脚手架荷载等计算示例

脚手架荷载等计算示例
脚手架荷载等计算示例

6计算参数:

钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。

双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。

钢管类型φ48×3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米。施工活荷载为3.0kN/m2,同时考虑2层施工。

脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。

栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。

脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。

基本风压0.30kN/m2,高度变化系数1.0000,体型系数0.6000。

地基承载力标准值170kN/m2,底面扩展面积0.250m2,地基承载力调整系数0.40。钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。

6.1 大横杆的计算

大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。

按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。

6.1.1 均布荷载值计算

大横杆的自重标准值 P1=0.038kN/m

脚手板的荷载标准值 P2=0.100×1.100/2=0.055kN/m

活荷载标准值 Q=3.000×1.100/2=1.650kN/m

静荷载的计算值 q1=1.2×0.038+1.2×0.055=0.112kN/m

活荷载的计算值 q2=1.4×1.650=2.310kN/m

大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)

大横杆计算荷载组合简图(支座最大弯矩)

6.1.2 抗弯强度计算

最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩

跨中最大弯矩计算公式如下:

跨中最大弯矩为

M1=(0.08×0.112+0.10×2.310)×1.3002=0.406kN.m

支座最大弯矩计算公式如下:

支座最大弯矩为

M2=-(0.10×0.112+0.117×2.310)×1.3002=-0.476kN.m

我们选择支座弯矩和跨中弯矩的最大值进行强度验算:

σ=0.476×106/4491.0=105.922N/mm2

→→ 大横杆的计算强度小于205.0N/mm2,满足要求!

6.1.3 挠度计算

最大挠度考虑为三跨连续梁均布荷载作用下的挠度

计算公式如下:

静荷载标准值 q1=0.038+0.055=0.093kN/m

活荷载标准值 q2=1.650kN/m

三跨连续梁均布荷载作用下的最大挠度

V=(0.677×0.093+0.990×1.650)×1300.04/(100×2.06×105×107780.0) =2.183mm

→→ 大横杆的最大挠度小于1300.0/150与10mm,满足要求!

6.2 小横杆的计算

小横杆按照简支梁进行强度和挠度计算,大横杆在小横杆的上面。

用大横杆支座的最大反力计算值,在最不利荷载布置下计算小横杆的最大弯矩和变形。

6.2.1荷载值计算

大横杆的自重标准值 P1=0.038×1.300=0.050kN

脚手板的荷载标准值 P2=0.100×1.100×1.300/2=0.072kN

活荷载标准值 Q=3.000×1.100×1.300/2=2.145kN

荷载的计算值 P=1.2×0.050+1.2×0.072+1.4×2.145=3.149kN

小横杆计算简图

6.2.2抗弯强度计算

最大弯矩考虑为小横杆自重均布荷载与荷载的计算值最不利分配的弯矩和均布荷载最大弯矩计算公式如下:

集中荷载最大弯矩计算公式如下:

M=(1.2×0.038)×1.1002/8+3.149×1.100/4=0.873kN.m

σ=0.873×106/4491.0=194.358N/mm2

→→ 小横杆的计算强度小于205.0N/mm2,满足要求!

6.2.3挠度计算

最大挠度考虑为小横杆自重均布荷载与荷载的计算值最不利分配的挠度和

均布荷载最大挠度计算公式如下:

集中荷载最大挠度计算公式如下:

小横杆自重均布荷载引起的最大挠度

V1=5.0×0.038×1100.004/(384×2.060×105×107780.000)=0.033mm

集中荷载标准值 P=0.050+0.072+2.145=2.266kN

集中荷载标准值最不利分配引起的最大挠度

V2=2266.420×1100.0×1100.0×1100.0/(48×2.06×105×107780.0)

=2.831mm

最大挠度和 V=V1+V2=2.864mm

→→ 小横杆的最大挠度小于1100.0/150与10mm,满足要求!

6.3 扣件抗滑力的计算

纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):

R ≤ R c

其中 R c——扣件抗滑承载力设计值,单扣件取8.0kN,双扣件取12.0kN;

R ——纵向或横向水平杆传给立杆的竖向作用力设计值;

荷载值计算

横杆的自重标准值 P1=0.038×1.100=0.042kN

脚手板的荷载标准值 P2=0.100×1.100×1.300/2=0.072kN

活荷载标准值 Q=3.000×1.100×1.300/2=2.145kN

荷载的计算值 R=1.2×0.042+1.2×0.072+1.4×2.145=3.139kN

→→ 单扣件抗滑承载力的设计计算满足要求!

当直角扣件的拧紧力矩达40--65N.m时,试验表明:单扣件在12kN的荷载下会滑动,其抗滑承载力可取8.0kN;

双扣件在20kN的荷载下会滑动,其抗滑承载力可取12.0kN。

6.4 脚手架荷载标准值

作用于脚手架的荷载包括静荷载、活荷载和风荷载。静荷载标准值包括以下内容:(1)每米立杆承受的结构自重标准值(kN/m);本例为0.0995

N G1 = 0.100×40.000=3.982kN

(2)脚手板的自重标准值(kN/m2);本例采用竹笆片脚手板,标准值为0.10

N G2 = 0.100×4×1.300×(1.100+0.500)/2=0.416kN

(3)栏杆与挡脚手板自重标准值(kN/m);本例采用栏杆、竹笆片脚手板挡板,标准值为0.17; N G3 = 0.170×1.300×4=0.884kN

(4)吊挂的安全设施荷载,包括安全网(kN/m2);0.010

N G4 = 0.010×1.300×40.000=0.520kN

经计算得到,静荷载标准值 N G = N G1+N G2+N G3+N G4 = 5.802kN。

活荷载为施工荷载标准值产生的轴向力总和,内、外立杆按一纵距内施工荷载总和的1/2取值。

经计算得到,活荷载标准值 N Q = 3.000×2×1.300×1.100/2=4.290kN

风荷载标准值应按照以下公式计算

其中 W0——基本风压(kN/m2), W0 = 0.300

U z——风荷载高度变化系数,U z = 1.000

U s——风荷载体型系数: U s = 0.600

经计算得到:W k = 0.300×1.000×0.600 = 0.180kN/m2。

考虑风荷载时,立杆的轴向压力设计值计算公式

N = 1.2N G + 0.9×1.4N Q

经过计算得到,底部立杆的最大轴向压力:

N=1.2×5.802+0.9×1.4×4.290=12.368kN

不考虑风荷载时,立杆的轴向压力设计值计算公式

N = 1.2N G + 1.4N Q

经过计算得到,底部立杆的最大轴向压力:

N=1.2×5.802+1.4×4.290=12.968kN

风荷载设计值产生的立杆段弯矩 M W计算公式

M W = 0.9×1.4W k l a h2/10

其中 W k——风荷载标准值(kN/m2);

l a——立杆的纵距 (m);

h ——立杆的步距 (m)。

经过计算得到风荷载产生的弯矩:

M w=0.9×1.4×0.180×1.300×1.800×1.800/10=0.096kN.m

6.5 立杆的稳定性计算

7.5.1 不考虑风荷载时,立杆的稳定性计算

其中 N ——立杆的轴心压力设计值,N=12.968kN;

i ——计算立杆的截面回转半径,i=1.60cm;

k ——计算长度附加系数,取1.155;

u ——计算长度系数,由脚手架的高度确定,u=1.500;

l0 ——计算长度 (m),由公式 l0 = kuh 确定,

l0=1.155×1.500×1.800=3.118m;

A ——立杆净截面面积,A=4.239cm2;

W ——立杆净截面模量(抵抗矩),W=4.491cm3;

λ——长细比,为3118/16=196

λ0 ——允许长细比(k取1),为2700/16=169 <210

→→ 长细比验算满足要求!

φ——轴心受压立杆的稳定系数,由长细比 l0/i 的结果查表得到0.190;

σ——钢管立杆受压强度计算值 (N/mm2);

[f]——钢管立杆抗压强度设计值,[f]=205.00N/mm2;

经计算得到:

σ=12968/(0.19×424)=161.390N/mm2;

→→ 不考虑风荷载时,立杆的稳定性计算σ < [f],满足要求!

6.5.2 考虑风荷载时,立杆的稳定性计算

其中 N ——立杆的轴心压力设计值,N=12.368kN;

i ——计算立杆的截面回转半径,i=1.60cm;

k ——计算长度附加系数,取1.155;

u ——计算长度系数,由脚手架的高度确定,u=1.500;

l0——计算长度 (m),由公式 l0 = kuh 确定,

=1.155×1.500×1.800=3.118m;

l

A ——立杆净截面面积,A=4.239cm2;

W ——立杆净截面模量(抵抗矩),W=4.491cm3;

λ——长细比,为3118/16=196

λ0——允许长细比(k取1),为2700/16=169 <210

→→ 长细比验算满足要求!

φ——轴心受压立杆的稳定系数,由长细比 l0/i 的结果查表得到0.190;

M W——计算立杆段由风荷载设计值产生的弯矩,M W=0.096kN.m;

σ——钢管立杆受压强度计算值 (N/mm2);

[f]——钢管立杆抗压强度设计值,[f]=205.00N/mm2;

经计算得到σ=12368/(0.19×424)+96000/4491=175.187N/mm2;

→→ 考虑风荷载时,立杆的稳定性计算σ < [f],满足要求!

6.6 最大搭设高度的计算

不考虑风荷载时,当立杆采用单管时,单、双排脚手架允许搭设高度[H],按下式计算:

[H] = [φAσ-(1.2N G2k+1.4N Qk-N Xie)] / 1.2g k

其中 N G2k——构配件自重标准值产生的轴向力,N G2k = 1.820kN;

N Qk——活荷载标准值, N Qk = 4.290kN;

g k——每米立杆承受的结构自重标准值,g k = 0.100kN/m;

N Xie——轴向力钢丝绳卸荷部分, N Qk = 0.000kN;

σ——钢管立杆抗压强度设计值,σ = 205.00N/mm2;

经计算得到,不考虑风荷载时,按照稳定性计算的搭设高度 [H] = 69.335米。

考虑风荷载时,当立杆采用单管时,单、双排脚手架允许搭设高度[H],按下式计算:

[H] = {φAσ-[1.2N G2k+0.9×1.4(N Qk+φAM wk)-N Xie]} / 1.2g k

其中 N G2k——构配件自重标准值产生的轴向力,N G2k = 1.820kN;

N Qk——活荷载标准值, N Qk = 4.290kN;

g k——每米立杆承受的结构自重标准值,g k = 0.100kN/m;

M wk——计算立杆段由风荷载标准值产生的弯矩,M wk = 0.076kN.m;

N Xie——轴向力钢丝绳卸荷部分,N Qk = 0.000kN;

σ——钢管立杆抗压强度设计值,σ = 205.00N/mm2;

经计算得到,考虑风荷载时,按照稳定性计算的搭设高度 [H] = 60.054米。→→ 取上面两式计算结果的最小值,脚手架允许搭设高度 [H]=60.054米。

6.7 连墙件的计算

连墙件的轴向力计算值应按照下式计算:

N l = N lw + N o

其中 N lw——风荷载产生的连墙件轴向力设计值(kN),应按照下式计算:

N lw = 1.4 × w k× A w

w k——风荷载标准值,w k = 0.180kN/m2;

A w——每个连墙件的覆盖面积内脚手架外侧的迎风面积:

A w = 3.60×3.90 = 14.040m2;

N o——连墙件约束脚手架平面外变形所产生的轴向力(kN);N o = 3.000 经计算得到 N lw = 3.538kN,连墙件轴向力计算值 N l = 6.538kN

根据连墙件杆件强度要求,轴向力设计值 N f1 = 0.85Ac[f]

根据连墙件杆件稳定性要求,轴向力设计值 N f2 = 0.85φA[f]

其中φ——轴心受压立杆的稳定系数,由长细比 l/i=50.00/1.60的结果查表得到φ=0.92;

净截面面积 Ac = 4.24cm2;毛截面面积 A = 18.10cm2;[f] = 205.00N/mm2。

经过计算得到 N f1 = 73.865kN

→→ N f1>N l,连墙件的设计计算满足强度设计要求!

经过计算得到 N f = 288.444kN

→→ N f2>N l,连墙件的设计计算满足稳定性设计要求!

连墙件采用扣件与墙体连接。

→→ 经过计算得到 N1=6.538kN 小于扣件的抗滑力8.0kN,连墙件扣件满足要求!

6.8 立杆的地基承载力计算

立杆基础底面的平均压力应满足下式的要求

p k≤ f g

其中 p k——脚手架立杆基础底面处的平均压力标准值,p k=N k/A=40.37 (kPa) N k——上部结构传至基础顶面的轴向力标准值

N k = 5.80+4.29=10.09kN

A ——基础底面面积 (m2);A = 0.25

f g——地基承载力设计值 (kN/m2);f

g = 68.00

地基承载力设计值应按下式计算

f g = k c× f gk

其中 k c——脚手架地基承载力调整系数;k c = 0.40

f gk——地基承载力标准值;f gk = 170.00

→→ 地基承载力的计算满足要求!

6.9 脚手架配件数量匡算

扣件式钢管脚手架的杆件配备数量需要一定的富余量,以适应构架时变化需要,因此按匡算方式来计算;

根据脚手架立杆数量按以下公式进行计算:

L --长杆总长度(m); N1 --小横杆数(根);

N2 --直角扣件数(个); N3 --对接扣件数(个);

N4 --旋转扣件数(个); S --脚手板面积(m2);

n --立杆总数(根) n=178; H --搭设高度(m) H=40;

h --步距(m) h=1.8; la--立杆纵距(m) la=1.3;

lb --立杆横距(m) lb=1.1;

长杆总长度(m) L =1.1×40×(178+1.3×178/1.8-2×1.3/1.8)=13424.89

小横杆数(根) N1=1.1×(40/3.6+1)×178=2371

直角扣件数(个) N2=2.2×(40/1.8+ 1)×178=9094

对接扣件数(个) N3=13424.89/6=2238

旋转扣件数(个) N4=0.3×13424.89/6=672

脚手板面积(m2) S=1.1×(178-2)×1.3×1.1=276.85

根据以上公式计算得长杆总长13424.89;小横杆2371根;直角扣件9094个;对接扣件2238个;

旋转扣件672个;脚手板276.85m2。

→→ 扣件脚手架计算满足要求!

结构设计基本荷载计算

荷载 1.墙体荷载: 1). 外墙(烧结页岩多孔砖容重14.0 kN/m3):(卫生间除外) 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 考虑建筑节能0.6kN/m2取∑: 4.64kN/m2 考虑装修抹灰取∑: 4.7kN/m2 G=4.7kN/m2×(H--梁高)×0.8= 内墙(加气混凝土砌块8.0 kN/m3):(卫生间除外) 20厚混合砂浆:17×0.020=0.34 kN/m2 200厚墙体:8.0×0.20=1.60 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.24 kN/m2 考虑装修抹灰取∑: 2.3kN/m2 G=2.3kN/m2×(H--梁高)= 女儿墙(烧结页岩多孔砖容重14.0 kN/m3): 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 G=4.04kN/m2×H+压顶自重= 2). 卫生间外墙(烧结页岩多孔砖容重14.0 kN/m3):

外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 内墙面砖:0.5 kN/m2 ∑: 4.54 kN/m2 考虑建筑节能0.6kN/m2取∑: 5.14kN/m2 G=5.14kN/m2×(H--梁高)= ). 卫生间内隔墙(烧结页岩多孔砖容重14.0 kN/m3): 单面面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 100厚墙体:14.0×0.20=1.40 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.64 kN/m2 G=3.14kN/m2×(H--梁高)= 2.屋面荷载: 1). 种植屋面:(从上到下) 300厚种植土:16×0.3=4.8 kN/m2 干铺聚酯纤维无纺布一层:0.10 kN/m2 (3+3)双层SBS改性沥青防水卷材:0.35 kN/m2 20厚憎水膨胀珍珠岩找坡:4×(0.02+10×2%)=0.88 kN/m2 60厚岩棉板: 2.5×0.06=0.15 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 150厚结构板:27×0.15=4.05kN/m2 10厚板底抹灰:10×0.020=0.2 kN/m2 ∑:10.88kN/m2

脚手架计算示例

脚手架计算书(1) 本工程脚步手架采用Φ48×3.5无缝钢管,立杆横距为1.05m,立杆纵距为1.8m,步距为1.8m,共9步16.2m;施工作业层按一层计,则脚手片满铺三层,自重标准值为0.1KN/m2;脚手架外立杆里侧挂密目安全网封闭施工,自重标准值为0.1KN/m2。 一、横向、纵向水平杆计算 1、横向、纵向水平杆的抗弯强度按下式计算: ≤f σ=M W 式中M—弯矩设计值,按M=1.2M GK+1.4 M GK计算; M GK为脚手板自重标准值产生的弯矩; M QK为施工荷载标准值产生的弯矩; W—截面模量,查表Φ48×3.5mm钢管W=5.08cm3; f (1。 图1:纵向水平杆计算简图 a g k=0.1×1.05/3=0.035KN/m=35N/m 按图2静载布置情况考虑跨中和支座最大弯矩。

图2:静载状况下计算简图 M1 M B=M C=-0.1g K l a2 b、考虑活载情况 图3:活载最不利状况计算简图之(1) 图4:活载最不利状况计算简图之(2) M1中=0.101q K l a2 按图5种活载最不利位置考虑支座最大弯矩。

图5:活载最不利状况计算支座弯矩 1中M GK =0.08g K l a 2=0.08×35×1.82=9.07N.m M QK =0.101q K l a 2=0.101×1050×1.82=343.6 N.m M=1.2M GK +1.4M QK =1.2×9.07+1.4×343.6= 491.92N.m σ=M W =491.92×10 5.08×103=96.8N/mm 2〈f=205N/mm 2 (2)横向水平杆的抗弯强度计算 图6:横向水平杆计算简图P/2P P P/2 挡脚板 竹笆脚手板Q/2Q Q Q/2木板q p 横距l 0=1050mm ,脚手架横向水平杆的构造计算外伸长度a 1=350mm ,a 2=100mm 。 a 、考虑静载情况 P= g k ×l 0=35×1.8=63N

楼梯结构计算示例(手算方法步骤以及如何用输入参数-用探索者出图)

楼梯计算实例 已知条件:某公共建筑三跑现浇板式楼梯,楼梯平面布置见图 1 所示 图 1楼梯平面 设计信息:层高3.0m,踏步尺寸为176mr K 240mm采用C30混凝土,HRB400 钢筋。楼梯建筑做法如下表1所示,设计该楼梯。 表1楼梯相关建筑做法 1、地面砖楼面 10厚磨光花岗石(大理石)板 板背面刮水泥浆粘贴 稀水泥浆擦缝 20厚1:3水泥砂浆结合层 素水泥浆一道 120厚现浇混凝土楼板 2、水泥砂浆顶棚 120厚现浇混凝土楼板 素水泥浆一道,局部底板不平时,聚合物水泥砂浆找补 7厚1:水泥砂浆打底扫毛或划出纹道 7厚1:2水泥砂浆找平 参考《建筑结构荷载规范》,可知设计均布活荷载标准值为q k=m。 设计步骤: 一、熟读建筑平面图,了解建筑做法与结构布置, IW f ESQ 3000

该楼梯为三跑形式,台阶数n=17,划分梯板为三个:TB1、TB2 TB3,如图

2所示。 图2梯板划分 二、梯板TB3结构设计 1、荷载计算: 1)梯段板荷载 板厚取t=120mm 板的倾斜角的正切tan a =176/240=, cos a =。取1m宽板 带计算。恒荷载与活荷载具体计算如表2所示。 总荷载设计值为p仁*+**=m。 表2恒荷载与活荷载具体计算 设平台板的厚度t=120mm取1m宽板带计算。恒荷载与活荷载具体计算列 于表3。 总荷载设计值p2=*+*=m 表3恒荷载与活荷载具体计算

载底板抹灰*20= :栏杆线何载 小计 活何载 计算跨度: L o = L i + L3+ (b 1 + b2)/2 = H—I—\~ 12 = 2.0m 左端支座反力:R 1*=*2+** (*+) R 1= 3、楼梯配筋计算: 图3计算跨度 图4计算简图

脚手架计算例题讲解

扣 件 式 落 地 双 排 脚 手 架 计 算 书 计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)、《钢结构设计规范》(GB 50017-2003)等编制。 脚手架搭设体系剖面图 脚手架搭设体系正立面图

脚手架搭设体系平面图 一、参数信息 1.脚手架搭设参数 脚手架从地面开始搭设,搭设高度H:36.4m; 顶步栏杆高:1.2m;内立杆距离墙长度a:0.5m; 横杆步距h:1.8m;总步数:20步; 立杆纵距la:1.5m;立杆横距lb:1.05m; :0.3m;扫地杆距地:0.3m; 小横杆伸出内立杆长度a 1 采用小横杆在上布置,搭接在大横杆上的小横杆根数为2根; 采用的钢管类型为Φ48 × 3.5; 连墙件布置方式为二步二跨,连接方式为扣件连接; 连墙件扣件连接方式为双扣件,扣件抗滑承载力折减系数为1; 脚手架沿墙纵向长度l:185m; 2.荷载参数 (1)活荷载参数 结构脚手架均布活荷载:3kN/m2;结构脚手架同时施工层数:1层; (2)风荷载参数 工程所在地,基本风压Wo:0.45kN/m2;

地面粗糙度类别为:B类(城市郊区); (2)静荷载参数 1)脚手板参数 选用木脚手板,按规范要求铺脚手板; 脚手板自重:0.35kN/m2;铺设层数:1层; 2)挡脚板参数 选用木脚手板(220×48×3000),铺脚手板层设挡脚板 挡脚板自重:0.08kN/m;挡脚板铺设层数:1层; 3)防护栏杆 铺脚手板层设防护栏杆,每步防护栏杆根数为2根,总根数为8根; 4)围护材料 2300目/100cm2,A0=1.3mm2密目安全网全封闭。 密目网选用为:2300目/100cm2,A0=1.3mm2; 密目网自重:0.01kN/m2; 二、小横杆的计算 小横杆在大横杆的上面,考虑活荷载在小横杆上的最不利布置,验算强度和挠度时不计小横杆的悬挑荷载,小横杆按照简支梁进行强度和挠度计算。 1.均布荷载值计算 作用在小横杆上的荷载标准值: q=0.038+0.350×1.5/3+3×1.5/3 = 1.713 kN/m; 作用在小横杆上的荷载设计值: q=1.2×(0.038+0.350×1.5/3)+1.4×3×1.5/3 = 2.356 kN/m; 2.强度验算 最大弯矩 M= ql2/8 =2.356×1.052/8 = 0.325 kN.m; 最大应力计算值σ = M/ W =0.325×106/5.08×103=63.917 N/mm2; 小横杆实际弯曲应力计算值σ=63.917N/mm2小于抗弯强度设计值[f]=205N/mm2,满足要求! 3.挠度验算

脚手架计算公式

脚手架计算公式 1. 脚手架参数 本工程外防护脚手架采用落地式脚手架,搭设高度为25.000m,本脚手架采用密布网进行全封闭。 搭设尺寸为:横距Lb为1.05m,纵距La为1m,大小横杆的步距为 1.6 m; 内排架距离墙长度为0.30m; 大横杆在上,搭接在小横杆上的大横杆根数为2根;脚手架沿墙纵向长度为150.00 m;采用的钢管类型为①48X 2.75横杆与立杆连接方式为双扣件;取扣件抗滑承载力系数为 1.00;连墙件采用三步四跨,竖向间距4.8 m,水平间距4 m,采用扣件连接;连墙件连接方式为双扣件;2. 活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途:装修脚手架;同时施工层数:2层; 3. 风荷载参数 本工程地处湖南长沙市,基本风压0.32 kN/m2; 风荷载高度变化系数诉z,计算连墙件强度时取0.92,计算立杆稳定性时取0.74,风荷载体型系数V s为0.214; 4. 静荷载参数 每米立杆承受的结构白重标准值(kN/m):0.1248; 脚手板白重标准值(kN/m2):0.300;栏杆挡脚板白重标准值 (kN/m):0.150 ;安全设施与安全网(kN/m2):0.005; 脚手板类别:竹笆片脚手板;栏杆挡板类别:竹笆片脚手板挡板;每米 1 人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

脚手架钢管白重标准值(kN/m):0.031;脚手板铺设总层数:13; 5. 地基参数 地基土类型:素填土;地基承载力标准值(kPa):120.00;立杆基础底面 面积(m2):0.20;地基承载力调整系数:1.00。

土木工程毕业设计(一榀框架计算书范例)

1 结构设计说明 1.1 工程概况 *********** 1.2 设计主要依据和资料 1.2.1 设计依据 a) 国家及浙江省现行的有关结构设计规范、规程及规定。 b) 本工程各项批文及甲方单位要求。 c) 本工程的活载取值严格按《建筑结构荷载规范》(GB50009-2001)执行。 1.2.2 设计资料 1 房屋建筑学武汉工业大学出版社 2 混凝土结构(上、下)武汉理工大学出版社 3 基础工程同济大学出版社 4 建筑结构设计东南大学出版社 5 结构力学人民教育出版社 6 地基与基础武汉工业大学出版社 7 工程结构抗震中国建筑工业出版社 8 简明建筑结构设计手册中国建筑工业出版社 9 土木工程专业毕业设计指导科学出版社 10 实用钢筋混凝土构造手册中国建筑工业出版社 11 房屋建筑制图统一标准(BG50001-2001)中国建筑工业出版社 12 建筑结构制图标准(BG50105-2001)中国建筑工业出版社 13 建筑设计防火规范(GBJ16—87)中国建筑工业出版社 14 民用建筑设计规范(GBJI0I8-7)中国建筑工业出版社 15 综合医院建筑设计规范(JGJ49-88)中国建筑工业出版社 16 建筑楼梯模数协调标准(GBJI0I-87)中国建筑工业出版社 17 建筑结构荷载规范(GB5009-2001)中国建筑工业出版社 18 建筑结构可靠度设计统一标准(GB50068-2001)中国建筑工业出版社 19 混凝土结构设计规范(GB50010—2002)中国建筑工业出版社 20 地基与基础设计规范(GB5007-2002)中国建筑工业出版社 21 建筑抗震设计规范(GB50011—2001)中国建筑工业出版社 22 砌体结构中国建筑工业出版社 23 简明砌体结构设计施工资料集成中国电力出版社

脚手架荷载等计算示例

6计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。 立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型? 48X 3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米' 施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 2 栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 一 2 基本风压0.30kN/m,高度变化系数1.0000,体型系数0.6000。 9 9 地基承载力标准值170kN/m,底面扩展面积0.250m ,地基承载力调整系数0.40 钢管惯性矩计算采用匸n (D4-d4)/64 ,抵抗距计算采用W=n (D4-d4)/32D。 6.1大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。6.1.1均布荷载值计算 大横杆的自重标准值P 1=0.038kN/m 脚手板的荷载标准值P 2=0.100 X 1.100/2=0.055kN/m 活荷载标准值Q=3.000 X 1.100/2=1.650kN/m 静荷载的计算值q 1=1.2 X 0.038+1.2 X 0.055=0.112kN/m 活荷载的计算值q 2=1.4 X 1.650=2.310kN/m q、

【建筑工程管理】墩柱脚手架施工荷载计算书

墩柱脚手架施工验算 一、受力分析 作用于脚手架上的荷载,可分为永久荷载(恒荷载)和可变荷载(活荷载)两类。 1、脚手架的永久荷载,一般包括下列荷载: ①组成脚手架结构的杆系自重,包括:立杆、纵向横杆、横向横杆、剪刀撑等自重; ②配件重量,包括:脚手板、栏杆、挡脚板、安全网等防护设施及附加构件的自重; 设计脚手架时,其荷载应根据脚手架实际架设情况进行计算。 2、脚手架的可变荷载,包括下列荷载: ①脚手架的施工荷载,脚手架作业层上的操作人员、器具及材料等的重量。 ②风荷载。 3、荷载取值 ①脚手架结构杆系自重标准值

②脚手架配件重量标准值。 脚手板自重标准值统一按0.35kN/m2 取值。 操作层的栏杆与挡脚板自重标准值按0.14kN/m2 取值。 脚手架上满挂密目安全网自重标准值按0.01kN/m2 取值。 施工人员及设备荷载标准值按均布活荷载取1.0kN/m2。 3、受力分析 架体结构的主要传力途径为:操作平台上的各种竖向荷载—横向—水平杆—纵向水平杆—立杆—垫木—地基。从传力途径可以看出,结构杆件中立杆底段是受力最大,因此在计算过程中主要计主杆底段和地基。在脚手架的搭设计算中,主要的是通过荷载的分布情况及大小,验算立杆的刚度和稳定性是否满足要求。另外,脚手架构造、脚手架加强加固必须满足施工要求和安全技术规范要求。 跨铁路桥墩墩身高度最高的为Z27一号墩柱,墩身高25.20米,对其进行支架验算,(验算过程中未做特殊说明的,均需参见《建筑施工碗口式脚手架安全技术规范》(JGJ166-2008)) 一、脚手板验算 均布荷载q1为:(脚手板自重0.35kN/m2*1.2+1.4*施工人员及设备荷载标准值按均布活荷载1.0 KN/M2)=1.82 kN/m2 脚手板最大弯矩为:Mmax=ql2/8=1.82*1.22/8=0.328kN.m 脚手板截面的抵抗矩为:W=bh2/6=450*502/6=1.875*105mm (脚手板采用厚度为5cm、长度为450cm的松木板)

框格梁结构设计计算示例

3 30.497 2.400 4 44.981 2.400 5 59.252 2.400 6 73.496 2.400 7 87.787 2.400 8 102.143 2.400 9 116.567 2.400 10 131.053 2.400 11 145.555 2.400 12 159.931 2.400 13 173.888 2.400 14 186.994 2.400 15 198.933 2.400 16 210.190 2.400 17 223.278 2.400 18 330.044 2.400 注: 背侧--为挡土侧; 面侧--为非挡土侧 弯 矩:面侧受拉为正,背侧受拉为负 剪 力:对水平梁,从下向上看,逆时针为正;顺时针为负 对竖向梁,从左向右看,逆时针为正;顺时针为负 扭 矩:矢量方向同坐标负向为正,反之为负 位 移:向面侧为正,向背侧为负 支座反力:与锚杆受拉力方向一致为正,反之为负 (三) 格构梁配筋计算 梁号 1: 跨长:1.600(m),截面:B×H=0.300(m)×0.400(m) 左 中 右 弯 矩: 0.00 0.50 1.60 剪 力: 0.00 1.03 1.72 扭 矩: -0.00 -0.00 -0.00 位 移: -0.00 -0.00 -0.00 背侧纵筋: 240 240 240 面侧纵筋: 240 240 240 抗扭纵筋: 0 0 0 抗扭箍筋: 0 0 0 抗剪箍筋: 305 305 305 梁号 2: 跨长:3.400(m),截面:B×H=0.300(m)×0.400(m) 左 中 右 弯 矩: 2.18 -0.19 1.45 剪 力: -2.20 -0.21 1.77 扭 矩: -0.00 -0.00 -0.00 位 移: -0.00 -0.00 -0.00 背侧纵筋: 240 240 240 面侧纵筋: 240 240 240 抗扭纵筋: 0 0 0 抗扭箍筋: 0 0 0 抗剪箍筋: 305 305 305

脚手架的计算公式定理

脚手架计算方式 脚手架的上下通道:脚手架体要设置安全马道:①马道宽度不小于1米,坡度以1:3(高:长)为宜。②马道的立杆、横杆间距应与脚手架相适应,基础按脚手架要求处理,立面设剪刀撑。③人行斜道小横杆间距不超过1.5米。④马道上满铺脚手板,板上钉防滑条,防滑条不大于300mm。⑤设置护栏杆,上部护身栏杆1.2米,下部护身栏杆距脚手板0.6米,同时设180mm宽档脚板。 脚手架的卸料平台:卸料平台上面要挂牌标明控制荷载;要严格按照搭设方案施工。卸料平台设计计算 立杆横距b=1米,立杆纵距L=1.5m,步距h=1.5m 剪刀撑连续设置,卸料平台宽度C=2m。 (1)强度计算 Mmax=q12/8 q=1.2(GK.C+gk)+1.4KQQK.C GK──脚手板重量GK=0.3KN/M2 C ──卸料平台宽度C=2M gk──钢管单位长度gk=38N/M KQ──施工活荷载KQ=1.2N/M2 QK──施工荷载标准值QK=2000N/M2 q=1.2*(300*1.0+38)+1.4*1.2*2000*1=405.6+3360=3765.6N/M Mmax=(3765.6*12)/8=470.7N.M 验算抗弯强度 S=Mmax/W=470.7/5078=92.7N/MM2<205N/MM2

所以安全满足设计要求 (2)计算变形 查表φ48*3.5的钢管参数 E=2.06*105N/MM2 (钢管的弹性模量) I=12190mm(钢管的截面惯性矩) W/b=5ql3/384EI=(5*3765.6*10003)/(384*2.06*105?*?12190) =?0.?19%=1/526<1/150 满足要求 经结构计算均符合强度、刚度、稳定性的要求 落地式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算的脚手架为双排脚手架,搭设高度为18.6米,立杆采用单立管。 搭设尺寸为:立杆的纵距1.2米,立杆的横距1.05米,立杆的步距1.20米。 采用的钢管类型为Φ48×3.5,连墙件采用2步2跨,竖向间距2.4米,水平间距2.4米。 施工均布荷载为2kN/m2,同时施工2层,脚手板共铺设4层。 一、大横杆的计算:

脚手架计算例题讲解

扣件式落地双排脚手架计算书

计算依据《建筑施工扣件式钢管脚手架安全技术规》(JGJ130-2011)、《建筑地基基础设计规》(GB 50007-2011)、《建筑结构荷载规》(GB 50009-2012)、《钢结构设计规》(GB 50017-2003)等编制。 脚手架搭设体系剖面图

脚手架搭设体系正立面图 脚手架搭设体系平面图

一、参数信息 1.脚手架搭设参数 脚手架从地面开始搭设,搭设高度H:36.4m; 顶步栏杆高:1.2m;立杆距离墙长度a:0.5m; 横杆步距h:1.8m;总步数:20步; 立杆纵距la:1.5m;立杆横距lb:1.05m; :0.3m;扫地杆距地:0.3m; 小横杆伸出立杆长度a 1 采用小横杆在上布置,搭接在大横杆上的小横杆根数为2根; 采用的钢管类型为Φ48 × 3.5; 连墙件布置方式为二步二跨,连接方式为扣件连接; 连墙件扣件连接方式为双扣件,扣件抗滑承载力折减系数为1; 脚手架沿墙纵向长度l:185m; 2.荷载参数 (1)活荷载参数 结构脚手架均布活荷载:3kN/m2;结构脚手架同时施工层数:1层; (2)风荷载参数 工程所在地,基本风压Wo:0.45kN/m2; 地面粗糙度类别为:B类(城市郊区); (2)静荷载参数 1)脚手板参数 选用木脚手板,按规要求铺脚手板; 脚手板自重:0.35kN/m2;铺设层数:1层; 2)挡脚板参数 选用木脚手板(220×48×3000),铺脚手板层设挡脚板 挡脚板自重:0.08kN/m;挡脚板铺设层数:1层; 3)防护栏杆

铺脚手板层设防护栏杆,每步防护栏杆根数为2根,总根数为8根; 4)围护材料 2300目/100cm2,A0=1.3mm2密目安全网全封闭。 密目网选用为:2300目/100cm2,A0=1.3mm2; 密目网自重:0.01kN/m2; 二、小横杆的计算 小横杆在大横杆的上面,考虑活荷载在小横杆上的最不利布置,验算强度和挠度时不计小横杆的悬挑荷载,小横杆按照简支梁进行强度和挠度计算。 1.均布荷载值计算 作用在小横杆上的荷载标准值: q=0.038+0.350×1.5/3+3×1.5/3 = 1.713 kN/m; 作用在小横杆上的荷载设计值: q=1.2×(0.038+0.350×1.5/3)+1.4×3×1.5/3 = 2.356 kN/m; 2.强度验算 最大弯矩 M= ql2/8 =2.356×1.052/8 = 0.325 kN.m; 最大应力计算值σ = M/ W =0.325×106/5.08×103=63.917 N/mm2; 小横杆实际弯曲应力计算值σ=63.917N/mm2小于抗弯强度设计值[f]=205N/mm2,满足要求! 3.挠度验算 最大挠度ν = 5ql4/384EI = 5.0×1.713×10504/(384×2.06×105×12.19×104)=1.080 mm; 小横杆实际最大挠度计算值ν=1.080mm 小于最大允许挠度值min(1050/180,10)=5.675mm,满足要求! 三、大横杆的计算 小横杆在大横杆的上面,小横杆把荷载以集中力的形式传递给大横杆,所以,大横杆按照集中力作用下的三跨连续梁进行强度和挠度计算。计算小横杆传递给大横杆的集中力时,计入小横杆的悬挑荷载。 1.小横杆传递给大横杆的集中力计算

框架结构竖向荷载作用下的内力计算

第6章竖向荷载作用下内力计算 §6.1 框架结构的荷载计算 §6.1.1.板传荷载计算 计算单元见下图所示: 因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三角形或梯形荷载可等效为均布荷载。 图6-1 框架结构计算单元

图6-2 框架结构计算单元等效荷载 一.B ~C, (D ~E)轴间框架梁: 屋面板传荷载: 恒载:2226.09KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=17.128KN/m ??+? 活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ???+? 楼面板传荷载: 恒载:2223.83KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=10.772KN/m ???+? 活载:2222.0KN/m 1.5m [1-2(1.5/6)(1.5/6)]2=5.625KN/m ???+? 梁自重:3.95KN/m B ~C, (D ~E)轴间框架梁均布荷载为: 屋 面 梁:恒载=梁自重+板传荷载 =17.128 KN/m+3.95 KN/m=21.103 KN/m 活载=板传荷载=5.625 KN/m 楼面板传荷载:恒载=梁自重+板传荷载 =3.95 KN/m+10.772 KN/m=14.747 KN/m 活载=板传荷载=5.625 KN/m 二. C ~D 轴间框架梁: 屋面板传荷载: 恒载:26.09KN/m 1.2m 5/82=9.135KN/m ??? 活载:22.0KN/m 1.5m 5/82=3KN/m ??? 楼面板传荷载:

脚手架荷载计算

一、荷载计算 1、箱梁荷载:箱梁钢筋砼每单位面积的自重:22.63 KN/m2 取安全系数r=1.2 单位面积的自重为:F1=22.63×1.2=27.156 KN/m2 2、施工荷载:取F2=1.4×2.5=3.5 KN/m2 3、振捣混凝土产生荷载:取F3=1.4×2.0=2.799 KN/m2 4、箱梁芯模:取F4=1.2×1.5=1.799 KN/m2 5、木模板(松木):取F5=1.2×0.1=.119 KN/m2 方木横梁容重:取r=7.5 KN/m3 方木纵梁容重:取r=7.5 KN/m3 二、底模强度计算 箱梁底模采用木模板(松木),板厚t=15 mm,方木背肋间距为300 mm,所以验算模板强度采用宽b=300 mm平面木模板(松木)。 1、模板力学性能 (1)弹性模量E=11000 MPa。 (2)截面惯性矩:I=bh3/12=30×1.5^3/12=8.438 cm4 (3)截面抵抗矩:W= bh2/6=30×1.5^2/6=11.25 cm3 (4)截面积:A=bh=30×1.5=45 cm2 2、模板受力计算 (1)底模板均布荷载:F= F1+F2+F3+F4=27.156+3.5+2.799+1.799=35.254 KN/m2 q=F×b=35.254×.3=10.576 KN/m (2)跨中最大弯矩:M=qL2/8=10.576×.3^2/8=.119 KN.M

(3)弯拉应力:σ=M/W=.119×10^3/11.25=10.57 MPa<[σ] =14.5 MPa 木模板(松木)弯拉应力满足要求 (4)挠度:从底模下方的背肋布置可知,木模板(松木)可看作为多跨等跨连续梁,按三等跨均布荷载作用连续梁进行计算,计算公式为: f=0.677qL4/100EI=0.667×10.576×.3^4/(100×11000×8.438)×10^8=.615 mm

结构设计荷载计算(模板)

第三医院荷载计算 面层荷载 一、屋面荷载:(上人屋面) 25厚水泥花砖0.60(kN/m2) 20厚水泥砂浆20×0.020=0.40(kN/m2) 防水层0.40(kN/m2) 20厚水泥砂浆找平层20×0.020=0.40(kN/m2) 水泥焦渣找坡层 1.60(kN/m2) 60厚高密度聚苯板保温层2×0.06=0.12(kN/m2) 水泥砂浆找平层0.40(kN/m2) 120厚钢筋混凝土屋面板25×0.12=3.00(kN/m2) 170厚钢筋混凝土屋面板2) 吊顶0.50(kN/m2) 静荷载总计2) 活荷载总计(上人屋面) 2.00(kN/m2) 二、首层楼面荷载:

隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计10.50(kN/m2) 活荷载(考虑施工堆载)总计 5.00(kN/m2) 三、首层(CT、MRI有地沟)楼面荷载 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计8.00(kN/m2) 活荷载总计8.00(kN/m2) CT、MRI围护墙恒荷载30.00(kN/m2) 四、四层以下楼面荷载:(生化、免疫、试验室、护士站等) 隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2) 结构层170厚钢筋混凝土板2) 吊顶0.50(kN/m2) 静荷载总计2)

脚手架计算书示例

钢管落地施工平台计算书 扣件式钢管落地平台的计算依照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等编制。 支撑高度在4米以上的模板支架被称为扣件式钢管高支撑架,对于高支撑架的计算规范存在重要疏漏,使计算极容易出现不能完全确保安全的计算结果。本计算书编写还参考了《施工技术》2002.3.《扣件式钢管模板高支撑架设计和使用安全》一文。

一、参数信息 1.基本参数 立杆横向间距或排距l a(m):0.60,立杆步距h(m):0.60; 立杆纵向间距l b(m):0.90,平台支架计算高度H(m):8.00; 立杆上端伸出至模板支撑点的长度a(m):0.10,平台底钢管间距离(mm):250.00; 钢管类型:Φ48×3.0,扣件连接方式:双扣件,取扣件抗滑承载力系数:1.00; 2.荷载参数 脚手板自重(kN/m2):0.300; 栏杆自重(kN/m):0.150; 材料堆放最大荷载(kN/m2):5.000; 施工均布荷载(kN/m2):4.000; 3.地基参数 地基土类型: 立杆基础底面面积(m2):0.25;地基承载力调整系数:1.00。 二、纵向支撑钢管计算 纵向钢管按照均布荷载下连续梁计算,截面几何参数为 截面抵抗矩 W = 4.49 cm3;

截面惯性矩 I = 10.78cm4; 纵向钢管计算简图 1.荷载的计算 (1)脚手板自重(kN/m): q11 = 0.3×0.25 = 0.075 kN/m; (2)堆放材料的自重线荷载(kN/m): q12 = 5×0.25 = 1.25 kN/m; (3)施工荷载标准值(kN/m): p1 = 4×0.25 = 1 kN/m 2.强度验算 依照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)5.2.4规定,纵向支撑钢管按三跨连续梁计算。 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和; 最大弯矩计算公式如下: M = 0.1q1l2+0.117q2l2 最大支座力计算公式如下: N = 1.1q1l + 1.2q2l 均布恒载:q1 = 1.2 × q11= 1.2×0.075 = 0.09 kN/m; 均布活载:q2 = 1.4×1+ 1.4 ×1.25=3.15 kN/m; 最大弯距 M max = 0.1×0.09×0.62 + 0.117 ×3.15×0.62 = 0.136 kN·m ; 最大支座力 N = 1.1×0.09×0.6 + 1.2×3.15×0.6 = 2.327 kN; 最大应力σ = M max / W = 0.136×106 / (4490) = 30.271 N/mm2; 纵向钢管的抗压强度设计值 [f]=205 N/mm2;

脚手架计算示例

脚手架计算书⑴ 本工程脚步手架采用①48x3、5无缱钢管,立杆横距为1、05m,立杆纵距为1、8m,步距为1、 8m,共9步16、2m;施工作业层按一层计,则脚手片满铺三层『自重标准值为0、IKN/m?;脚手架外 立杆里侧挂密目安全网封闭施工『自重标准值为0、1K N/m2。 一、横向.纵向水平杆计算 1、横向、纵向水平杆得抗弯强度按下式计算: 式中M —弯矩设计值按M"、2M GK +1、4M GK 计算; M GK 为脚手板自重标准值产生得弯矩; M QK 为施工荷载标准值产生得弯矩; W —?面模量,查表e48x3、5mm 钢管W=5、0 8 cm3; f —40材得抗弯强度计算值,住2 05N/mm2. (1)纵向水平杆得抗弯强度按图1三跨连续梁计算,计算跨度取纵距1 a=l 8 00mm 。 a 、考虑静载情况 gk = 0、1x1、05/3=0、0 35KN/m= 3 5N/m 按图2静载布置情况考虑跨中与支座最大弯矩。 图1:纵向水平杆计篦简图 厶ck

Ml中=0、08gMa2 M B =M C= - 0、Igda? b、考虑活载情况 qk=3kN/m2xl、0 5 m/3=10 5 ON/m 按图久4两种活载最不利位置考虑跨中最大弯矩。 ■p 图3:活救最不利状况计算简图之(1) nr HZ I" 图4:活栽最不利状况计算简图之(2) Ml中=0、lOlqda^ 按图5种活载最不利位置考虑支座最大弯矩。 M B=M C=-O, 17 7 q K 1

.|k n lo 图5:活戦战不利状况计算支座弯矩 根据以上情况分析,可知图2与图3(或图4)这种静载与活载最不利组合时Ml 中 跨中弯矩最大。 M GK=0、08gKla2=0、08x35x1, 8—9、07N、m M QK=O、10 5以=0、101x1050x1, 82=343. 6 N、m M = l, 2M GK +1.4M QK=1.2X9. 07+1、4x343、6= 491、92 N、m 注汽卷器9 6、8N/mm2 (f=2O5N/mm2 (2)横向水平杆得抗弯强度计算 木板1 1 tt 笆wrts —,1 L 1 $ 图6:横向水平杆计》简图 计算横向水平杆得内力时按简支梁计算如图6,计算跨度取立杆横距lo=lO5Omm,KI手架横向水平杆得构造计算夕卜伸长度a i=350mm,a 2= 1 OOrnrrio a.考虑静载情况

结构胶计算实例及说明

结构胶计算 玻璃采用结构胶与铝合金框粘接,主要承受温度和组合荷载。 1、基本参数 胶的短期强度设计值: f1=0.2 N/mm2 胶的长期强度设计值: f2=0.01N/mm2 年温差最大值: △T=80℃ 铝型材线膨胀系数: a1=2.35×10-5 玻璃线膨胀系数: a2=1.0×10-5(以上基本参数可以在计算书第二部分、基本参数及主要材料设计指标里找到)另外根据厂家提供的数据,得到以下参数: 硅酮结构密封胶温差效应变位承受能力δ1=0.125 θ 2 C) S 1 式中C S W a f1 2 式中qE 3、在玻璃永久荷载作用下,粘结宽度C S应按下式计算: 式中qG幕墙玻璃单位面积重力荷载设计值(KN/m2); a、b分别为矩形玻璃的短边和长边长度(mm); f2硅酮结构密封胶在永久荷载作用下的强度设计值,取0.01 N/mm2。 4、水平倒挂的隐框、半隐框玻璃和铝框之间硅酮结构密封胶的粘结宽度C S应按下式计算: 非抗震设计时,可取第1、3款计算的较大值;抗震设计时,可取第2、3款计算的较大值。(根据玻璃幕墙规范 5.6) 3、胶的粘结厚度(胶的粘结厚度包过两种情况1、在温度作用下的粘结厚度2、在地震作用下的粘结厚度,取两者中的较大值。其中玻璃幕墙规范5.6.5中指的就是硅酮结构密封胶在地震作用下的粘结厚度)

玻璃板块在年温差作用下玻璃与铝型材相对位移量: U S1 =b·△T·(a1-a2) =2000×80×(2.35×10-5-1.0×10-5) =2.16m (b 为玻璃面板长边△T 为年温差a1 为铝型材线膨胀系数a2为玻璃线膨胀系数)年温差作用下结构胶粘结厚度: S1 t===4.2mm,取5.0mm。 ( 1 δ硅酮结构密封胶的变位承受能力,取对应于其受拉应力为0.14N/mm2时的伸长率,在温度作用下一般取0.125) U S (u θ ( h g S1 t (t s 1 δ0.4)

脚手架荷载等计算示例

6计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型φ48×3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米。施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 基本风压0.30kN/m2,高度变化系数1.0000,体型系数0.6000。 地基承载力标准值170kN/m2,底面扩展面积0.250m2,地基承载力调整系数0.40。钢管惯性矩计算采用I=π(D4-d4)/64,抵抗距计算采用W=π(D4-d4)/32D。 6.1 大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 6.1.1 均布荷载值计算

大横杆的自重标准值P1=0.038kN/m 脚手板的荷载标准值P2=0.100×1.100/2=0.055kN/m 活荷载标准值Q=3.000×1.100/2=1.650kN/m 静荷载的计算值q1=1.2×0.038+1.2×0.055=0.112kN/m 活荷载的计算值q2=1.4×1.650=2.310kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 6.1.2 抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为

脚手架的计算和荷载计算

脚手架的计算和荷载 落地式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算的脚手架为双排脚手架,立杆采用单立管。 搭设尺寸为:立杆的纵距1.50米,立杆的横距0.80米,立杆的步距1.80米。 采用的钢管类型为48×3.5,连墙件采用2步3跨,竖向间距3.60米,水平间距4.50米。 施工均布荷载为3.0kN/m2,同时施工2层,脚手板共铺设4层。 一、大横杆的计算: 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算 大横杆的自重标准值: P1=0.038kN/m 脚手板的荷载标准值: P2=0.300×0.800/3=0.080kN/m 活荷载标准值: Q=3.000×0.800/3=0.800kN/m 静荷载的计算值: q1=1.2×0.038+1.2×0.080=0.142kN/m 活荷载的计算值: q2=1.4×0.800=1.120kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)

大横杆计算荷载组合简图(支座最大弯矩) 2.抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0.08×0.142+0.10×1.120)×1.5002=0.278kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×0.142+0.117×1.120)×1.5002=-0.327kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: =0.327× 106/5080.0=64.332N/mm2 大横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下: 静荷载标准值q1=0.038+0.080=0.118kN/m 活荷载标准值q2=0.800kN/m 三跨连续梁均布荷载作用下的最大挠度

结构计算-荷载与结构静力计算表

常用结构计算 1 荷载与结构静力计算表 1-1 荷载 1.结构上的荷载 结构上的荷载分为下列三类: (1)永久荷载如结构自重、土压力、预应力等。 (2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。 (3)偶然荷载如爆炸力、撞击力等。 建筑结构设计时,对不同荷载应采用不同的代表值。 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 2.荷载组合 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。 γ0S≤R (1) 式中γ0——结构重要性系数; S——荷载效应组合的设计值; R——结构构件抗力的设计值。 对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定: (1)由可变荷载效应控制的组合

(2-2) 式中γG——永久荷载的分项系数; γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数; S GK——按永久荷载标准值G K计算的荷载效应值; S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者; ψci——可变荷载Q i的组合值系数; n——参与组合的可变荷载数。 (2)由永久荷载效应控制的组合 (2-3)(3)基本组合的荷载分项系数 1)永久荷载的分项系数 当其效应对结构不利时: 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时: 一般情况下应取1.0; 对结构的倾覆、滑移或漂浮验算,应取0.9。 2)可变荷载的分项系数 一般情况下应取1.4; 对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。 对于偶然组合,荷载效应组合的设计值宜按下列规定确定:偶然荷载的代表值不乘分项系数;与偶然荷载同时出现的其他荷载可根据观测资料和工程经验采用适当的代表值。 3.民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数(见表1)民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数表1

相关文档
最新文档