用向量证明四点共面

用向量证明四点共面
用向量证明四点共面

用向量证明四点共面

由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz,得 OP=n OX +mOY +(1-n-m)OZ, 整理,得

OP-OZ =n(OX-OZ) +m(OY-OZ)

即ZP =nZX +mZY

即P、X、Y、Z 四点共面。

以上是充要条件。

2

如和通过四点外的一点(空间中)与四点之间的关系来判断折四点共面

A,B,C,D,4个点,与另外一点O,若OA=xOB+yOC+zOD,x+y+z=1,四点就共面3设一向量的坐标为(x,y,z)。另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向

量平行如果ax+by+cz=0,则两向量垂直。答案补充三点一定共面,证第四点在该平面内

用向量,另取一点O 如向量OA=ax向量OB+bx向量OC+cx向量OD,且a+b+c=1 则有四点共面答案补充方法已经很详细了呀。4线平行线: 两条线的方向向量矢量积为0,且两条

线没交点

面平行线:是线平行面吧,线的方向向量和平面法向量垂直,即线的方向向量和平面

法向量数量积为0 ,且线不在平面内

三点共面:三点肯定是共面的,我猜你说的是三点共线吧,比如ABC三点,证明共线,证明AB与BC的方向向量矢量积为0

四点共面:比如ABCD三点证明AB,AC,AD三者满足先求AB,AC的矢量积a,再a和AD

数量积为0

3

怎样证明空间任意一点O和不共线的三点A,B,C,向量OP=x向量OA+y向量OB+z向量OC且x+y+z=1,则P,A,B,C四点共面

简明地证明,网上的不具体,不要复制!

证明:由x+y+z=1→x向量OC + y向量OC + z向量OC=向量OC,且:x向量OA+y向

量OB+z向量OC=向量OP

将上边两式相减得:向量OP-向量OC=x(向量OA-向量OC)+y(向量OB-向量OC)

即:向量CP=x向量CA+y向量CB

由x向量CA+y向量CB所表示的向量必在平面ABC内→P点必在平面ABC内。

故:A,B,C,P四点共面。

4

可以先随便假设其中3点共面(很简单2点确定一条直线,直线和直线外一点可以确定1个平面) 不防设 A B C 三点共面只需证明P点在这个平面上即可以下向量符号省去

证明: PA=BA-BP

=OA-OB-(OP-OB)

=OA-OP

=OA-(a 向量OA+b向量OB+c向量OC )

=(1-a)OA-bOB-cOC

=(b+c)OA-bOB-cOC

=bBA+cCA

到这里因为ABC已经确定了一个平面且 PA=bBA+cCA

所以PA平行平面又A在平面内所以P点也在该平面内

所以四点共面

数学中如何证明向量共面

数学中如何证明向量共面 共面向量定理是数学学科的基本定理之一,那它该怎么被证明呢?证明的过程是怎样的呢?下面就是给大家的证明向量共面内容,希望大家喜欢。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了~明白后加分!!! 我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 充分不必要条件。 如果有三点共线,则第四点一定与这三点共面,因为线和直线 外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。 而有四点共面,不一定就其中三点共线,比如四边形的四个顶 点共面,但这四个顶点中没有三个是共线的。 “三点共线”可以推出“四点共面”,但“四点共面”不能推 出“三点共线”。因此是充分不必要条件

任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积 (AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。 已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线 ,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=? 写详细点怎么做谢谢了我假定你的O-A表示向量OA。 由O的任意性,取一个不在ABCD所在平面的O,这时若 OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。 (证明:设O在该平面上的投影为P,那么对平面上任何一点X,OX=OP+PX,然后取X=A、B、C、D代你给的关系式并比较OP分量即可。) 你给的右端向量都反向,所以2x+3y+4z=-1。 4Xa-Yb+Yb-Zc+Zc-Xa=0 ∴Xa-Yb=-(Yb-Zc)-(Zc-Xa) 由共面判定定理知它们共面。 简单的说一个向量能够用另外两个向量表示,它们就共面。 1.若向量e1、e2、e3共面, (i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是 λe1+μe2-e3=0.

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

共面向量定理

共面向量定理 教学目标: 1.了解共面向量的含义,理解共面向量定理; 2.利用共面向量定理证明有关线面平行和点共面的简单问题; 教学重点:共面向量的含义,理解共面向量定理 教学难点:利用共面向量定理证明有关线面平行和点共面的简单问题 教学过程: 一、创设情景 1、关于空间向量线性运算的理解 平面向量加法的三角形法则可以推广到空间向量,只要图形封闭,其中的一个向量即可以用其它向量线性表示。 从平面几何到立体几何,类比是常用的推理方法。 二、建构数学 1、 共面向量的定义 一般地,能平移到同一个平面内的向量叫 向量; 理解:(1)若,为不共线且同在平面α内,则p 与,共面的意义是p 在α内或//p (2) 空间任意两个向量是共面的,但空间任意三个向量就不一定共面了. 2、共面向量的判定 平面向量中,向量b 与非零向量a 共线的充要条件是a b λ=,类比到空间向量,即有 共面向量定理 如果两个向量b a ,不共线,那么向量与向量b a ,共面的充要条件是存在有序实数组 ,使得 . 这就是说,向量可以由不共线的两个向量,线性表示。 C

D 三、数学运用 例1 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==. 求证:MN//平面CDE 例 2 设空间任意一点O 和不共线的三点A 、B 、C ,若点P 满足向量关系z y x ++=(其中x+y+z=1)试问:P 、A 、B 、C 四点是否共面? 例3 已知A ,B ,M 三点不共线,对于平面ABM 外的任一点O ,确定在下列各条件下,点P 是否与A ,B ,M 一定共面?(1)-=+3;(2)--=4 解题总结: 推论:空间一点P 位于平面M AB 内的充要条件是存在有序实数对x ,y 使得: MB y MA x MP +=,或对空间任意一点O 有:OB z OA y OM x OP ++=(其中x+y+z=1)。 课堂练习: (1)已知非零向量21e ,e 不共线,如果2121213382e e ,e e ,e e -=+=+=,求证:A 、B 、C 、D 共面。 (2)课本86页练习1-6 四、回顾总结 1、共面向量定理; 2、类比方法的运用。

条据书信 如何证明是向量空间

如何证明是向量空间 向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关点的坐标值,求出相关向量的坐标; 4)求解给定问题 证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。 证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解: 因为x+y+z=0 x=-y-z y=y+0xz z=0xy+z (x,y,z)=(-1,1,0)xy+(-1,0,1)xz y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2) 步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。篇二:《空间向量在几何证明题解法》 空间向量在几何体中例题 1如图,在四棱椎P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点。 (1)求证:EF⊥CD; (2)证明:PA//平面DEF 3.已知四棱锥P ABCD的底面为直角梯形,AB//DC, DAB90,PA底面ABCD,且PA AD DC 1 2

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

空间向量共面充要条件的应用

空间向量共面充要条件的应用 共面向量定理涉及三个向量→p 、→a 、→b 共面问题,它们之间的充要条件关系为:如果两个向量→a 、→b 不共线,那么向量→p 与向量→a 、→b 共面的充要条件是:存在有序实数组(x,y), 使得→p =x →a +y →b . 共面向量定理在立体几何中证明中有关有着广泛的运用,如在点线共面、线面平行等问题中,都有很好的体现.由于向量本身具有的位置不定性,使得共面向量可理解为能够平移到同一平面内的向量,或者理解为平行于同一平面的向量.下面就空间向量共面充要条件的应用分类解析,体会应用的方法与技巧. 一、判断点与平面的关系 例1 已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若→OM =2→OA -→OB -→ OC ,判断点M 是否在平面ABC 内. 分析:点M 与A 、B 、C 不共面,即点M 不在平面ABC 内,即不存在x ,y 使→AM =x →AB +y →AC ,可用反证法证明判断. 解:假设M 在平面ABC 内,则存在实数x,y ,使→AM =x →AB +y →AC , 于是对空间任意一点O ,O 在平面ABC 外,→OM =(1-x -y)→OA +x →OB +y →OC , 比较原式可得????? 1-x -y =2 x =-1y =-1 ,此方程组无解,与假设不成立, ∴不存在实数x,y ,使→AM =x →AB +y →AC ,∴M 与A 、B 、C 不共面. 点评:本题采用反证法来证明点M 不在平面ABC 内,因为反证法就是从正面进行解答比较困难,从对立面进行证明的一种思想方法. 二、用于证明四点共面 例2 如图所示,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ﹕NC =2﹕1,求证:A 1、B 、N 、M 四点共面. 分析:利用空间向量共面的充要条件,通过证明向量→A 1N 、→A 1B 、→A 1M 共面,即可证明 存在唯一实数λ、μ,使→A 1N =λ→A 1B +μ→A 1M 成立. 证明:如图,→AA 1=→a ,→AB =→b ,→AD =→c ,则→A 1B =→AB -→AA 1=→b -→a , ∵M 为DD 1的中点,→A 1M =→AD -12→AA 1=→c -12 →a , ∵AN ﹕NC =2﹕1,∴→AN =23→AC =23(→AB +→AD)=23 (→b +→c ), ∴→A 1N =→AN -→AA 1=23(→b +→c )-→a =23→b -→a )+23(→c -12 →a ) =23→A 1B +23 →A 1M , ∴A 1、B 、N 、M 四点共面. 点评:本题根据空间向量基本定理,充分利用三角法则与平行四边形法则,通过不同的 途径分别用向量→EF ﹑→EH 表示→MQ 或用向量→EG 表示→MQ ,从而建立向量→EG 与向量→EF ﹑→EH 的线性 关系,进而使问题得证.这是不用向量坐标形式证明几何问题的常用方法. 三、证明三线平行同一平面 例3 如图所示,E 、F 分别为空间四边形ABCD 中AB 、CD 的中点,证明AD 、EF 、BC 平行于同一平面 .

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

用向量法证明海伦公式

用向量法证明海伦公式 杜云 (六盘水师范学院数学系;贵州六盘水553004) 摘要:从数与形的角度对向量进行再认识,通过应用向量方法证明海伦公式,更进一步阐明了向量是沟通代数与几何的天然桥梁,是一个重要的数学模型,它能为解决问题提供新的方法和视角。 关键词:向量;几何;海伦公式;数形结合 中图分类号:G421文献标识码:A 文章编号:1671-055X (2009)03-0063-03 To prove Heron's Formula with the Vector DU Yun (Mathematics Department of Liupanshui Nornal College;Liupanshui,553004,China) Abstract:Recognized the vector from algebra and geometry and by proving Heron's Formula further expounds ,If shows thar the vector is a natural bridge between algebra and geometry,and it is an important mathematics style,and also provides the new method and view to solve the problems. Key words :vector ;geometry;Heron's Formula;combination between algebra and geometry 收稿日期:2009-03-03 作者简介:杜云(1982-),男,贵州盘县人,助教,研究方向:高等代数与解析几何。 第21卷第3期 2009年6月六盘水师范高等专科学校学报Journal of Liupanshui Teachers College Vol.21NO.3June 2009 63--

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

共线向量与共面向量-高中数学知识点讲解

共线向量与共面向量 1.共线向量与共面向量 【知识点的认识】 1.定义 (1)共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行 → 向量,记作 ? ∥ → → ?.0与任意向量是共线向量. (2)共面向量 平行于同一平面的向量叫做共面向量. 2.定理 (1)共线向量定理 → → → → 对于空间任意两个向量 ?、?(? ≠ 0),? ∥ → → → ?的充要条件是存在实数 λ,使得? = ??. (2)共面向量定理 → → → → → → 如果两个向量 ?、?不共线,则向量?与向量?、?共面的充要条件是存在唯一的有序实数对(x ,y ),使得? = ? → → ? +??. 【解题方法点拨】 空间向量共线问题: → → (1)判定向量共线就是充分利用已知条件找到实数 λ,使? = ??成立,或充分利用空间向量的运算法则,结合具 → → → 体图形,通过化简、计算得出? = ??,从而? ∥ → ?. → (2)? ∥ → → → ?表示?与?所在的直线平行或重合两种情况. 空间向量共面问题: (1)利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过 程中注意直线与向量的相互转化. → → →

(2)空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x,y),使??=???+???.满足这个关系式的点P 都在平面MAB 内,反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面. 1/ 3

证明三个向量共面的常用方法: (1)设法证明其中一个向量可表示成另两个向量的线性组合; (2)寻找平面α,证明这些向量与平面α平行. 【命题方向】 1,考查空间向量共线问题 →→→ →例:若 ?=(2x,1,3),?=(1,﹣2y,9),如果?与?为共线向量,则() A.x=1,y=1 B.x =1 2 ,y =― 1 2C.x = 1 6 ,y =― 3 2D.x =― 1 6 ,y = 3 2→→ 分析:利用共线向量的条件?=??,推出比例关系求出x,y 的值. →→ 解答:∵?=(2x,1,3)与?=(1,﹣2y,9)共线, 2?故有 1= 1 ―2?= 3 9 . ∴x =1 6 ,y =― 3 2 . 故选C. 点评:本题考查共线向量的知识,考查学生计算能力,是基础题. 2.考查空间向量共面问题 例:已知A、B、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A、B、C 一定共面的是() →A.??= → ?? + → ?? + →→→ ??B.??=2??― → ??― → → ?? C.?? = → ?? + 1 2 → ?? + 1 3 → → ?? D.?? = 1 3 → ?? + 1 3 → ?? + 1 3 → ??→ 分析:根据共面向量定理??=?? → ?? +? ? → ?? +? ? → ??,?+?+?=1,说明 M、A、B、C 共面,判断选项的正 误. → 解答:由共面向量定理 ??=?? → ??+? ? → ??+? ? → ??,?+?+?= 1, 说明M、A、B、C 共面,

利用空间向量证明面面平行垂直

利用空间向量证明面面平行垂直 1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证 明:平面ADE⊥平面A1D1F. 2.如图,在直三棱柱ABC?A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1 上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD 3.如图,在四棱锥P?ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD, PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD

4.如图,四边形是矩形,平面,,为中点. 证明:平面平面 5.如图,在底面是矩形的四棱锥P?ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4, E是PD的中点.求证:平面PDC⊥平面PAD 6.如图,在正方体ABCD?A1B1C1D1中,E为棱DD1的中点. 求证:平面EAC⊥平面AB1C

7.如图,正三棱柱ABC?A1B1C1的所有棱长都为2,D为CC1中点. 求证:平面ABB1A1⊥平面A1BD PD。 8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=1 2证明:平面PQC⊥平面DCQ

答案和解析 1.解:以D 为原点,向量DA ????? ,DC ????? ,DD 1???????? 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图, 设正方体的棱长为1. 则D(0,0,0),A(1,0,0),E (1,1,1 2),C 1(0,1,1),M (1,0,1 2), DA ????? =(1,0,0),DE ?????? =(1,1,12),C 1M ???????? =(1,?1,?1 2 ). 设平面ADE 的法向量为m ??? =(a,b ,c), 则{DA ????? ·m ??? =0 DE ?????? ·m ??? =0?{a =0,a +b +12 c =0.令c =2,得m ??? =(0,?1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1?????????? =(1,0,0),D 1F ??????? =(0,1 2 ,?1), 设平面A 1D 1F 的法向量为n ? =(x,y ,z),则{D 1A 1?????????? ·n ? =0D 1F ??????? ·n ? =0?{x =0,12y ?z =0. 令y =2,则n ? =(0,2,1).∵m ??? ·n ? =(0,?1,2)·(0,2,1)=0?2+2=0, ∴m ??? ⊥n ? .∴平面ADE ⊥平面A 1D 1F . 2.证明:如图所示建立空间直角坐标系, 设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a 2,1,0). 所以B 1D ???????? =(0,2,2),AB ????? =(?a,0,0),BD ?????? =(0,2,?2). AB ????? =(?a,0,0),BD ?????? =(0,2,?2),GF ????? =(?a 2,0,0),EF ????? =(0,1,?1),所以AB ????? =2GF ????? ,BD ?????? =2EF ????? ,所以GF ????? //AB ????? ,EF ????? //BD ?????? ?所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

3.1.2空间向量共面定理

3.1.2空间向量共面定理 教学目标:1.理解共线向量定理和共面向量定理及它们的推论; 2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 教学重、难点:共线、共面定理及其应用. 教学过程: (一)复习: 1.空间向量的概念及表示: (二)阅读课本P 74~P 75, ⑴怎样的向量叫做共线,共面向量? ⑵两个向量共线,共面的充要条件是什么? 1.共线(平行)向量: 2.共线向量定理: 推论: 问题思考 3.向量与平面平行: 4.共面向量定理: 如何证明? 推论: ()()1=020? a λ≠当实数时,表示什么意思? 充要条件中,为什么规定

(三)预习练习 1、下列说法正确的是: A.在平面内共线的向量在空间不一定共线 B.在空间共线的向量在平面内不一定共线 C.在平面内共线的向量在空间一定不共线 D.在空间共线的向量在平面内一定共线 E.在平面内,任意两个向量一定共线 2已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定在下列各条件下,点P 是否与A 、B 、M 一定共面? 3下列命题中正确的有______ 4.对于空间中的三个向量 它们一定是: A.共面向量 B.共线向量 C.不共面向量 D.既不共线又不共面向量 5.已知点M 在平面ABC 内,并且对空间任意一点O , ,则x 的值为:_____ (四)典型例题 例1、已知A 、B 、P 三点共线,O 为空间任意一点,且 ,求 的 值. αβ=+OP OA OB αβ+(1) 3=+-OB OM OP OA (2)4=--OP OA OB OM (1)=+? 与、共面;p xa yb p a b (2)?=+与、 共面 ;p a b p xa yb (3)=+?、、、共面; MP xMA yMB P M A B (4)?=+、、、共面;P M A B MP xMA yMB 2、、-MA MB MA MB =11 ++33 OM xOA OB OC (1) λλ=≠-AP PB

利用空间向量证明空间位置关系

利用空间向量证明立体几何中的平行与垂直问题 [考纲要求] 1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式. 2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直. 4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系. 5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理). 知识点一:空间向量及其运算 1.空间向量及其有关概念 (1)空间向量的有关概念 (2) 2. (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 3.空间向量的运算及其坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3).

[基本能力] 1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→ 等于________. 答案:13 AD ―→ 2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:1 3.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 2 4.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7 考法一 空间向量的线性运算 [例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→- 1 2PA ―→-12 PC ―→, ∴x =y =-1 2 . (2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→. 从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→ . ∴x =2,y =-2. 考法二 共线、共面向量定理的应用 [例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点, 用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH . [证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12 (BC ―→+BD ―→ ) =EB ―→+BF ―→+

空间向量在几何证明题解法

空间向量在几何体中例题 1如图,在四棱椎P-ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点。 (1)求证:EF ⊥CD ; (2)证明:PA// 平面DEF 3.已知四棱锥P ABCD -的底面为直角梯形,//AB DC , ⊥=∠PA DAB ,90ο底面ABCD ,且1 2 PA AD DC ===, 1AB =,M 是PB 的中点。 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小。 F E D C B A P

16.(本题满分14分)求ax 2 +2x +1=0(a ≠0)至少有一负根的充要条件。 6.(本题满分14分)解:若方程有一正根和一负根,等价于121 0x x a = ??0<a ≤1 综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1 由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根 故a <0或0<a ≤1是方程ax 2 +2x+1=0至少有一负根的充分条件 所以ax 2 +2x+1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤1 5.如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移 (1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为 4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D , )1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则???? ?=?=?, 0, 01AD n AC n 也即???=+-=+-002c a b a ,得? ??==c a b a 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为 .3 1 3212| |||1=-+= ?= n n E D h

向量法证明几何命题

毕业论文 论文题目向量法证明初等几何命题 学院数学与统计学院 专业数学与应用数学 年级 2011级 学号 4 学生平 指导教师峰 完成时间 2015 年 4 月 学院教务处制

向量法证明初等几何命题 平 摘 要 本文使用向量的数量积,向量积,混合积证明一些初等几何的命题.例如,勾股定理,余弦定理,海伦公式. 关键词 初等几何;数量积;向量积;混合积 1引言 向量这个名词对于大家来说并不陌生,在高中的教材中已经接触了不少向量的容.在力学、物理学已及日常生活中,咱们常常遇到很多的量,譬如像温度、时间、质量、密度、功、长度、面积与体积等,这些量在规定的单位下,都可以由一个数来完全确定,这种只有大小的量叫做数量.其余又有一些比较复杂的量,比方像位移、力、速度、加速度等,他们不仅有大小,而且还有方向,这类量便是向量. 向量最初被应用于物理学.不少物理量如力,速度,位移一集电场强度,磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个了的组合作用可用著名的平行四边形则来得到.“向量”一词来自力学、解析几何中的有想线段.最早使用有向线段表示向量的是英国大科学家牛顿. 从数学发展历史来看,历史上很长一段时间,空间的向量结构并未被数学家们所了解,直到19世纪未20世纪初,人们才把空间的性质与向量运算关联起来,使向量成为具备一套优良运算通性的数学体制. 向量可以进入数学并得到发展,最初使用于复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔初次使用坐标平面上的点来表示复数a bi +(a 、b 为有理数,且不同时等于0),把坐标平面上的点用向量表示出来,并使用拥有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并用向量的几何表示用于研究几何问题与三角问题.人们逐渐接受了复数,也学会了利用复数来表述和研究平面中的向量,向量就这样平静地投入了数学中. 因为向量法证明许多几何命题都是比较简化,所以许多命题都有向量法去证明,许多学生因为学习了向量,从而激发他们的兴趣,在许多熟悉的问题上都想向量法去证明,但他们不清楚不了解向量法的基本思路和证明技巧,不仅仅学生,甚至老师也有时候还是用比较繁琐的方法去证明初等几何命题. 本论文主要介绍向量的基本运算法则,还有对几个经典的问题进行证明,分别用一般的方法和向量法对一些初等的几何命题进行证明,然后作对比,比较一下向量法和一般的方法有什么不一样,看看哪一种方法更加简捷和实用. 2结果与讨论 2.1向量的基本运算[1] 向量的加法运算: AB BC AC +=,a b b a +=+,0a a +=,()0a a +-=,()()a b c a b c ++=++.

相关文档
最新文档