-概率与数理统计试题答案a

-概率与数理统计试题答案a
-概率与数理统计试题答案a

西安建筑科技大学考试试卷参考答案及评分标准(A 卷)

一.填空题(每空2分,共16分)

1.设C B A ,, 表示三个事件,利用C B A ,, 表达下列事件:

(1)A 出现,C B , 都不出现,表示为 C B A 。 (2)三个事件中至少有一个出现,表示为C B A ??。 (3)三个事件都不出现,表示为C B A 。

2.设70=?40=.)(,.)(B A P A P ,若A 与B 互不相容,则=)(B P 0.3 ,若

A 与

B 相互独立,则=)(B P 0.5 。

3.设随机变量相互独立与的正态分布,均匀分布,Y X N Y U X )1,4(~)4,1(~,

则 =-)2(Y X E -11/2 ,=-)2(Y X D 19/4 。

4,设随机变量[]b a U X ,~的均匀分布,则X 的分布密度

??

???<<-=其他,0,1)(b x a a b x f 。

二.单项选择题(每小题3分,共15分)

1,设事件A,B 为互斥事件,则下列各式正确的是( C )

(A )1=+)(B A P (B ))()()(B P A P AB P =

(C ) )()()(B P A P B A P +=+

(D ))()(A P B P -1=

(2)设总体为),(~21N X ,样本容量为10,则( B )

(A ))2,0(~N X (B ))2.0,1(~N X

(C ))102,

1(~N X (D ))1,0(~10

/21

N X - (3) 设 n X X X ,,,21 是来自正态总体 ),(~2σμN X 的一个样本 ,

样本均值为∑==n i i X n X 11,样本方差为∑=--=n i i X X n S 1

22

)(11,则服从自由度为 1-n 的2χ分布的随机变量是( B )

(A )

2

2

σnS (B )

2

2

)1(σ

S n -

(C )

2

2

σS

(D )2

2

)1(σ

-n S (4) 设随机变量X 与Y 相互独立且4=DX ,2=DY ,则=-)23(Y X D ( D )

(A) 8

(B) 16

(C) 28

(D) 44

(5). 下列函数中为随机变量的分布函数的是( B )

(A)???≥+<=-0,)1(0,

0)(1

2x x x x F (B)???-≥-<+=-1,

11,)1()(12x x x x F (C)???≥<=-0,e 0,

0)(x x x F x

(D)?

??≥<+-=0,10

),1ln()(2x x x x F

三.(8分)设商场出售的某元件是由甲、乙、丙厂生产的,产量各占2.0,3.0,5.0,各厂生产的该元件在规定的时间内能正常工作的概率分别是7.0,8.0,9.0。现从该商场买了这样一个元件,求该元件在规定的时间内能正常工作的概率。

解 用321,,A A A 分别表示买到的元件是由甲、乙、丙厂生产的,B 表示买到的元件在规定时间内能正常工作,则有

5.0)(1=A P ,

3.0)(2=A P ,

2.0)(3=A P ,

(2分) 9.0)|(1=A B P , 8.0)|(2=A B P , 7.0)|(3=A B P ,

(2分) 故有(1)∑==3

1

)|()()(n n n A B P A P B P

(2分) 83.07.02.08.03.09.05.0=?+?+?=

(2分)

四. (8分)设随机变量X 的分布函数为,

0,10.2,12()0.7,241,4x x F x x x <-??-≤

=?

?≥?

(1) 求)3(≤X P ,)32

1

(≤

解:(1)

(2) 求X 的分布律.

000()(0)(0)(1)0.200.2,(2)0.70.20.5,(4)10.70.3

2P X x F x F x P X P X P X ==+--=-=-===-===-=由于(分)

X 的分布律为:12

4~0.20.50.3X -?? ???

(2分)

五.(8分)设),(Y X 的分布律为

(1)求X 及Y 的边缘分布律;

(3)(3)0.7(1P X F ≤==分)11

(3)(3)(0.70.20.5122

P X F F <≤=-=-=(分)(2)1(2)1(2)(2)1(2)(20)(20)10.70.50.82P X P X P X P X F F F ≥=-<=-≤+==-++--=-+=(分)

(2分)

六.(10分)

例:设总体X 服从参数为λ的指数分布,其中λ未知,)

,,,(2

1

n

X X X 为从总体抽取一个样本,),,,(21n x x x 为其样本观测值,试求参数λ的极大似然估计值和估计量.

解:总体X 服从参数为λ的指数分布,则有

所以似然函数为

取对数为

解得λ的极大似然估计值为)21

?1

分(x

x

n

n

i i

=

=∑=λ

极大似然估计量为)21

?1

分(X

X

n

n

i i

=

=∑=λ

??

?

?

?≤>=-000);(x x e x f x λλλ)

2)(1

分(∑==-n

i i

x n e

L λ

λλ)

2ln )(ln 1

分(∑--=n

i i x n L λλλ)20)(ln 1

分(=-=∑=n

i i x n L d d λλλ

七.(10分)设随机变量),(Y X 的分布密度函数为

(34),0,0

(,)0,x y Ae x y f x y -+?>>=??

其他

(1)求系数A ,

解: (34)0

1

1(,)12

x y f x y dxdy Ae dxdy A +∞+∞

+∞+∞

-+-∞-∞

==

=

??

??

(3分)

12A ∴= (2分)

(2)求:X 与Y 的边缘概率密度;并判断X 与Y 是否相互独立.

X 的边缘密度函数(34)

30123,0()0x y x X e

dy e x f x +∞

-+-?=>?=???

?其它 (2分)

同理Y 的边缘密度函数440

()0y y e y f y -?>=??其它 (2分)

显然:)()(),(21y f x f y x f ?=所以X 与Y 相互独立。 (1分)

八.(10分)已知某工厂生产的某种零件其长度

)06.0,(~μN X ,现从某日生产

的一批零件中随机抽取6只,测得直径的数据(单位:mm )为 1.15,2.15,8.14,9.14,1.15,

6.14

试求:该批零件长度的置信度为0.95置信区间.(其中已知0.0250.51.96, 1.65U U ==); 解:

/20.025/2/214.9521.96,214.95 1.9614.7514.95 1.9615.154x u u x x ααασ=======+

=经计算:。(分)查表得(分)

经计算得:(分)

所求置信区间为:(14.75,15.15)(2分)

九(10分)已知某厂生产的导线电阻在正常情况下服从正态分布,其标准差为0050.(欧)

,今从某天生产的一批导线中抽出9根,测得0080=.S (欧),问在显著性水平05.0=α下这批导线电阻的方差是否正常。

解:设,005.0:2

2020==σσH 01:σσ≠H (2分)

μ未知,

用2

χ检验法,拒绝域)1()1(22

12

2

-≤--

n S n α

χ

σ

2

220

2

(1)(1)

(2)n S n αχσ

-≥-分

180.2)8()1(2

975.02

1==--

χχ

αn 535.17)8()1(2

025.022

==-χχαn (2分) 535.17)1(48.20005.0008.08)1(2

2

2

22

2

2

=->=?=-=

n S n αχσχ (2分) 故拒绝0H ,在05.0=α下认为这批导线的电阻方差不正常。 (2分)

十(5分)设X 与Y 相互独立,,0,0≠≠DY DX 证明X 与Y 互不相关。 证:因为X 与Y 相互独立,所以

0)(),(=-=-=EXEY EXEY EXEY XY E Y X Cov (2分) 即0),(==DY

DX Y X Cov XY

ρ (2分)

故X 与Y 互不相关。 (1分)

概率论与数理统计试题

07试题 一、填空题(本大题共6小题,每小题3分,总计18分) 1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则() () P AB P AB += 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 3.设随机变量X 在区间[0,2]上服从均匀分布,则2Y X =的概率密度函数为 4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()2 4E X ??+=? ? 5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得 {} 22P X -≥≤ . 6. 设1234,,,X X X X 是来自正态总体X ~()0,4N 的样本,则当a = 时, ()()22 123422Y a X X a X X =++-~()22χ. 二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题 共6个小题,每小题3分,总计18分) 1.设,A B 为对立事件, ()01P B <<, 则下列概率值为1的是( ) ~ (A) ()|P A B ; (B) ()|P B A ; (C) () |P A B ; (D) ()P AB 2. 设随机变量X ~()1,1N ,概率密度为()f x ,分布函数()F x ,则下列正确的是( ) (A) {0}{0}P X P X ≤=≥; (B) {1}{1}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈ 3. 设()f x 是随机变量X 的概率密度,则一定成立的是( ) (A) ()f x 定义域为[0,1]; (B) ()f x 非负; (C) ()f x 的值域为[0,1]; (D) ()f x 连续 4. 设4{1,1}9P X Y ≤≤= ,5 {1}{1}9 P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( ) (A) 23; (B) 2081; (C) 49; (D) 13 5. 设随机变量(),X Y 的方差()4D X =,()1D Y =,相关系数0.6XY ρ=,则方差 ()32D X Y -= ( ) - (A) 40; (B) 34; (C) ; (D) 6. 设12,,,n X X X 是正态总体X ~() 2,N μσ的样本,其中σ已知,μ未知,则下列不是 统计量的是( ) (A) 1max k k n X ≤≤; (B) 1min k k n X ≤≤; (C) X μ-; (D) 1 n k k X σ =∑ 三、计算题(本大题共6小题,每小题10分,共计60分) 1.甲乙丙三个同学同时独立参加考试,不及格的概率分别为: ,,, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率.

概率论与数理统计复习题带答案

;第一章 一、填空题 1.若事件A?B且P(A)=, P(B) = , 则 P(A-B)=()。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌 机被击中的概率为()。 3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为 ++)。 (AB AC BC 4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这 三台机器中至少有一台发生故障的概率为()。 5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为 ()。 6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为 (AB AC BC); 8.若事件A与事件B相互独立,且P(A)=, P(B) = , 则 P(A|B)=(); 9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机 被击中的概率为(); A-)=()10.若事件A与事件B互不相容,且P(A)=, P(B) = , 则 P(B 11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这三 台机器中最多有一台发生故障的概率为()。 A)=(); 12.若事件A?B且P(A)=, P(B) = , 则 P(B A)=() 13.若事件A与事件B互不相容,且P(A)=, P(B) = , 则 P(B 14.A、B为两互斥事件,则A B=( S ) 15.A、B、C表示三个事件,则A、B、C恰有一个发生可表示为 ++) (ABC ABC ABC

概率论与数理统计(含答案)

对外经济贸易大学远程教育学院 2006-2007学年第一学期 《概率论与数理统计》期末复习大纲 (附参考答案) 一、复习方法与要求 学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成. 学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目. 如开学给出的学习建议中所讲: 作为本科的一门课程,在课件中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.各章内容要求与所占分值如下: 第一章介绍的随机事件的关系与运算,概率的基本概念与关系. 约占20分. 第二章介绍的一维随机变量的分布. 约占20分. 第三章二维随机变量的分布,主要要求掌握二维离散型随机变量的联合分布律、边缘分布律以及随机变量独立的判别. 约占15分. 第四章介绍的随机变量的数字特征. 约占20分. 第五章的中心极限定理. 约占5分. 分布); 第六章介绍的总体、样本、统计量等术语;常用统计量的定义式与分布(t分布、2 正态总体样本函数服从分布定理. 约占7分. 第七章的矩估计与一个正态总体期望与方差的区间估计. 约占8分. 第八章一个正态总体期望与方差的假设检验. 约占5分. 对上述内容之外部分,不作要求. 二、期终考试方式与题型 本学期期终考试采取开卷形式,即允许带教材与参考资料. 题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题约占64分,每小题2分;选择题约占36分,每小题3分.

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率与数理统计

简介: 全书共分9章:随机事件与概率,一维随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,极限定理,统计量及抽样分布,参数估计,假设检验,方差分析与回归分析.本书科学、系统地介绍了概率论与数理统计的基本内容,重点介绍了概率论与数理统计的方法及其在经济管理中的应用,每章均配有习题,书末附有习题的参考答案. 图书目录: 第一章随机事件与概率 §1.1随机试验与样本空间;§1.2随机事件及其概率;一、随机事件;二、事件间的关系与运算;三、频率与概率;§1.3古典概型;§1.4概率的基本性质;§1.5条件概率与事件的独立性;一、条件概率;二、乘法定理;三、全概率公式;四、贝叶斯公式;五、事件的独立性;§1.6贝努里概型;数学家简介--费马;习题一 第二章一维随机变量及其分布 §2.1一维随机变量;§2.2离散型随机变量;一、离散型随机变量及其分布律;二、常用的离散型随机变量的分布;§2.3随机变量的分布函数;§2.4连续型随机变量;一、连续型随机变量及其密度函数;二、常用的连续型随机变量的分布;§2.5随机变量函数的分布;一、离散型随机变量函数的分布;二、连续型随机变量函数的分布;数学家简介--帕斯卡贝叶斯;习题二 第三章多维随机变量及其分布 §3.1二维随机变量;一、二维随机变量及其联合分布函数;二、二维离散型随机变量及其分布;三、二维连续型随机变量及其分布;§3.2条件分布;§3.3随机变量的独立性;数学家简介--雅各布·贝努里;习题三 第四章随机变量的数字特征 §4.1数学期望;一、离散型随机变量的数学期望;二、连续型随机变量的数学期望;三、随机变量函数的数学期望;四、数学期望的性质;§4.2方差;一、方差的定义;二、方差的性质;§4.3协方差与相关系数;一、协方差;二、相关系数;数学家简介--棣莫弗;习题四 第五章极限定理 §5.1切比雪夫不等式;§5.2大数定律;§5.3中心极限定理;数学家简介--拉普拉斯;习题五 第六章统计量及抽样分布 §6.1总体与样本;一、总体与样本;二、统计量;§6.2样本分布函数;一、频率分布表; 二、直方图;三、样本分布函数;§6.3常用统计量的分布;一、正态总体样本的线性函数的分布;二、χ2分布;三、t分布;四、F分布;数学家简介--切比雪夫;习题六| 第七章参数估计 §7.1点估计;一、矩估计法;二、极大似然估计法;§7.2估计量的评价标准;一、无偏性;二、有效性;三、一致性;§7.3区间估计;一、正态总体均值的区间估计;二、正态总体方差的区间估计;三、非正态总体均值的区间估计;四、单边置信区间;数学家简介--马尔柯夫;习题七

概率论与数理统计试题(A卷)

海南大学信息学院 《概率论与数理统计》试题(A卷) 得分阅卷教师 1、填空题(每小题3分,共18分) 1,将3个人随机地放入4个房间中,则每个房间至多只有一个人的概率为 。 2,设随机变量X服从参数为的泊松分布,且,则 。 3,设,,则 4,掷两颗骰子,已知两颗骰子点数之和为7,则其中有一颗为1点的概率为 5,三个人独立破译一个密码,他们能单独译出的概率分别为1/5,1/3,1/4。此密码被译出的概率为。 6,设X表示掷两颗骰子所得的点数,则EX= 二、单项选择题(每小题3分,共12分) 得分阅卷教师 ( )7,设,则 A)=0.5 B)=0.5 C) D) ( )8,设事件A,B互不相容,P(A)=p P(B)=q 则 (A)(1-p)q B) pq C) q D) p ( ) 9,则 C= A) 3 B) 2 C) 1 D) 0 ( ) 10,设Cov(X,Y)=0, 则以下结论中正确的为 A)X,Y独立 B)D(X+Y)=D(X)+D(Y) C)D(X-Y)=D(X)-D(Y) D)D(XY)=D(X)×D(Y) 得分阅卷教师 三,计算题(每小题10分,共60分) 11. 设某种电子元件的寿命X(以小时计)具有以下的概率密度: 现有一批此种电子元件(设各电子元件损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少。 12.设随机变量(X,Y)的概率密度为 求 关于X的边缘概率密度及关于Y边缘概率密度 13.设X为总体X的样本,求的最大似然估计量及矩估计量。

14.一台设备由三个部件构成,在设备运转中各部件需要调整的概率分别为0.2,0.3,0.4,各部件的状态相互独立,求需要调整的部件数X的期望EX和方差DX。 15.有一大批糖果,现从中随机地取16袋,称其重量(以克计) 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量服从正态分布,试求总体标准差的置信水平为0.95的置信区间。() 16. 设某种电子元件的寿命X(以小时计)服从正态分布均末知,从中随机地抽取16只电子元件,算得平均寿命为241.5小时,修正的样本标准差为98.7259小时,问在显著性水平0.05下,是否可认为电子元件的平均寿命大于225小时?并给出检验过程。() 17.设有两个口袋,甲口袋中有两个白球,一个黑球,乙口袋中有一个白球,两个黑球。由甲口袋任取一个球放入乙口袋,再从乙口袋中取出一个球,求最后取到白球的概率。

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

概率论与数理统计复习题

概率论与数理统计复习题 一、填空题 1.若()0.4,()0.5,()0.4,P A P B P A B ===则 ()____P A B =U . 2.设2(),(),E X D x μσ==由切比雪夫不等式知{}22P X μσμσ-<<+≥ . 3.设总体),(~2 σμN X ,2σ未知,检验假设00:μμ=H 的检验统计量为 。 4.已知,A , B 两个事件满足条件)()(B A P AB P Y =,且p A P =)(,则=)(B P 。 5.设三次独立试验中,事件A 出现的概率相等,如果已知A 至少出现一次的概率等于27 19 ,则事件A 在一次试验中出现的概率为 。 6.同时抛掷3枚硬币,以X 表示出正面的个数,则X 的概率分布为 。 7.设随机变量X 的概率密度为? ??<<=,,0, 10,2)(其他x x x f 用Y 表示对X 的3次独立重复观 察中事件? ?? ? ??≤21X 出现的次数,则{}==2Y P 。 8.设随机变量X ~),2(2 σN ,且{}3.042=<>=+-,, 0,1,1,),(21其他y x x e y x f y 则=)(x f X 。 12.设随机变量X 的分布律为 =)(2X E 。 13.设随机变量X 的概率密度为 ?????+∞<<=其他, 01,)(3 x x A x f 则A = 。 14.设)4,1(~N X ,则=)(X E ,=)(X D 。

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计试题及答案

一.选择题(18分,每题3分) 1.如果1)()(>+B P A P ,则事件A 与B 必定() )(A 独立;)(B 不独立;)(C 相容;)(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4;0.3;0.2;0.1。现任选4 人,则4人血型全不相同的概率为:() )(A 0.0024;)(B 40024.0;)(C 0. 24;)(D 224.0. 3. 设~),(Y X ???<+=., 0,1,/1),(22他其y x y x f π则X 与Y 为() )(A 独立同分布的随机变量;)(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.7 5. 则射击次数的 数 学期望与方差分别为 ( ) )(A 4934与; )(B 16934与; )(C 4941与;(D) 9434与. 5.设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是() )(A 32112110351?X X X ++=μ ;)(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ;)(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 1 2n X i n i χμχ-=∑=,其 拒域为(1.0=α)() )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为? ?? ? ??-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为. 3.已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

概率论与数理统计复习题

概率论与数理统计复习题 九、最大似然估计 例:设总体X 的概率密度为 ?? ?<<+=其他 ,0 1 0,)1()(x x x f θθ 其中未知参数θ1->,n X X X ,,21是取自总体的简单随机样本,用极大似然估计法求θ的估计量。 解:设似然函数),,2,1;1 0()1()(1 n i x x L i n i i =<<+=∏=θ θθ 对此式取对数,即: ∑=++=n i i x n L 1ln )1ln()(ln θθθ且∑=++=n i i x n d L d 1 ln 1ln θθ 令 ,0ln =θ d L d 可得∑=--=n i i x n 1 ln 1?θ ,此即θ的极大似然估计量。 例:设总体X 的概率密度为 )0,0(,0,00,)(1>>?? ???≤>=--a x x e ax x f a x a λλλ 据来自总体X 的简单随机样本),,,(21n X X X ,求未知参数λ的最大似然估计量。(同步39页三、3) 解:由?? ???≤>=--0,00 ,)(~1x x e ax x f X a x a λλ 得总体X 的样本),,,(21n X X X 的似然函数 ∑∑∑=-=-=--==n i a i n i a i n x n i a i n x x a e ax x x x L a i 1 11 1 121]exp[)(),,,,(λλλλλ 再取对数得: ∑∑==-+-=n i i n i a i x a x a n L 1 1 )ln()1()ln(ln λ λ

再求L ln 对λ的导数:∑=-=n i a i x a an d L d 1ln λλ 令0ln 1 =-=∑=n i a i x a an d L d λλ,得∑== n i a i x n 1 λ 所以未知参数λ的最大似然估计量为 ∑=n i a i x n 1 。 练习:设总体X 的密度函数为 )0(01 0),(1???><<=-ααααothers x x x f X 1,X 2,…,X n 是取自总体X 的一组样本,求参数α的最大似然估计(同步52页三、5) 十、区间估计 总体X 服从正态分布N (μ,σ2), X 1,X 2,…,X n 为X 的一个样本 1:σ2已知,求μ的置信度为1-α置信区间 2:σ2未知,求μ的置信度为1-α置信区间 3:求σ2置信度为1-α的置信区间 例:设某校学生的身高服从正态分布,今从该校某班中随机抽查10名女生,测得数据经计算如下:43.18,67.1622 ==s x 。求该校女生平均身高的95%的置信区间。 解: )1(~--= n t n S u X T ,由样本数据得05.0,43.18,67.162,102====αs x n 查表得:t 0.05(?)=2.2622,故平均身高的 95%的置信区间 为 (X u X u α α -+))1(,) 1((n S n t X n S n t X -+--αα) S )1n (,S )1n (() 1n (2 122 ) 1n (2 22-----ααχ χ

概率论与数理统计心得体会

概率课感想与心得体会 笛卡尔说过:“有一个颠扑不破的真理,那就是当我们不能确定什么是真的时候,我们就应该去探求什么是最最可能的。”随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。 概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。都是接近生活实践的概率应用实例。 同时,通过概率课还了解了概率的意义,概率是用来度量随机事件发生可能性大小的一个量,而实际结果是事件发生或不发生这两种情况中的一种。但是我们不能根据随机事件的概率来断定某次试验出现某种结果或者不出现某种结果。同时,我们还可以利用概率来判定游戏规则,譬如,在各类游戏中,如果每个人获胜的概率相等,那么游戏就是公平的,这就是说,要保证所制定的游戏规则是公平的,需要保证每个人获胜的概率相等。概率教学中的试验或游戏结果,如果不进行足够多的次数,是很难得出比较接近概率的频率的,也就是说当试验的次数很多的时候,频率就逐渐接近一个稳定的值,这个稳定的值就是概率。我们说,当进行次数很多的时候,时间发生的次数所占的总次数的比例,即频率就是概率。换句话说,就是时间发生的可能性最大。 概率不仅在生活上给了我们很大的帮助,同时也能帮我们验证某些理论知识,譬如投针问题: ()行直线相交的概率. 平的针,试求该针与任一一根长度为线,向此平面上任意投的一些平行平面上画有等距离为a L L a <

我们解如下: 平行线的距离; :针的中心到最近一条 设:X 此平行线的夹角.:针与? 上的均匀分布;, 服从区间则随机变量?? ? ?? ? 20a X []上的均匀分布;服从区间随机变量π?,0相互独立.与并且随机变量?X ()的联合密度函数为 ,所以二维随机变量?X ()??? ??≤≤≤≤=. , 02 02 其它,,π?π?a x a x f {} 针与任一直线相交设:=A , . sin 2? ?? ???<=?L X A 则所以, ()? ?????<=?sin 2L X P A P 的面积的面积 D A =.22 sin 20 a L a d L ππ??π == ?

概率论与数理统计(二)试题及答案

概率论与数理统计B 一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12 () ,()23 P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 1 2 ; (D)以上都不对 4.某一随机变量的分布函数为()3x x a be F x e += +,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2 ()22 a f x x x = ++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξ η?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与 C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计复习题答案

概率论与数理统计复习题 一.填空题 1.设, , A B C 为三个事件,用, , A B C 的运算关系式表示下列事件: , , A B C 都发生_____________;, , A B C 中不多于一个发生______________. 解:ABC ; AB BC AC ABC ABC ABC ABC ??=??? 2.一副扑克牌共52张,无大小王,从中随机地抽取2张牌,这2张牌花色不相同的概率为 解:2114131325213 17C C C p C ==或者124132 5213117 C C p C =-= 3.同时掷甲、已两枚骰子,则甲的点数大于乙的点数的概率为 解:155 {(,)|,1,,6},{},()3612 S i j i j A i j P A ===>= =L 4.设随机事件A 与B 相互独立,()0.5,()0.6P A P B ==,则()P A B -= ,()P A B ?= 。 解:()()()()0.2P A B P AB P A P B -===, ()()()()()0.8P A B P A P B P A P B ?=+-= 5.已知6 1 )(,31)|(,41)(=== B P A B P A P ,则()P A B ?=______________. 解:111()()(|)4312P AB P A P B A ==?=,1 ()()()()3 P A B P A P B P AB ?=+-= 6.已知()0.6,()0.3P A P AB ==,且,A B 独立,则()P A B ?= . 解:()()()0.3()0.5()0.5P AB P A P B P B P B ==?=?= ()()()()()()()()0.8P A B P A P B P AB P A P B P A P B ?=+-=+-= 7.已知 P(A)=,P(B)=,且A,B 互不相容,则()_____,()_____P AB P AB ==. 解:()()()0.3,()()()0.3P AB P B P AB P AB P A P AB =-==-= 或()()1()()0.3P AB P A B P A P B =?=--= 8.在三次独立的实验中,事件B 至少出现一次的概率为19/27,若每次实验中B 出现的 概率均为p, 则p=_______________ 解:设X 表示3次试验中事件B 出现的次数,则(3,)X B p :, 3191{1}1{0}1(1),273 P X P X p p ≥=-==--= ∴= 9.设(),0X P λλ>:,则X 的分布律为

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

概率论与数理统计复习题讲义

概率统计练习题 一、填空题 1、已知P(A)=P(B)=P(C)=25.0,P(AC)=0,P(AB)=P(BC)=15.0,则A 、B 、C 中至少有一个发生的概率为 0.45 。 2、设A 、B 为二事件,P(A)=0.8,P(B)=0.7,P(A ∣B )=0.6,则P(A ∪B)= 0.88 。 3、设X 、Y 相互独立,X ~)3,0(U ,Y 的概率密度为???? ?>=-其它,00 ,41)(41x e x f x ,则 (253)E X Y -+= -14 ,(234)D X Y -+= 147 。 4、设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为 0.875 . 5、已知()3E X =,()D X =2,由切比雪夫不等式估计概率(34)P X -≥≤ 0.125 。 6、设(100,0.2)X B ,则概率(P 20-X )4≤≈ 0.68 ()84.0)1(=Φ。 7.设X 的分布函数 ?????≥-<=1 ,1 11, 0)(2 x x x x F ,则=)(X E 2 8.已知随机变量X ~ ),(2 σμN ,且)1()5(,5.0)2(-Φ=≥=≥X P X P ,则=μ2,=2σ9 。 9. 已知()0.6P A =,()0.8P B =,则()P AB 的最大值为0.6,最小值为0.4 。 10、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有 )(b kX E += ,k b μ+;)(b kX D +=22k σ。 11、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。设Z =2X -Y +5, 则Z ~ N(-2, 25) 。 12、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 13、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E(Y)=4 。 14、设随机变量X 服从[0,2]上的均匀分布,Y=2X+1,则D(Y)= 4/3 。 15、设(X ,Y )为二维随机向量,D(X)、D(Y)均不为零。若有常数a>0与b 使 {}1=+-=b aX Y P ,则X 与Y 的相关系数=XY ρ-1 。 16、四个人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51,则密码能被译 出的概率是 2/3。

相关文档
最新文档