高考数学练习题目详解24三角函数解析式的求法

高考数学练习题目详解24三角函数解析式的求法
高考数学练习题目详解24三角函数解析式的求法

【知识要点】

三角函数的解析式的求法一般有三种:待定系数法、图像变换法和代入法. 【方法讲评】

【例1】 已知函数())(0,)22

f x wx w f f +>-?的图像关于直线3x =对称,且图像上

相邻两个最高点的距离为p .

(1)求函数的解析式;(2)若2()()2

63

f a

p p

a =

<<,求3cos()2a p +的值.

(2)由(1)得())226f α

απ=?

-=所以1sin()64πα-=,又263

ππα<<得

0,

6

2

π

πα<-

<

所以cos()64πα-===,

3cos()sin sin[()266

πππααα+==-+1142

=

. 【点评】利用待定系数法求三角函数的解析式,需要建立关于各个待定系数的方程,这需要对函数的图

像和性质理解透彻,如:图像上相邻两个最高点的距离为p ,就是说函数的最小正周期是p ,而不是2p .如果方程错了,待定系数的值也自然是错的.

【反馈检测1】已知函数()()()

sin 0,0,0,f x A x b A b ω?ω?π=++>><<为常数的一段图象如图所示.

(1)求函数()f x 的解析式;(2)函数()f x 在y 轴右侧的极小值点的横坐标组成数列{}n a ,设右侧的第一个极小值点的横坐标为首项1a ,试求数列11n n a a +??

????

的前n 项和n S .

【例2】已知函数()2sin()f x x ω=,其中常数0ω>. (1)令

1

2

ω=

,求函数()()()F x f x f x π=++的单调区间; (2)令2ω=,将函数()y f x =的图像向左平移

,

再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.

【点评】利用图像变换法求函数的解析式时,要对函数图像变换(平移变换、伸缩变换、对称变换和翻折变换)比较熟练,不要出错. 学科#网

【反馈检测2】已知函数()sin()(w 0,0)f x wx f f p =+><<的周期为p ,且0)4(=π

f ,将函数()

f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向右平移2

p

个单位长度后得到函

数()g x 的图像.

(1)求函数()f x 与()g x 的解析式;

(2)是否存在0(,)64

x p p

?,使得)6

(),(),(00π

f x

g x f 按照某种顺序成等差数列?若存在,请求出0x 的

值,若不存在,说明理由;

(3)求实数a 与正整数n ,使得(x)f(x)()F ag x =+在(0,)n p 内恰有2013个零点.

【例3】 定义在区间[,]3π

π-

上的函数)(x f y =的图象关于直线6

x =对称,当[,]36x π∈-时

函数()sin()(000)f x A x A ω?

ω?π=+>><<图象如图所示.

(1)求函数)(x f y =

在2

[,]3

ππ-的表达式;(2)求方程()f

x =的解;

(3)是否存在常数m 的值,使得2|)(|<-m x f 在2[,]3

x π

π∈-上恒成立;若存在,求出m 的取值范围;若不存在,请说明理由.

(2)当236x ππ-

≤时

,2()2sin()3f x x π=+=2sin()3x π+=

∴23,344

x πππ+=或 即51212x ππ=-

,

当6x ππ≤≤时,()2sin f x x x === ∴344x ππ=或∴方程

()f x =

53121244ππππ??-??

?

?,,,

【点评】(1)这种方法关键在于理解,这种处理方法有点类似求轨迹方程里的“代入法”.可以把已知的图像上的点看作“主动点”,对称图像上的点看作是“被动点”,这样就好理解些了.(2)求对称点的坐标时,一般利用对称的知识列方程求解,不要算错了.

【反馈检测3】设函数()f x =sin (

3x π-6

π)-22cos 6x

π. (1)求()y f x =的最小正周期及单调递增区间;

(2)若函数()y g x =与()y f x =的图象关于点(0,1)对称,求当x [0,1]∈时,函数()y g x =的值域.

高中数学常见题型解法归纳及反馈检测第24讲:

三角函数解析式的求法参考答案

【反馈检测1答案】(1)()3sin 226f x x π?

?

=+

+ ??

?;

(2)21964

n n

S n π=?+.

【反馈检测2答案】(1)x x f 2cos )(=,x x g sin )(=;(2)不存在;(3)1±=a ,1342=n .学科#网 【反馈检测2详细解析】(1)由函数)sin()(?ω+=x A x f 的周期为π可得,2=ω,又由0)4

(=π

f ,

π?<<0得2

π

?=

,所以x x f 2cos )(=;将函数)(x f 的图像上所有点的横坐标伸长到原来的2倍(保持

纵坐标不变)后可得x y cos =的图像,再将x y cos = x x g sin )(=.

(3)令0)()()(=+=x ag x f x F ,即0sin 2cos =+x a x ,当0sin =x 时,显然不成立;当0sin ≠x 时,

x x x x a sin 1sin 2sin 2cos -

=-

=,令x t sin =,则当]2,0[π∈x 时,]1,1[-∈t .由函数,1

2t

t a -=]1,1[-∈t 及x t sin =,]2,0[π∈x 的图像可知,当1±=a 时,x

x a sin 1

sin 2-

=在]2,0[π∈x 内有3个解.再由6713

2013

=可知,13426712=?=n ,综上所述,1±=a ,1342=n . 【反馈检测3答案】(1)6T =,单调递增区间为[6k -12,6k +5

2],k z ∈;(2)值域为39[,]22.

【反馈检测3详细解析】(1)由题意知()f x

sin 3x π-32cos 3x π-1

3x π-3π)-1,所以

()y f x =的最小正周期T =

23

π

π=6.由2k π-2π≤3πx -3π≤2k π+2π,k z ∈,得6k -12≤x ≤6k +52,k z ∈,所以()y f x =的单调递增区间为[6k -12,6k +5

2

],k z ∈. (2)因为函数()y g x =与()y f x =的图象关于直线2x =对称,设点(,)P x y 是函数图像()y g x =上一点,则其关于点(0,1)对称的点(2,2)P x y ¢-必在函数()y f x =的图像上,所以2y -

2sin()133

x p p

-- 所以3y =2sin(

)33

x p p

- 222323

010sin()

33

333333323

3293sin()3

3sin()

2332

2

332

x x

x x x x p p

p p p p p p

p p p p #\#

所以函数()y g x =的值域为39

[,]22

.

三角函数练习题及答案

创作编号:BG7531400019813488897SX 创作者: 别如克* 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β

7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=31 ,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π ,4π∪??? ??4π5 ,π B .?? ? ??π ,4π C .?? ? ??4π5 ,4π D .??? ??π ,4π∪??? ? ?23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ??? ? ? 3π - 2x ,x ∈R B .y =sin ?? ? ??6π + 2x ,x ∈R C .y =sin ??? ? ? 3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ??? ? ? 6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ??? ? ? 3π + 2x ,x ∈R ,有下列命题:

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 w.w.w.k.s.5.u.c.o.m 2π 3,于是【解析】选B.由图象可得最小正周期为f(0)=f(2π3),注意到2π3与π2关于7π12对 称,所以 f(2π3)=-f(π2)=2 3. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A )6π (B )4π (C )3π (D) 2 π w.w.w.k.s.5.u.c.o.m 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T =32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( )

三角函数高考试题精选(含详细答案)

三角函数高考试题精选 一.选择题(共18小题) 1.(2017?山东)函数y=sin2x+cos2x的最小正周期为( ) A. B.?C.πD.2π 2.(2017?天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则() A.ω=,φ=B.ω=,φ=﹣ C.ω=,φ=﹣D.ω=,φ= 3.(2017?新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2π?C.π?D. 4.(2017?新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 5.(2017?新课标Ⅰ)已知曲线C :y=cosx,C2:y=sin(2x+),则下面结论 1 正确的是() A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平1 移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左

平移个单位长度,得到曲线C2 6.(2017?新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.?B.1?C.D. 7.(2016?上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( ) A.1 B.2 C.3?D.4 8.(2016?新课标Ⅲ)若tanα=,则cos2α+2sin2α=() A.? B.C.1 D. 9.(2016?新课标Ⅲ)若tanθ=﹣,则cos2θ=() A.﹣B.﹣C.D. 10.(2016?浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期() A.与b有关,且与c有关B.与b有关,但与c无关 C.与b无关,且与c无关? D.与b无关,但与c有关 11.(2016?新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为() A.x=﹣(k∈Z)?B.x=+(k∈Z)?C.x=﹣(k∈Z)D.x=+(k∈Z) 12.(2016?新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣ 为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( ) A.11 B.9 C.7 D.5 13.(2016?四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点() A.向左平行移动个单位长度?B.向右平行移动个单位长度

三角函数最大值问题

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

初三三角函数试题精选

初三三角函数试题精选 一.选择题(共10小题) 1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是() A.2 B.C.D. 2.(2016?乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是() A.B.C.D. 3.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=() A.B.C.D. 4.(2016?西宁)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始 沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是() A.18cm2B.12cm2C.9cm2 D.3cm2

5.(2016?绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为() A.B.C.D. 6.(2016?福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是() A.(sinα,sinα) B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα) 7.(2016?重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45) A.30.6 B.32.1 C.37.9 D.39.4 8.(2016?苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为() A.2m B.2m C.(2﹣2)m D.(2﹣2)m

数学锐角三角函数的专项培优练习题(含答案)附答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 EF FK -=26(分米), ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 63 -(2)=26, ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且 MD=CM,DE⊥AB于点E,连结AD、CD. (1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD; (3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17 5 S1时,求cos∠ABC的 值. 【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 . 【解析】 【分析】 (1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;

高中三角函数习题解析精选(含详细解答)

三角函数题解 1.(2003上海春,15)把曲线y cos x +2y -1=0先沿x 轴向右平移 2 π个单位,再沿y 轴向 下平移1个单位,得到的曲线方程是( ) A.(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C.(y +1)sin x +2y +1=0 D.-(y +1)sin x +2y +1=0 2.(2002春北京、,5)若角α满足条件sin2α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.(2002上海春,14)在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 4.(2002京皖春文,9)函数y =2sin x 的单调增区间是( ) A.[2k π- 2 π,2k π+ 2 π](k ∈Z ) B.[2k π+ 2 π ,2k π+ 23π](k ∈Z ) C.[2k π-π,2k π](k ∈Z ) D.[2k π,2k π+π](k ∈Z ) 5.(2002全国文5,理4)在(0,2π),使sin x >cos x 成立的x 取值范围为( ) A.( 4π , 2 π )∪(π, 45π) B.( 4 π,π) C.( 4π , 4 5π ) D.( 4 π,π)∪( 45π,2 3π) 6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( ) A.(0,1)∪(2,3) B.(1, 2 π )∪( 2 π,3) 图4—1

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答 案) 一、选择题 1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是() 图1-2-3 【解析】观察题图可知0到3为一个周期, 则从2 013到2 014对应着1到2到3. 【答案】 B 2.-330是() A.第一象限角B.第二象限角 C.第三象限角D.第四象限角 【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A 3.把-1 485转化为+k360,kZ)的形式是() A.45-4360 B.-45-4360 C.-45-5360 D.315-5360 【解析】-1 485=-5360+315,故选D. 【答案】 D 4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角B.第二象限的角 C.第三象限的角D.第四象限的角

【解析】∵是第四象限的角,k360-90k360,kZ, -k360+180180--k360+270,kZ, 180-是第三象限的角. 【答案】 C 5.在直角坐标系中,若与的终边互相垂直,则与的关系为() A.=+90 B.=90 C.=+90-k360 D.=90+k360 【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ. 【答案】 D 二、填空题 6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同, =k360+60,kZ. 【答案】k360+60,kZ 7.是第三象限角,则2是第________象限角. 【解析】∵k360+180k360+270,kZ k180+90k180+135,kZ 当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ

求三角函数解析式方法总结超全面

求三角函数解析式)sin(?ω+=x A y 常用的方法全面总结 三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。 A (振幅):A= 2-最小值 最大值 φ+wx :相位,其中T w π 2=(T 为最小正周期) ?:初相,求φ常有代入法、五点法、特殊值法等 【 一、利用五点法,逆求函数解析式 三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点 第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2 π 第三点,即图像下降时与x 轴的交点,为φ+wx =π 第四点,即图像曲线的最低点,为φ+wx = 2 3π 第五点,即图像最后一个端点,为φ+wx =π2 ! 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. >

例2.是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 《 例3.函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则 A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== | 例4、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) > …

三角函数习题及答案

解三角形3 一、选择题 1.在ABC ?中,6=a , 30=B , 120=C ,则ABC ?的面积是( ) A .9 B .18 C .39 D .318 2.在ABC ?中,若 b B a A cos sin =,则B 的值为( ) A . 30 B . 45 C . 60 D . 90 3.在ABC ?中,若B a b sin 2=,则这个三角形中角A 的值是( ) A . 30或 60 B . 45或 60 C . 60或 120 D . 30或 150 4.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .7=a ,5=b , 80=A D .14=a ,16=b , 45=A 5.已知三角形的两边长分别为4,5,它们夹角的余弦是方程02322 =-+x x 的根,则第三边长是( ) A .20 B .21 C .22 D .61 二、填空题 1.在ABC ?中,若6:2:1::=c b a ,则最大角的余弦值等于_________________. 2.在ABC ?中,5=a , 105=B , 15=C ,则此三角形的最大边的长为____________. 3.在△ABC 中,若=++=A c bc b a 则,2 22_________。 4.在△ABC 中,若====a C B b 则,135,30,20 _________。 5.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________。 6.若A 、B 是锐角三角形的两内角,则B A tan tan _____1(填>或<) 7.若在△ABC 中,∠A=,3,1,600==ABC S b 则C B A c b a sin sin sin ++++=_______。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

各种三角函数关系式

倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=——————

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动02π????<< ??? 个单位长度,所得的部分图象如右图所示,则?的值为( ) A .6π B .3 π C .12π D .23π 2.已知函数()sin 23f x x π? ?=+ ??? ,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π个长度单位 3 .若11sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13 或-1 4.2014cos()3π的值为( ) A .12 B C .12- D . 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6.若sin a = -45,a 是第三象限的角,则sin()4 a π+=( ) (A ) -10 (B )10 (C ) -10 (D )10 7.若552)4sin(2cos -=+π αα,且)2 ,4(ππα∈,则α2tan 的值为( )

A .34- B .4 3- C .43 D .34 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在)0,2(π -上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A .向右平移 4 π个单位,再向上平移1个单位 B .向左平移4 π个单位,再向下平移1个单位 C .向右平移2 π个单位,再向上平移1个单位 D .向左平移2 π个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移6π个单位,得到函数()y g x =的图象,则()2g π等

求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω= 把(,2)12π代入,2122ππφ?+=得3π?= 所以y=)3 2sin(2π+x 点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是 ( ) A .sin 6y x π??=+ ??? B.sin 26y x π??=- ?? ? C.cos 43y x π??=- ??? D.cos 26y x π??=- ?? ? 解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6 π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6 π个单位进行验证化简是求解的关键。对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

高一数学限时训练---任意角的三角函数(4) 测试时间:2007.3.20 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{?|?=k ?+ 6π,k ∈Z }≠{?|?=-k ?+6π,k ∈Z } C .若?是第二象限的角,则sin2?<0 D .第四象限的角可表示为{?|2k ?+23?<?<2k ?,k ∈Z } 2.若角?的终边过点(-3,-2),则( ) A .sin ??tan ?>0 B .cos ??tan ?>0 C .sin ??cos ?>0 D .sin ??cot ?>0 3.角?的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin ?的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .4 2 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象 限角 二、填空题 1.已知角?的终边落在直线y =3x 上,则sin ?=________. 2.已知P (-3,y )为角?的终边上一点,且sin ?= 1313,那么y 的值等于________. 3.已知锐角?终边上一点P (1,3),则?的弧度数为________. 4.(1)sin 49πtan 3 7π_________ 三、解答题 1.已知角?的终边过P (-3?,4),求?的六种三角函数值

三角函数图像求解析式

: 已知sin()cos()y A x B y A x B ω?ω?=++=++或图像求解析式 1. 利用最值求A ,B . 当 A>0时 =最大值=A+B 最小值-A+B 当 A<0时 =最大值=-A+B 最小值A+B 2. 利用最高点、最低点、零点中的两个点的横坐标之差求出周期,再利用2|| T π ω= 求ω。 3. 利用五个特殊点求?,或代入y 轴上的点求?. 例1、如图,直线 2230x y +-=经过函数 si ()()n f x x ω?=+(0ω>,||?π<)图象的最高点 M 和最低点 N ,则( ) A 、2 π ω= ,4 π ω= B 、ωπ=, 0?= C 、2 π ω=,4 π ?=- D 、ωπ=, 2 π ?= 例2、 1.【2015新课标1】8、函数()cos()f x x ω?=+的部分图像如图 所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 2.(2016·全国卷2文)3函数y=Asin (ωx+φ)的部分图象如图所示,则 ( ) A.y=2sin π2x 6? ?- ??? B.y=2sin π2x 3?? - ?? ? C.y=2sin πx+6?? ?? ? D.y=2sin πx+3 ?? ?? ? 3.(2013 年高考大纲卷(文))若函数 ()()sin 0=y x ω?ωω=+>的部分图像如图,则 ( ) A .5 B .4 C .3 D .2 4. (2015·陕西高考理科·T3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为( ) A.5 B.6 C.8 D.10 5.已知函数 ()()() 2sin 0,f x x ω?ω?π=+><的部分图象如图所示, 已知点 ( A , ,06B π?? ? ??,若将它的图象向右平移6 π个单位长度,得到函数 () g x 的图象,则函数()g x 的图象的一条对称轴方程为 ( )

三角函数综合测试题(卷)(含答案解析)

三角函数综合测试题 一、选择题(每小题5分,共70分) 1. sin2100 = A . 2 3 B . - 2 3 C . 2 1 D . - 2 1 2.α是第四象限角,5 tan 12 α=- ,则sin α= A .15 B .15- C .513 D .513 - 3. )12 sin 12 (cos ππ - )12sin 12(cos π π+= A .- 23 B .-21 C . 2 1 D .23 4. 已知sinθ=5 3 ,sin2θ<0,则tanθ等于 A .-4 3 B .4 3 C .-43或43 D .5 4 5.将函数sin()3y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变) ,再将所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π =- C.1sin()26y x π=- D.sin(2)6 y x π =- 6. ()2 tan cot cos x x x += A .tan x B . sin x C. c o s x D. cot x 7.函数y = x x sin sin - 的值域是 A. { 0 } B. [ -2 , 2 ] C. [ 0 , 2 ] D.[ -2 , 0 ] 8.已知sin αcos 8 1 = α,且)2,0(πα∈,则sin α+cos α的值为 A. 25 B. -25 C. ±25 D. 2 3

9. 2 (sin cos )1y x x =--是 A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4( πππ π B .),4(ππ C .)45,4(ππ D .)2 3,45(),4(π πππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横 坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2π B .ω=21,θ=2π C .ω=2 1,θ=4π D .ω=2,θ=4π 12. 设5sin 7a π=,2cos 7b π=,2tan 7 c π =,则 A .a b c << B .a c b << C .b c a << D .b a c << 13.已知函数()sin(2)f x x ?=+的图象关于直线8 x π =对称,则?可能是 A. 2π B.4π- C.4 π D.34π 14. 函数f (x )= x x cos 2cos 1- A .在??????20π , 、??? ??ππ ,2上递增,在??????23,ππ、??? ??ππ 2,23上递减 B .在??????20π,、??? ??23ππ,上递增,在??? ??ππ,2、??? ??ππ 223, 上递减 C .在?? ????ππ, 2、??? ?? ππ223,上递增,在?? ????20π,、??? ??23ππ, 上递减 D .在????? ? 23, ππ、??? ??ππ2,23上递增,在?? ????20π,、??? ??ππ,2上递减 二.填空题(每小题5分,共20分,) 15. 已知??? ? ?- ∈2, 2ππα,求使sin α=3 2 成立的α= 16.sin15°cos75°+cos15°sin105°=_________

相关文档
最新文档