。 答:1、系统性 先进制造技术由于微电子、信息技术的引入,使制造技术成为一个能驾驭生产过程的物质流、信息流和能量流的系统工程。如柔性制造系统(FMS)、计算机集成制造系统(CIMS)技术是先进制造技术全过程控制物质流、信息流和能量流的典型应用案例。 2、集成性 现代制造技术使各专业、学科间不断交叉、融合,其界限逐渐淡化甚至消失,发展成为集机械、电子、信息、材料和管理技术为一体的新型交叉学科。集成技术显示出高效率、多样化、柔性化、自动化、资源共享等特点。 3、广泛性 现代制造技术则贯穿了从产品设计、加工制造到产品销售及用户服务等整个产品生命周期全过程,成为“市场——产品设计——制造——市场”的大系统。 4、高精度 现代制造对产品、零件的精度要求越来越

高,在飞机、潜艇等军事设施中使用的精密陀螺、大型天文望远镜以及大规模集成电路的硅片等高新技术产品都需要超精密加工技术的支持。这些需求使激光加工、电子束、离子束加工、纳米制造、微机械制造等新方法迅速发展。 5、实现优质、高效、低耗、清洁、灵活的生产 先进制造技术的核心是优质、高效、低耗、清洁、灵活生产等基础制造技术,它是从传统的制造工艺发展起来的,并与新技术实现了局部或系统集成。 1-2叙述先进制造技术的构成及分类。 答:先进制造技术的构成: 1、基础技术 第一层次是优质、高效、低耗、少或无污染的基础制造技术。铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺至今仍是生产中大量采用、经济适用的技术,这些基础工艺经过优化而形成的基础制造技术是先进制造技术的核心及重要组成部分。这些基础技术主要有精密下料、精密成形、精密加工、精密测量、毛坯强

硅片加工

硅片加工技术 1. 硅的主要性质:原子序数:14、现对原子质量:08.28、晶体结构:金刚石结构、熔点:℃1420、颜色:银白色。 2. 硅片按生产工艺分为:切割片、研磨片、化腐片和抛光片。 3. 硅片加工第一道工序:定向、滚磨开方。 4. 滚磨开方的设备:单晶切方滚磨机、带锯、线锯。 5. 硅单晶主参考面方位的确定方法:光图定向法和晶棱连线法。 6. 硅单晶定向切割可分为:多线切割和内圆切割。 7. 硅片的研磨方式有:单面研磨和双面研磨。 8. 硅片抛光的方法分为:机械抛光、化学抛光、化学机械抛光、最常用的方法是化学机械抛光。 9. 吸附分为:化学吸附和物理吸附。 10. 环境洁净度等级标准:美国联邦标准。 11. 硅片表面污染类型:有机杂质玷污、颗粒类杂质玷污和金属杂质玷污。 12. 化学试剂按纯度分为:优级纯、分析纯、化学纯。 13. 超声波清洗系统的组成:超声波电源、清洗槽和换能器。 14. 纯水制备系统的组成:预处理系统、初级处理系统和精处理系统。 15. 硅片电学参数:导电类型、电阻率、电阻率变化及电阻率条纹。 16. 硅晶体两种切割工艺比较: 内圆切割:内圆刀片、一片一片切割、刀缝m 350280μ→、品种变换简单方便、灵活,风险低、效率低、原料损耗高、硅片体型变大、加工参数一致性差。 线切割:钢丝切割线、整锭同时切割、线缝m 220180μ→、效率高、原料损耗小、硅片体型变小、加工参数一致性好、风险高。 17. 硅单晶内圆切割与多线切割的工艺过程: 内圆切割: 送清洗冲洗与去胶上机切割定向与校对粘结准备工作→→→→→。 多线切割: 送清洗冲洗去胶上机切割系统调整粘结定向准备工作→→→→→→。 18. 磨削液的作用:冷却、排渣、润滑、防锈。 19. 研磨工艺过程: 送清洗研磨设置修盘配置研磨液硅片厚度分选→→→→→。 20. 研磨前为什么要进行厚度分选? 答:经切割的硅片厚度较分散,为使研磨后的硅片厚度较一致,并且总厚度变化TTV 小,需要对切割后的硅片进行厚度分选,将厚度一致的硅片放在同盘进行研磨。 21. 硅边缘倒角的目的、形状、工艺过程。 答:硅片倒角的目的为了有效的释放内部应力、以减少后续的加工损伤;

(完整版)集成电路工艺原理试题总体答案

目录 一、填空题(每空1分,共24分) (1) 二、判断题(每小题1.5分,共9分) (1) 三、简答题(每小题4分,共28分) (2) 四、计算题(每小题5分,共10分) (4) 五、综合题(共9分) (5) 一、填空题(每空1分,共24分) 1.制作电阻分压器共需要三次光刻,分别是电阻薄膜层光刻、高层绝缘层光刻和互连金属层光刻。 2.集成电路制作工艺大体上可以分成三类,包括图形转化技术、薄膜制备技术、掺杂技术。 3.晶体中的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷等四种。 4.高纯硅制备过程为氧化硅→粗硅→ 低纯四氯化硅→ 高纯四氯化硅→ 高纯硅。 5.直拉法单晶生长过程包括下种、收颈、放肩、等径生长、收尾等步骤。 6.提拉出合格的单晶硅棒后,还要经过切片、研磨、抛光等工序过程方可制备出符合集成电路制造要求的硅衬底 片。 7.常规的硅材料抛光方式有:机械抛光,化学抛光,机械化学抛光等。 8.热氧化制备SiO2的方法可分为四种,包括干氧氧化、水蒸汽氧化、湿氧氧化、氢氧合成氧化。 9.硅平面工艺中高温氧化生成的非本征无定性二氧化硅对硼、磷、砷(As)、锑(Sb)等元素具有掩蔽作用。 10.在SiO2内和Si- SiO2界面存在有可动离子电荷、氧化层固定电荷、界面陷阱电荷、氧化层陷阱等电荷。 11.制备SiO2的方法有溅射法、真空蒸发法、阳极氧化法、热氧化法、热分解淀积法等。 12.常规平面工艺扩散工序中的恒定表面源扩散过程中,杂质在体内满足余误差函数分布。常规平面工艺扩散工序中的有限表 面源扩散过程中,杂质在体内满足高斯分布函数分布。 13.离子注入在衬底中产生的损伤主要有点缺陷、非晶区、非晶层等三种。 14.离子注入系统结构一般包括离子源、磁分析器、加速管、聚焦和扫描系统、靶室等部分。 15.真空蒸发的蒸发源有电阻加热源、电子束加热源、激光加热源、高频感应加热蒸发源等。 16.真空蒸发设备由三大部分组成,分别是真空系统、蒸发系统、基板及加热系统。 17.自持放电的形式有辉光放电、弧光放电、电晕放电、火花放电。 18.离子对物体表面轰击时可能发生的物理过程有反射、产生二次电子、溅射、注入。 19.溅射镀膜方法有直流溅射、射频溅射、偏压溅射、磁控溅射(反应溅射、离子束溅射)等。 20.常用的溅射镀膜气体是氩气(Ar),射频溅射镀膜的射频频率是13.56MHz。 21.CVD过程中化学反应所需的激活能来源有?热能、等离子体、光能等。 22.根据向衬底输送原子的方式可以把外延分为:气相外延、液相外延、固相外延。 23.硅气相外延的硅源有四氯化硅(SiCl4)、三氯硅烷(SiHCl3)、二氯硅烷(SiH2Cl2)、硅烷(SiH4)等。 24.特大规模集成电路(ULIC)对光刻的基本要求包括高分辨率、高灵敏度的光刻胶、低缺陷、精密的套刻对准、对大尺寸硅片 的加工等五个方面。 25.常规硅集成电路平面制造工艺中光刻工序包括的步骤有涂胶、前烘、曝光、显影、坚膜、腐蚀、 去胶等。 26.光刻中影响甩胶后光刻胶膜厚的因素有溶解度、温度、甩胶时间、转速。 27.控制湿法腐蚀的主要参数有腐蚀液浓度、腐蚀时间、腐蚀液温度、溶液的搅拌方式等。 28.湿法腐蚀Si所用溶液有硝酸-氢氟酸-醋酸(或水)混合液、KOH溶液等,腐蚀SiO2常用的腐蚀剂是HF溶液,腐蚀 Si3N4常用的腐蚀剂是磷酸。 29.湿法腐蚀的特点是选择比高、工艺简单、各向同性、线条宽度难以控制。 30.常规集成电路平面制造工艺主要由光刻、氧化、扩散、刻蚀、离子注入(外延、CVD、PVD)等工 艺手段组成。 31.设计与生产一种最简单的硅双极型PN结隔离结构的集成电路,需要埋层光刻、隔离光刻、基区光刻、发射区光刻、引线区 光刻、反刻铝电极等六次光刻。 32.集成电路中隔离技术有哪些类? 二、判断题(每小题1.5分,共9分) 1.连续固溶体可以是替位式固溶体,也可以是间隙式固溶体(×) 2.管芯在芯片表面上的位置安排应考虑材料的解理方向,而解理向的确定应根据定向切割硅锭时制作出的定位面为依据。(√) 3.当位错线与滑移矢量垂直时,这样的位错称为刃位错,如果位错线与滑移矢量平行,称为螺位错(√) 4.热氧化过程中是硅向二氧化硅外表面运动,在二氧化硅表面与氧化剂反应生成二氧化硅。(×) 5.热氧化生长的SiO2都是四面体结构,有桥键氧、非桥键氧,桥键氧越多结构越致密,SiO2中有离子键成份,氧空位表现为带正

单晶硅太阳能电池制作工艺

. 单晶硅太阳能电池/DSSC/PERC技术 2015-10-20

单晶硅太阳能电池

2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥0.4 μm颗粒,利用兆声波可去除≥0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被

排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD 法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、

相关文档
最新文档