固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)
固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日

氟化氢检测(监测)方法指导书

(方法标准号:HJ688-2013)

编制:

审核:

批准:

批准日期:

修改记录表

序号对应章节号修改前内容修改后内容修改人批准人批准日期

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日

1方法原理

本方法采用加热的采样管连续从固定污染源采集废气样品,经加热的过滤器滤除颗粒物,废气样品进入冷却的碱性吸收液,气态氟化物被吸收生成氟离子。经离子色谱仪分离检测,保留时间定性,响应值定量。

2适用范围

本标准规定了测定固定污染源废气中氟化氢的离子色谱法。

本标准适用于固定污染源废气中气态氟化物的测定,以氟化氢浓度表示,不能测定碳氟

化物,如氟利昂。

当采样体积120L,定容体积200ml 时,检出限为0.03mg/m 3 ,测定下限为0.12mg/m 3 ;

定容体积500ml 时,检出限为0.08mg/m 3 ,测定下限为0.32mg/m 3 。

3仪器及试剂

3.1 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂;水,GB/T 6682,二级。

3.1.1氢氧化钾(KOH)。

3.1.2无水碳酸钠(Na2CO3)。

3.1.3氟化钠(NaF),优级纯:在110℃下干燥2h,于干燥器中保存。

3.1.4吸收液

3.1.

4.1氢氧化钾溶液:c(KOH) = 0.1mol/L。称取

5.6g 氢氧化钾(3.1.1),溶解于水,稀释至1000ml。

3.1.

4.2氢氧化钾-碳酸钠溶液:c(KOH) = 0.006mol/L,c(Na2CO3) = 0.008mol/L。称取0.33g 氢氧化钾(3.1.1)

和0.85g 无水碳酸钠(3.1.2),溶解于水,稀释至1000ml。

3.1.5 淋洗液

3.1.5.1氢氧化钾溶液:c(KOH) = 0.030mol/L。称取1.7g 氢氧化钾(3.1.1),溶解于水,稀释至1000ml。

3.1.5.2 氢氧化钾-碳酸钠溶液:c(KOH) = 0.0018mol/L,c(Na2CO3) = 0.0024mol/L。称取0.1g 氢氧化钾(3.1.1)

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日

和0.26g 无水碳酸钠(3.1.2),溶解于水,稀释至1000ml。

3.1.6 氟化钠标准贮备溶液:ρ(F-) = 500μg/ml。

称取0.1105g 氟化钠(3.1.2)溶解于水中,移入100ml 容量瓶中,用水稀释至标线,摇匀,贮于聚乙烯瓶中,在4℃下可保存一个月,临用时取出放至室温再用。也可使用有证标准溶液进行配制。

3.1.7氟化钠标准使用液:ρ(F-) = 5μg/ml。

吸取 1.00ml 氟化钠标准贮备溶液(3.1.6),移入100ml 容量瓶中,用淋洗液(3.1.5)稀释至标线,摇匀,临用现配。

3.1.8 微孔滤膜:孔径0.45μm,材质为乙酸纤维或聚四氟乙烯(PTFE)。

3.2 仪器和设备

3.2.1 玻璃量器

除非另有说明,分析时均使用国家标准的A 级玻璃量器。

3.2.2烟气采样器

烟气采样器应符合HJ/T 47 的技术要求,由采样管、过滤装置、吸收单元、干燥器、冷却装置、流量计量和控制装置及抽气泵等组成,见图1。抽气泵应保证足够的抽气量,当采

样系统负载阻力为20kPa 时,抽气泵抽气流量应不低于 2.0L/min。

1.采样管;

2.过滤器;3、4.截止阀;5、6.主路的小型多孔玻板吸收瓶;7、8.旁路的小型多孔玻板吸收瓶;

9.干燥器;10.压力传感器;11.温度传感器;12.流量传感器;13.流量调节装置;14.抽气泵;15.烟道壁;

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日

16.虚线内为加热区:17.冰水浴或控制温度的冷却装置。

图1 废气中氟化氢恒流采样装置示意图

3.2.3 等速采样烟气采样器

用烟尘采样器作为等速采样烟气采样器,应符合HJ/T 48 的技术要求。采样器由组合采样管、过滤装置、吸收单元、干燥器、冷却装置、流量计量和控制装置及抽气泵等组成,见图2。也可参照HJ/T 365 中推荐的仪器。

1.热电偶或热电阻温度计;

2.皮托管;

3.组合式采样管(含过滤器);4、5.大型冲击吸收瓶;6.空瓶;7.干燥

器;8.微压传感器;9.压力传感器;10.温度传感器;11.流量传感器;12.微处理系统;13.微型打印机或接口;

14.显示器;15.流量调节装置;16.冰水浴或控制温度的冷却装置;17.抽气泵;18.烟道壁;19.虚线内

为加热区。

表 2 废气中氟化氢等速采样装置示意图

3.2.4采样嘴:材质为硼硅酸盐玻璃、石英玻璃或钛合金,应符合HJ/T 48 的要求。

3.2.5采样管内衬管:材质为PTFE、硼硅酸盐玻璃、石英玻璃或钛合金,内衬管的内表面应光滑流畅。

3.2.6过滤器:材质为石英玻璃纤维、PTFE 的滤筒、滤膜或钛合金烧结过滤器等;要求对粒径大于0.5μm 颗

粒物的阻留效率超过99.9%。

3.2.7过滤器支架:材质为PTFE、硼硅酸盐玻璃或石英玻璃,尺寸与过滤器(5.6)相匹配,应便于取放,接口

处密封良好。

主题:氟化氢检测(监测)方法指导书 第 A 版 第 0 次修订 颁布日期:2015年10月01日 3.2.8吸收瓶:材质为硼硅酸盐玻璃或石英玻璃的 50ml 小型多孔玻板吸收瓶或 250ml 大型冲击吸收瓶。 3.2.9连接管:采样管出口与吸收瓶之间、吸收瓶之间、吸收瓶与干燥器之间的连接管为 PTFE 、聚丙烯、聚乙烯或氟橡胶管,应尽量短。

3.2.10冷却装置:冷却装置采用冰水浴或控制温度不超过 5℃的其它装置。 3.2.11储液瓶:聚乙烯塑料瓶,容量为 500ml 。

3.2.12离子色谱仪:含电导检测器及阴离子色谱柱和阴离子保护柱。 3.2.13实验室常用仪器。

4 操作步骤

4.1色谱条件参照仪器说明书进行选择。 4.2标准曲线的绘制

6 支 50ml 比色管,按表 1 配制标准系列。 表 1 氟化钠标准系列

管号

1

2

3

4

5

NaF 标准使用液(ml )

2.00

5.00

10.0

20.0 50.0

淋洗液(ml )

50.0

48.0

45.0

40.0 30.0

F -

浓度(μg/ml )

0 0.20 0.50 1.00 2.00 5.00

混合均匀后,分别由低到高将不同浓度的标准溶液注入离子色谱仪,测量仪器响应值及保留时间。以仪器响应值对氟离子浓度绘制标准曲线。

4.3 试样的测定在与绘制标准曲线相同的条件下,将试样注入离子色谱仪测定氟离子浓度,保留时间定性,仪器响应值定量。

4.4 空白的测定除将全程序空白试样注入离子色谱仪,其余同试样的测定。

5 结果计算

结果计算固定污染源废气中氟化氢的浓度按下式计算。

()()0

.190.200??-=

nD

S V V HF ρρρ

主题:氟化氢检测(监测)方法指导书 第 A 版 第 0 次修订 颁布日期:2015年10月01日 式中:ρ(HF)——固定污染源废气中 HF 的浓度,mg/m 3 ;

——试样中的氟离子浓度,μg/ml ;

——空白试样中的氟离子浓度,μg/ml ;

V ——试样稀释后的体积,ml ;

——标准状态下(273K ,101.325kPa )干废气的采样体积,L 。

6 精密性和准确性

6.1每批样品应至少做一个全程序空白,空白值不得超过方法检出限。否则应查找原因,重新分析直至合格之后才能分析样品。

6.2每次样品分析应绘制校准曲线,校准曲线的相关系数应≥0.995。

6.3每分析 20 个样品或一个批次样品(样品量少于 20 个),应分析一个校准曲线的中间点浓度的标准溶液,其测定结果与最近一次校准曲线该点浓度的相对误差应≤10%。否则应重新绘制标准曲线。每批样品至少测定 10%的加标样品,样品数小于 10 时,应至少测定一个加标样品,加标回收率应在 80%~120%之间。

7 注意事项

7.1 吸收液浓度高于淋洗液浓度,当两者浓度相差较大时,测定误差大。因此,样品溶液在测定前需稀释 3.3 倍,使样品溶液与淋洗液浓度相近。

7.2 当废气中氟化氢浓度低时,可增加采样体积和/或减小试样稀释后的体积;当废气中氟化氢浓度高时,可减少采样体积和/或增大试样稀释后的体积;当试样稀释后的体积发生变化时,配制的淋洗液的浓度应做相应的调整。

7.3 试样中含有粒径超过 0.45μm 的颗粒物时,颗粒物会对离子色谱柱造成影响,试样溶液在进入离子色谱仪前预先过滤处理可以消除此种影响。

7.4气泡对离子色谱柱分离效果有影响,进样时不能带入气泡。

7.5硼硅酸盐玻璃具有化学惰性,耐酸耐碱,抗腐蚀性,可在 800°C 下使用。石英具有化学惰性、耐 HF 的化学特性,可在 900°C 下使用。钛合金具有化学惰性,表面光滑,耐腐蚀,可在 450°C~550°C 温度下使用。

S

ρ0

ρnD

V

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日

PTFE 使用温度不得高于250°C,否则将分解并释放氟化物。新制PTFE 器件可能释放氟化物气体,需要提前在采样的温度下进行加热处理。

7.6恒流采样操作过程中,当废气开始流经主路时,为防止旁路的吸收液发生倒吸现象,应首先关闭旁路的截止阀,然后打开主路的截止阀。此外,由于两个截止阀均位于加热范围内,温度较高,操作时需戴隔热手套,以防烫伤。

7.7本方法灵敏度高,吸收管、连接管及个器皿均应仔细洗涤,操作中注意防止自来水及空气中氟化物的干扰。

离子色谱法测定土壤提取液中的无机阴离子

离子色谱法测定土壤提取液中的无机阴离子 谢春生a赵杰b徐新华a郝志伟c a浙江大学环境工程研究所,杭州,310027,xiechsh@https://www.360docs.net/doc/5b3635799.html, b浙江理工大学生命科学学院,杭州 310018, c瑞士万通中国有限公司,上海,200335,sh.haozw@https://www.360docs.net/doc/5b3635799.html, 摘要:离子色谱法是利用离子交换的分离原理,进行离子测定的液相色谱法。该方法灵敏度高,准确性高,稳定性好,检测限低,样品预处理简单,操作简单迅速,能多种离子同时测定。本文采用离子色谱法对土壤提取液中的F-,Cl-,NO2-, NO3-, HPO42-和SO42-等无机阴离子进行分析。样品经过IC-RP预处理小柱过滤后,通过万通的A Supp 4型阴离子分离柱进行测试,1.8mM碳酸钠/1.7mM碳酸氢钠淋洗液,流速为1.0ml/min,进样量40μl。实验结果令人满意。 关键词:离子色谱;土壤提取液;无机阴离子 1 前言 土壤农化分析工作在提高农业生产上具有极其重要的作用,它为土壤分类、土地资源开发利用、土壤改良、合理施肥等提供依据。因此,使用先进科学的现代分析仪器,探讨新的测定手段,以加快分析工作速度,提高分析结果的精密度和准确度至关重要。土壤中可溶性无机阴离子以F- , Cl- , NO2-,NO3-, HPO42-和SO42-最为常见,其含量与土壤的性质和外来因素有关,其分析工作在农业生产上具有重要作用,能为土壤分类、土地资源开发利用、土壤污染分析、土壤改良和合理施肥等提供依据.传统的分析方法操作技术水平要求较高,操作步骤繁琐,药品和试剂消耗量大,不利于快速分析。离子色谱法操作简便、快速,可使多种离子同时分离测定,已广泛用于医学研究、常规化学分析检测等方面,但在土壤中无机阴离子的分析方面还较为少见。因此,本文采用离子色谱测试土壤提取液中6种常见阴离子的含量,以探索快速、准确地测定土壤中无机阴离子含量的方法。 2 实验部分 2.1 仪器及试剂 Metrohm-792 Basic 型离子色谱仪(瑞士万通)配有电导检测器、化学抑制器、低脉冲串联式双活塞往复泵、双通道蠕动泵、数据采集/处理软件等。标准样:F-,Cl-,NO2-, NO3-, HPO42-和SO42-均按标准方法配制成1000mg/L储备液备用。所有药剂均为分析纯,溶液均用电阻率大于18M?超纯水配制。 2.2 色谱条件 色谱柱:Metrosep A Supp 4 250 型阴离子分析柱(250×4mm),Metrosep A Supp 4/5 Guard 保护柱(50×4mm);流动相:1.8mmol/L碳酸钠+1.7mmol/L碳酸氢钠淋洗液,50mM 硫酸抑制器再生液,进样体积:40μL,流速:1.0 mL/min。 2.3 分析步骤 2.3.1 样品制备 称取通过20目筛子的风干土样5.0g(精确到0.001g)于100 mL离心管中,加入50ml 超纯水,塞紧瓶塞,在25℃恒温振荡器上振荡16h。振荡时间到后,在4000rmp下离心15分钟,取上清液。用0.45μm的滤膜过滤上清液,经此处理后的样品再进行下一步的测试。 2.3.2 样品前处理 测试前,须采样IC-RP预处理小柱对制备好的土壤提取液进行预处理。在使用 RP 柱前,需按以下步骤对其进行活化后方可处理样品: (1)用 5 mL 甲醇活化 RP 小柱,推动速度每分钟不超过 3 mL; (2)用 10 mL 去离子水冲洗 RP 小柱,推动速度每分钟不超过 3 mL; (3)将小柱平放 20 分钟; (4)将 5 mL 样品缓慢推入小柱,推动速度每分钟不超过 3 mL,弃去前 3 mL; 收集2 mL经IC-RP预处理后的样品直接进样。

高浓度含氟废水处理方法

高浓度含氟废水处理方法 字数:1030 来源:中国化工贸易2013年7期字体:大中小打印当页正文摘要:氟化物应用于钢铁、冶金、电子等行业中,因而产生了大量高浓度含氟废水,对人体健康和水环境安全构成威胁。通常在处理含氟废水过程中直接投加石灰作为沉淀剂,石灰投加到水体中后,钙离子会与氟离子发生沉淀反应产生氟化钙,因氟化钙在常温下难溶于水,以达到除氟的目的。本研究采用石灰-氯化钙沉淀,联合处理高浓度含氟废水。考虑到影响石灰去除氟离子的因素较多,如处理温度、PH值、反应时间等,因此本章重点对这些影响因素进行了研究,并得到石灰+氯化钙处理含氟废水工艺的最佳沉降条件,为联合处理工艺提供理论依据。 关键词:氢氟酸氟化钙氯化钙含氟废水去除率 工业含氟废水的大量排放,不仅污染环境,还会危害到农作物和牲畜的生长发育,并且可以通过食物链影响到人体健康。如果长期饮用氟浓度高于1.0mg/L的水,则会引发氟斑牙病、腹泻、氟骨病等中毒现象。因其毒害性之大,对工业含氟废水处理工艺研究,一直是国内外研究者期盼攻克的难关。 一、实验部分 二、实验结果与讨论 1.石灰浓度 从表中可看出,加入30ml与40ml,30%氯化钙溶液处理含氟废水的

去除率为99.98%,表明加入氯化钙已足量。因石灰乳的溶解度较小,不能提供充足的Ca2+与F-结合,使之形成CaF2沉淀,又因为新生成的CaF2微粒不稳定,在常温下其具有一定的溶解度,且通常废水中会含有一些其他阴离子物质,这些都会影响石灰对含氟废水中氟离子的去除率。为提高F-去除率,加入可溶性的氯化钙,该工艺不仅提高了沉淀速度,还增强了去除氟离子的效果。(本文由一体化污水处理设备生产厂家广东春雷环境工程有限公司采编,如有侵权请告知) 5.絮凝剂 由于PAM不能直接去除氟,而是通过其本身的吸附架桥作用,促使溶液中CaF2形成絮凝沉淀,以达到提高沉降速度及沉降性能的目的,从而强化除氟的效果。但与其他因素相比,其起到的作用较小。 三、结论 结果表明,采用石灰+氯化钙沉淀法处理高浓度氢氟酸的最佳沉降条件为在恒温100C反应温度条件下,缓慢滴加石灰乳,当调节溶液PH=8时,并充分搅拌约15分钟,加入适量30%氯化钙溶液至钙离子过量。该含氟废水的氟去除率高达99.98%。 作者简介:李金辉(1982-),男,广东深圳人,学士,助理工程师,主要从事工业废水处理。 侯筱凡(1986-),男,湖北荆门人,学士,助理工程师,主要研究方向为工业废水处理。

氟化物测定方法

氟化物 氟化物(F﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L(F﹣)。当长期饮用含氟量高于1-1.5mg/L的水时,则易患斑齿病,如水中含氟量高于4mg/L时,则可导致氟骨病。 氟化物广泛存在于自然水体中。有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水及含氟旷物的废水中常常都存在氟化物。 1.方法的选择 水中氟化物的测定方法主要有:氟离子选择电极法,氟试剂比色法,茜素磺酸锆比色法和硝酸钍滴定法。电极法选择性好,适用范围宽,水样浑浊,有颜色均可测定,测量范围为0.05-1900mg/L。比色法适用于含氟较低的样品,氟试剂法可以测定0.05-1.8mg/L(F﹣);茜素磺酸锆目视比色法可以测定0.1—2.5mg/L(F﹣),由于是目视比色,误差比较大。氟化物含量大于5mg/L时可以用硝酸钍滴定法。对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 2.水样的采集和保存 应使用聚乙烯瓶采集和贮存水样。如果水样中氟化物含量不高、pH值在7以上,也可以用硬质玻璃瓶贮存。 预蒸馏

通常采用预蒸馏的方法,主要有水蒸气蒸馏和直接蒸馏两种。直接蒸馏法的蒸馏效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。 1.水蒸气蒸馏法 水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。 仪器 蒸馏装置 试剂 高氯酸:70—72%。 步骤 (1)取50ml水样(氟浓度高于2.5mg/L时,可分取少量样品,用水稀释至50ml)于蒸馏瓶中,加10ml高氯酸,摇匀。连接好 装置加热,待蒸馏瓶内溶液温度升到约130℃时,开始通入蒸 汽,并维持温度在130—140℃,蒸馏速度约为5—6ml/min。 待接收瓶中馏出液体积约为200ml时,停止蒸馏,并水稀释 至200ml,供测定用。 (2)当样品中有机物含量高时,为避免与高氯酸作用而发生爆炸,可用硫酸代替高氯酸(酸与样品的体积为1+1)进行蒸馏。控 制温度在145 5℃。 2.直接蒸馏法

离子色谱法测定水中四种阴离子

龙源期刊网 https://www.360docs.net/doc/5b3635799.html, 离子色谱法测定水中四种阴离子 作者:刘松欢林仰锋 来源:《南北桥》2017年第24期 【摘要】目的通过离子色谱法测定水中四种阴离子。方法 ICS-900型离子色谱仪(美国DIONEX),选用Ionpac AS19分离柱,Ionpac AG22保护柱,流速1.0mL/min,流速等度。结论该方法操作简单,省时省力,分离效果好,重现性好,符合国家标准要求。 【关键词】离子色谱法阴离子 中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2017.24.204 前言 近年来饮用水标准不断提高,离子色谱法(Ion Chromatography )是美国人SMALL1972 年发明的,是高效液相色谱(HPLC)的一种,是主要用来分离极性和部分弱极性化合物的一种分离技术,是色谱技术在离子型物质检测领域的一种突破[1]。本文采用近年来发展起来的广泛应用于分析化学和生物医学领域的高效、快速新型分离技术离子色谱法,来测定GB5749-2006生活饮用水卫生标准中的常规必检项目:氟化物,氯化物,硝酸盐,硫酸根这四种阴离子。 一、原理与材料 1.1 原理 根据分离柱对各种阴离子的亲和力不同,从而使样品中各种待测阴离子随淋洗液进入离子交换系统之后分离开来,已分离的阴离子流经阳离子交换柱或抑制器系统转换成具高电导度的强酸,淋洗液则转变为弱电导度的碳酸。电导检测器测量电导率之后以相对保留时間定性,峰面积定量[2]。 1.2 仪器 ICS-900型离子色谱仪(美国DIONEX); 淋洗液自动发生器(KOH); AERS 300 4mm阴离子抑制器; 分离柱:Ionpac Dionex AS19;

离子色谱法快速测定草甘膦水剂中胺类阳离子概要

离子色谱法快速测定草甘膦水剂中胺类阳离子 摘要:本文建立了一种快速测定草甘膦异丙胺盐水剂中的胺类阳离子的离子色谱方法。采用瑞士万通861离子色谱仪,Metrosep C 4 150色谱柱、电导检测器,对草甘膦水剂中的铵根、异丙胺、二甲胺等阳离子进行定性、定量分析,方法的相对标准偏差低于 1.07%,加标回收率为97.2%~101.0%,该方法简便快速、准确度高。 关键词:离子色谱法;草甘膦;异丙胺 引言 草甘膦(glyphosate)学名N-(邻酰基甲基)甘氨酸,是一种灭生性慢性内吸有机磷除草剂,具有高效、低毒、广谱性的特点。由于草甘膦本身在水中的溶解度很低,因此在实际应用中通常将草甘膦酸配制成水溶性的盐类,其中草甘膦异丙胺盐、草甘膦铵盐、草甘膦钾盐和草甘膦钠盐是目前使用最广泛的草甘膦盐[1-3]。 气相色谱法和高效液相色谱法测定无机阳离子一般需经衍生,操作繁琐、耗时。离子色谱法具有分析速度快,灵敏度高的特点,为实现多组分同时分离定量提供了可能,并使其能广泛用于食品、酒类、环境等样品中的离子及胺类的分析。本文以硝酸、吡啶二羧酸和丙酮混合溶液A作淋洗液,乙腈为有机改进剂,建立了一种快速检定草甘膦中的胺类阳离子的离子色谱法,该方法简便快速、准确度高。 1实验部分 1.1仪器和试剂 离子色谱仪(瑞士万通,861 Advanced Compact IC):配有电导检测器、低脉冲串联式双活塞往复泵、IC Net 2.3工作站;标准样品(浙江新安化工提供)。 1.2色谱试验条件 色谱柱:Metrosep C 4 150色谱柱 淋洗液:1.7mM HNO3+0.7mM 吡啶二羧酸+3% 丙酮 进样体积:20μL;流速:0.9 ml/min 1.3样品处理方案 取适量草甘膦水剂样品,分别用纯水稀释100倍、1000倍、10000倍后直接过超滤单元,自动进样。 1.4标准溶液的配制 依据表1配制标准溶液表

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

实验 4 水中氟化物的测定--离子选择电极法

实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为 1.0mg·L-1 。测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。 一.实验目的和要求 1.掌握用离子活度计或pH计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。 二.仪器 1.氟离子选择电极(使用前在去离子水中充分浸泡)。 2.饱和甘汞电极。 3.精密pH计或离子活度计、晶体管毫伏计,精确到 0.1mV。 4.磁力搅拌器和塑料包裹的搅拌子。 5.100mL、50mL容量瓶。 6.10.00mL、 5.00mL移液管或吸液管。 7.100mL聚乙烯杯。

三.试剂 所用水为去离子水或无氟蒸馏水。 1.氟化物标准贮备液: 称取 0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2.乙酸钠溶液: 称取15g乙酸钠(CH 3COONa)溶于水,并稀释至100mL。 3.盐酸溶液:2mol·L-1。 4.总离子强度调节缓冲溶液(TISAB): 称取 58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL容量瓶中,稀释至标线,摇匀。 5.水样①,②。 四.测定步骤 1.仪器准备和操作: 按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。 2.氟化物标准溶液制备:

土壤中草甘膦的离子色谱法测定

第22卷第4期分析测试学报 Vol .22No .4 2003年7月 FENXI CESHI XUEBAO (J ourn al of In stru mental An al y s is ) J ul .2003 实验技术 图1F -、Cl -、3-NO 、2-4 SO 和草甘膦的标准样品色谱图 Fig .1Chromatogram of standard sam p le of F -、Cl -、3-NO 、2-4 SO and g l yp hosate 土壤中草甘膦的离子色谱法测定 张培志1 ,吴 军2,张培敏2 ,徐 育 1 (1.浙江科技学院生物与化学工程学系,浙江杭州,310012;2.浙江大学化学系,浙江杭州,310029) 摘 要:采用新型抑制器和电导检测,在流速为1.5mL /m in 的碳酸钠和碳酸氢钠的混合淋洗液中,分离含 F - 、Cl - 、3-NO 、2-4SO 和草甘膦等物质,取得理想的分离效果和较高的灵敏度;F -、Cl -、3-NO 、2- 4SO 和草甘 膦检出限分别为0.26、0.41、0.41、1.15、17.4μg /L (S /N =3),具有良好的线性关系和重复性;对土壤样品 进行测定,结果令人满意。 关键词:草甘膦;离子色谱;电导检测;土壤中图分类号:O657.75;S482.4 文献标识码:A 文章编号:1004-4957(2003)04-0089-02 草甘膦是一种常用的水溶性除草剂,广泛应用于农业生产中。对于草甘膦的分析,前人已做过较多的工作。由于草甘膦没有紫外吸收又不易挥发,用气相色谱或高效液相色谱检测,往往借助于柱前或柱后衍生化[1,2] ,其测定步骤复杂。也有人用分光光度法测定草甘膦[3,4] 。通过与过量溴反 应,剩余的溴使罗丹明B 褪色来间接测定草甘膦,但Fe 2+、Fe 3+和三乙胺有严重干扰,需用离子交换树脂和吸附树脂分离,方法繁琐。作者针对草甘膦易溶于水,难溶于有机溶剂的特点,采用离子色谱法,不需要前处理,可直接对草甘膦样品进行分析。该法不仅简便,灵敏度高,而且不易受其它被测离子干扰,有很好的选择性。 1实验部分 1.1仪器与试剂 仪器:天美I C1000型离子色谱仪,包括Alltech DS _Plus TM 新型抑制器、电导检测器和雷达因9725进样阀,进样体积为50μL 。 试剂:氟化钠、氯化钠、硝酸钠、硫酸钠和碳酸钠、碳酸氢钠等均为分析纯试剂,草甘膦纯度≥98%。 1.2实验条件 ALLTEC H ALLSEP 7μ分离柱;淋洗液:0.90mmol /L 的Na 2CO 3和0.85mmol /L 的NaHCO 3的混合溶液;流速:1.5mL /min ;进样量:50μL 。 1.3样品处理 取含有草甘膦的土壤样品5g ,溶于适量的去离子水中,经超声震荡处理,离心机分离出上层水溶液,再用0.45μm 滤膜过滤,定容后备用。 2结果与讨论 2.1分离条件的优化 分别在固定Na 2CO 3浓度下改变NaHCO 3的浓度或固定NaHCO 3浓度下改变Na 2CO 3的浓度,对F -、Cl -、3-NO 、2- 4SO 和草甘膦等的混合溶液进行测定,几组淋洗液浓度的选择试验发现不是分离时间太长,就是峰型不好,很难积分,改用ALL -TEC H ALL SEP 7μ柱子推荐的淋洗液0.85mmol /L 的碳酸氢钠和0.90mmol /L 的碳酸钠混合液测得其保留时间分别为2.74、3.82、7.27、10.12、16.76m in ,其分辨率较好,且分离时间较短,方法较简便,符合分离要求,故选此淋洗液。 收稿日期:2002-09-12;修回日期:2003-05-16基金项目:浙江省教育厅基金资助项目(20010436);浙江省分析测试基金资助项目(01017)作者简介:张培志(1962-),女,浙江杭州人,副教授,硕士;徐育,现上海天美科学仪器有限公司工作 .

固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日 氟化氢检测(监测)方法指导书 (方法标准号:HJ688-2013) 编制: 审核: 批准: 批准日期: 修改记录表 序号对应章节号修改前内容修改后内容修改人批准人批准日期

主题:氟化氢检测(监测)方法指导书第 A 版第 0 次修订颁布日期:2015年10月01日 1方法原理 本方法采用加热的采样管连续从固定污染源采集废气样品,经加热的过滤器滤除颗粒物,废气样品进入冷却的碱性吸收液,气态氟化物被吸收生成氟离子。经离子色谱仪分离检测,保留时间定性,响应值定量。 2适用范围 本标准规定了测定固定污染源废气中氟化氢的离子色谱法。 本标准适用于固定污染源废气中气态氟化物的测定,以氟化氢浓度表示,不能测定碳氟 化物,如氟利昂。 当采样体积120L,定容体积200ml 时,检出限为0.03mg/m 3 ,测定下限为0.12mg/m 3 ; 定容体积500ml 时,检出限为0.08mg/m 3 ,测定下限为0.32mg/m 3 。 3仪器及试剂 3.1 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂;水,GB/T 6682,二级。 3.1.1氢氧化钾(KOH)。 3.1.2无水碳酸钠(Na2CO3)。 3.1.3氟化钠(NaF),优级纯:在110℃下干燥2h,于干燥器中保存。 3.1.4吸收液 3.1. 4.1氢氧化钾溶液:c(KOH) = 0.1mol/L。称取 5.6g 氢氧化钾(3.1.1),溶解于水,稀释至1000ml。 3.1. 4.2氢氧化钾-碳酸钠溶液:c(KOH) = 0.006mol/L,c(Na2CO3) = 0.008mol/L。称取0.33g 氢氧化钾(3.1.1) 和0.85g 无水碳酸钠(3.1.2),溶解于水,稀释至1000ml。 3.1.5 淋洗液 3.1.5.1氢氧化钾溶液:c(KOH) = 0.030mol/L。称取1.7g 氢氧化钾(3.1.1),溶解于水,稀释至1000ml。 3.1.5.2 氢氧化钾-碳酸钠溶液:c(KOH) = 0.0018mol/L,c(Na2CO3) = 0.0024mol/L。称取0.1g 氢氧化钾(3.1.1)

离子色谱法测水中阴离子

离子色谱法测水中阴离子 指导老师:郭文英 实验人:王壮 同组实验:余晓波 实验时间:2016.3.21 一. 实验目的 1. 掌握离子色谱法分析的基本原理。 2. 掌握常见阴离子的测定方法。 3. 掌握离子色谱的定性和定量分析方法 二.实验原理 离子色谱法中使用的固定相是离子交换树脂。离子交换树脂上分布有固定的带电荷的基团和能离解的离子。当样品加入离子交换树脂后,用适当的溶液洗脱,样品离子即与树脂上能离解的离子进行交换,并且连续进行可逆交换分配,最后达到 平衡。不同阴离子(32,,,F Cl NO NO ---- 等)与阴离子树脂之间亲和力不同,其在 交换柱上的保留时间不同,从而达到分离的目的。根据离子色谱峰的峰高或峰面积可对样品中的阴离子进行定性和定量分析。离子色谱法应用电导检测器。 三.仪器与试剂 仪器:离子色谱仪;阴离子分析色谱柱;阴离子分析色谱保护柱;超声波发生器;真空过滤装置;注射器 试剂:20ppm 、30ppm 、40ppm 、50ppm Cl -和3NO -标准溶液、未知样。 五.实验内容 1. 打开电脑,打开power ,后打开IC 软件,等power 灯不闪后,就可以使用了。 2. 按下列条件设置仪器参数:淋洗液流量为0.8mL/min ;数据采集时间为10min ,设置完后扫基线。 3. 阴离子的定性分析:分别吸取0.5mL 各浓度的标准溶液,进样,记录保留时间 4. 测定未知水样。取0.5mL 未知样按同样实验进样,记录保留时间。

表1. 不同浓度F-保留时间和出峰面积 表2.不同浓度Cl-保留时间和出峰面积 表3. 不同浓度 NO-保留时间和出峰面积 3 对不同浓度的标准样品所测得的保留时间和出峰面积绘制标准工作曲线:

酸洗废水处理

污水处理,就到污水宝! 酸洗废水处理 根据不同的酸洗介质,酸洗废水中可能含有下列组分中的几种组分,即盐酸、硝酸、硫酸、磷酸、氢氟酸、柠檬酸、氨基磺酸、乙二胺四乙酸、甲酸与经基乙酸、表面活性剂、铜络合剂、缓蚀剂以及被清洗下来的金属氧化物、各种沉积在锅炉受热面上的水(盐)垢等,酸洗废水处理应包括中和酸性、去除重金属离子、去除氟离子、降低化学耗氧量(COD)、去除悬浮物或沉淀物等几部分。 一、酸洗废水的处理 1.盐酸、硝酸、硫酸废水 当使用盐酸、硝酸或硫酸作酸洗介质时,其废液可在废水池直接用液体工业氢氧化钠中和处理到pH值6~9,其反应生成物氯化钠、硝酸钠或硫酸钠为无害盐类,可直接排放。 酸洗工序完成后,酸洗废水中残留酸还有2%~4%。燃煤发电厂也可将酸洗废水直接排到锅炉冲灰池,利用这些残余酸清洗冲灰管道,与沉积在灰管上的碳酸钙等反应进一步消耗掉残余酸,有机缓蚀剂和溶解到酸洗废水中的酸洗杂质、重金属离子同时也会被煤灰吸附固定在灰场。如果灰场灰水中还残留有酸度,再通过加碱调整灰水pH值到6~9范围即可。 2.磷酸废液 当使用磷酸作酸洗介质时,其废液可加入过量消石灰或石灰乳中和处理,其反应生成磷酸钙沉淀,降低废水中磷酸根的含量。 收集沉淀物经过浓缩脱水,挤压成块,将其在安全地方掩埋。 3.氢氟酸废液 氢氟酸清洗废液的主要问题是溶液中的氟离子含量过高,必须进行处理。处理方法根据所用药剂不同分为石灰法、石灰一铝盐法及石灰一磷酸盐法等。其中采用混凝沉淀法配合进行处理比较普遍。 (1)石灰法。使用过量的消石灰或石灰乳与氢氟酸反应生成氟化钙沉淀是最经济、有效的处理方法,即将生石灰粉(CaO)或石灰乳[Ca(OH)2]与含氟废水混合,生成氟化钙沉淀以使氟离子从废液中去除的方法。石灰的加入量应比依据反应式计算的理论量要高,约为废液中氟含量的2.2倍。所用生石灰中的氧化钙含量应大于70%,一般使用粉状生石灰其中氧化钙含量应在85%以上。氢氟酸废液处理应在废水沉淀池中进行,所用的沉淀池与沟道应经过防渗处理。处理过程将石灰粉或石灰乳投入沉淀池并要充分混和搅拌,使其反应完全。应注意经过石灰法处理过的含氟酸性废液中仍残留有20mg/L的氟离子,为了提高除氟效率,在加入石灰的同时投入一定量氯化钙或硫酸铝,可以使氟离子沉淀更完全,直至游离氟离子小于10mg儿后再排放。 (2)石灰—铝盐法。当废液排放量大的情况下应采用这种方法,向废液中投加石灰乳,调节pH值至6~7.5,然

离子选择性电极法测定水中微量氟

实验一 离子选择性电极法测定水中微量氟 实验日期:______ 同组人:________________ 成绩:____ 一、实验目的 (1)掌握离子选择性电极法测定离子含量的原理和方法; (2)掌握标准曲线法和标准加入法的适用条件; (3)了解使用总离子强度调节缓冲溶液的意义和作用; (4)熟悉氟电极和饱和甘汞电极的结构和使用方法; (5)掌握酸度计的使用方法。 二、实验原理 饮用水中氟含量的高低对人体健康有一定影响,氟的含量太低易得龋齿,过高则会发生氟中毒现象,适宜含量为0.5mg ·L -1 左右。因此,监测饮用水中氟离子含量至关重要。氟离子选择性电极法已被确定为测定饮用水中氟含量的标准方法。 离子选择性电极是一种电化学传感器,它可将溶液中特定离子的活度转换成相应的电位信号。氟离子选择性电极的敏感膜为LaF 3单晶膜(掺有微量EuF 2,利于导电),电极管内装有0.1mol ·L -1 NaCl-NaF 组成的内参比溶液,以Ag-AgCl 作内参比电极。当氟离子选择电极(作指示电极)与饱和甘汞电极(参比电极)插入被测溶液中组成工作电池时,电池的电动势正在一定条件下与F -离子活度的对数值成线性关系: - -=F S K E αlg 式中,K 值在一定条件下为常数;S 为电极线性响应斜率(25℃时为0.059V)。当溶液的总离子强度不变时,离子的活度系数为一定值,工作电池电动势与F -离子浓度的对数成线性关系: - -=F c S K E lg ' 为了测定F - 的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的惰性电解质以固定各溶液的总离子强度。 试液的pH 对氟电极的电位响应有影响。在酸性溶液中H +离子与部分F -离子形成HF 或HF 2-等在氟电极上不响应的形式,从而降低了F - 离子的浓度。在碱性溶液中,OH -在氟电极上与F -产生竞争响应,此外OH -也能与CaF 3晶体膜产生如下反应:

离子色谱法测定水果中氟离子

离子色谱法测定水果中氟离子 王雨,李静 戴安中国有限公司应用研究中心, 北京,100085,wangyu@https://www.360docs.net/doc/5b3635799.html, 摘要:本文使用IonPac AS15中高疏水性高容量阴离子交换色谱柱,使氟离子与高浓度有机酸高效分离,配合大体积进样方式,成功分析了水果样品中的痕量氟离子。氟离子标准曲线线性关系良好,相关系数为99.94%,氟离子的最低检出限为1.8μg/L。该方法前处理简单,分离效果好,灵敏度高,基体干扰小,方法高效准确。 关键词:氟离子;离子色谱;水果; 氟是人类生命活动所必需的微量元素之一,但氟对人体健康的作用取决于剂量,摄入氟过多或过少都会给人体健康带来不利的影响。由于人体对氟含量极为敏感,因此氟的安全范围比其他微量元素窄得多[1]。适量的氟可以促进人体骨骼和牙齿的钙化,增强骨骼的强度。但是长期摄人过量氟化物会引起氟中毒,如由于氟摄入过多可引起牙齿、骨骼等组织的病理改变,也可引起肾脏、肝脏等器官的组织病变等。世界上大多数国家均制定了人体每日氟摄入量标准。世界卫生组(WHO)规定,人均每天适宜的氟摄人量为2.5~4.0 mg[2]。国标GB4809-84 《食品中氟允许量标准》 对多种食品中氟的含量有限制要求[3]。 本文利用离子色谱梯度淋洗的方法,成功分析了多种水果中的氟离子含量,通过IonPac AS15高效阴离子交换色谱柱分离,有效避免了样品中大量有机酸对氟离子测定干扰,该方法前处理简单,分析速度快,灵敏度高,分析干扰少,结果准确可靠。 1、实验部分 1.1仪器与试剂 仪器:ICS-3000型离子色谱仪(Dionex,美国) 试剂和样品:氟离子标准溶液(1000mg/L);甲醇(色谱纯,百灵威公司);超纯水(Millipore,电阻率为18.2MΩ/cm);OnGuard RP(1.0cc)前处理柱;0.22μm尼龙滤膜;市售水果。 1.2 色谱条件 色谱柱:IonPac AS15阴离子交换分析柱,250*4mm;IonPac AG15保护柱,50*4mm 淋洗液:KOH,0-17 min 3 mM, 17.1-27 min 60 mM , 27.1-31 min 3 mM; 淋洗液流速:1.2ml/min; 抑制器:ASRS 300型抑制器4mm,外接水抑制模式,抑制电流为150mA; 进样量:200μL;https://www.360docs.net/doc/5b3635799.html,/Shop/product.asp?id=15599&cid=&s=&page=2 1.3 溶液配制

离子色谱法测定水中常见阴离子教学要求(精)

项目三景观湖水质监测 任务8离子色谱法测定水中常见阴离子 单元教学要求 一、教学目标 该项目是环境监测工作的核心技能之一。通过实施该项目使得学习者进一步巩固前面所学知识,在进行校园景观湖水质监测中,增强对《环境监测》方面的基本方法和监测点位的选择设计,提高学习者调查和动手实验能力。同时根据监测结果,找出污染因子,了解水质现状及其变化趋势,为学院后勤管理部门提供可靠依据。 1. 知识目标 (1)理解离子交换色谱分析的基本原理; (2)掌握离子色谱仪的基本组成和操作方法; (3)掌握离子色谱法测定水中常见阴离子的测试方法。 2. 技能目标 (1)根据相关规范、标准,选择水中常见阴离子的测定方法; (2)能根据离子色谱分析方法,制订水中常见阴离子的监测方案; (3)能依据标准方法,完成常见阴离子等水样预处理及测定; (4)正确处理数据表达结果,并能进行初步质量评价工作; (5)能够根据分析情况,采取一定质量控制措施。 3. 素质目标 (1)培养学生认真负责的工作态度; (2)提高学生的团队合作精神; (3)培养分析问题、解决问题的能力。 二、教学条件 (1)主讲教师:有相关专业的学历背景,有从事环境监测工作岗位的经历,最好有熟练的用离子色谱仪操作经验;并经过高职教育教学的培训,能胜任“教学练做”一体化的教学模式。 (2)教学材料:正式出版的高职类环境监测规划教材、离子色谱法测定水样中阴离子的国家标准测定方法及工学结合特色明显的案例。 (3)实验实训设备条件:学习场地、教学设施设备要适应“教、学、练、做”项目化的要求,配置一定的多媒体、仿真、实训场地。实验仪器及实验试剂符合国标规定。

各种废水性质及处理方法.

各种废水性质及处理方法 钢铁工业废水 (一)矿山废水的处理 硫化矿床在氧气和水的作用下,其中的硫、铁等元素会生成硫酸和金属硫酸盐,溶解于水而成为矿山酸性废水。 矿山酸性废水的处理,一般采用石灰中和法。 (二)烧结厂废水处理与回用 废水的来源 烧结厂废水主要来自湿式除尘排水、冲洗地坪水和设备冷却排水。烧结厂的废水污染,主要是指含高悬浮物的废水。 废水处理方法 烧结厂废水处理主要目标是去除悬浮物,废水经沉淀浓缩后污泥含铁量较高,有较好的回收价值。 1、平流式沉淀池分散处理工艺 2、集中浓缩池泥斗处理工艺 3、集中浓缩拉链机处理工艺 4、集中浓缩真空过滤(或压滤)工艺 5、集中浓缩综合处理

(三)炼铁废水的处理与利用 概述 炼铁厂生产工艺过程中产生的废水主要是高炉煤气洗涤水和冲渣废水。 炼铁废水的处理技术有:悬浮物的去除;温度的控制;水质稳定;沉渣的脱水与利用;重 复用水等五方面内容。 高炉煤气洗涤水的处理 从高炉引出的煤气称荒煤气,先经过重力除尘,然后进入洗涤设备。煤气的洗涤和冷却是 通过在洗涤塔和文丘管中水、气对流接触而实现的。由于水与煤气直接接触,煤气中的细小 固体杂质进入水中,水温随之升高,一些矿物质和煤气中的酚、氰等有害物质也被部分地溶 入水中,形成了高炉煤气洗涤水。 高炉煤气洗涤水处理工艺主要包括沉淀(或混凝沉淀)、水质稳定、降温(有炉顶发电设施的可不降温)、污泥处理四部分。 1、石灰软化-碳化法工艺 2、投加药剂法工艺 3、酸化法工艺 4、石灰软化-药剂法工艺

高炉冲渣废水处理(渣水分离循环系统) 高炉冲渣废水一般指炉前水淬产生的废水。渣水分离后即可循环。 1、渣滤法 2、槽式脱水法(RASA拉萨法) 3、转鼓脱水法(INBA印巴法) (四)炼钢废水的处理与利用 炼钢废水主要分为三类: 1、设备间接冷却水采取冷却降温后可循环使用,不外排。 2、设备和产品直接冷却废水主要特征是含有大量的氧化铁皮和少量润滑油脂,经处理后方可循环利用或外排。 3、生产工艺过程废水指转炉除尘废水。 转炉除尘废水治理 解决转炉除尘废水的关键,一是悬浮物的去除;二是水质稳定问题;三是污泥的脱水和回 收。 1、混凝沉淀-水稳药剂处理 2、药磁混凝沉淀-永磁除垢工艺 3、磁凝聚沉淀-水稳药剂工艺 连铸机废水处理

离子色谱法测定水中无机阴离子材料与方法

离子色谱法测定水中无机阴离子材料与方法 目的:应用离子色谱法同时检测黄河水中6种无机阴离子(F-,Cl-,NO2-,NO3-,HPO42-,SO42-)的含量,研究并优化检测条件。方法:采集流经兰州市西固区、安宁区、七里河区和城关区连续3天的黄河水样,利用瑞士万通882型离子色谱仪进行检测,观察兰州市四个不同行政区黄河水中6种无机阴离子含量。色谱条件为:分离柱为A Supp 4-250阴离子分析柱,保护柱为Metrosep A Supp 4/5 Guard,以0.0018mol/LNa2CO3和0.0017mol/LNaHCO3为淋洗液,以0.05mol/LH2SO4溶液为再生液,泵的流速为1.0ml/min。结果:每种离子的相关系数r均大于0.999,F-,Cl-,NO2-,NO3-,HPO42-和SO42-检出限分别为0.02 mg/L、0.02 mg/L、0.03 mg/L、0.08 mg/L、0.12 mg/L和0.09 mg/L,相对标准偏差均小于5%,加标回收率在96.58%-103.00%之间,实验条件良好;经检测发现连续3天兰州不同区段黄河水中6种阴离子指标均符合地表水环境质量标准(GB3838-2002)和生活饮用水卫生标准(GB5749-2006)。结论:离子色谱法检测黄河水中无机阴离子灵敏度高,准确度好,方便高效;黄河水兰州段水中6种无机阴离子含量安全稳定。 关键字;离子色谱、阴离子、黄河水、加标回收 黄河,起自青海,流经兰州,是兰州人民的“母亲河”。兰州的饮用水、生活用水、工业用水和农业灌溉都离不开黄河,因此黄河水的水质安全应得到足够的重视。天然水中含有一定量的氟化物、氯化物、硝酸盐、硫酸盐等无机物质,其含量主要受地质条件的影响,各地有所不同。同一区域水体内其含量是相对稳定的,然而,当水中这些物质含量突然增高时,表明水体有可能受到人畜粪便、生活污水、工业废水或农作物肥料等污染。 水中无机阴离子的含量是否正常与人类生活有着密切的关系[1],F-、Cl-、NO2-、NO3-、HPO42-和SO42-6种离子含量的检测对水质安全意义重大。目前,上述离子常规的检测手段有分光光度法,电极法等,但这些方法一般不能同时检测多种离子,并且大多数运用了化学分析的方法[2]。自1977年离子色谱法应用于水处理领域以来,经过几十年来科学技术领域的进步,高效分离柱、温度补偿的电化学检测器等一系列辅助系统技术的融入,使得离子色谱法的稳定性和灵敏度均得到了迅速提高,应用领域也不断拓展,在环境监测方面得到普遍应用,对于无机

含氟废水处理工艺流程说明

废水处理工艺流程说明 一、废水处理工艺说明 1.1、含氟废水处理工艺原理: 高浓度含氟废水,氟的存在形态以F-为主。在废水中加入氯化钙,利用F-与Ca2 + 反应生成难溶的CaF2沉淀,以固液分离手段从废水中去除,从而达到除氟的目的。其反应原理如下: Ca2 + + F - = CaF2↓ …………方程式(一) 在25℃时,CaF2在水中的饱和溶解度为16.5 mg/l,其中F-离子占8.03mg/l。暂不考虑处理后出水带出的CaF2固形物,处理后出水中溶解性CaF2已无法达到现行的国家废水排放标准。因此需采用组合工艺来处理。 目前,主要的除氟技术有化学沉淀法、混凝沉淀法、吸附法、离子交换法、电凝聚法和反渗透法等。但对于浓度在100 mgPL 以上的高氟废水,单用一种工艺难以达到含氟10 mg/L 的一级排放标准(GB8978—1996)或者处理成本过高,通常化学沉淀法除氟量大,可以作为高氟废水的第一级处理工艺,混凝法和吸附法对低氟水有较好的去除效果,可以作为末端工艺。 铝盐加入到废水中后,Al3 +与F-络合生成羟基氟化铝化合物以及铝盐水解中间产物,部分Al3 +生成Al(OH)3矾花对F -的配位体交换、物理吸附、网捕作用而去除废水中的氟。其反应式可表示为: Al13O4(OH)247 + + XF Al13O4 (OH) 24 → XF X7 + + XOH- Al(OH)3 + XF -→Al(OH)3 - XF X + OH-

本方案选用“化学沉淀+混凝沉淀”组合除氟工艺,该工艺的主要特点为: ⑴采用两级化学沉淀反应,大大降低了出水的氟浓度; ⑵回流污泥起到了菌种的作用,并可通过卷扫、吸附等作用除氟; ⑶全程计算机控制,系统运行稳定。 1.2、HF浓液废水处理工艺说明: 车间排放的HF废液通过高位差自流至HF废液原水池中,池中设有水位控制装置液位计,当废水水位高于预调之高水位时, HF废液原水输送泵与HF冲洗废水原水输送泵联动,通过水泵出口阀门、回流阀门调节HF废液原水输送泵的流量,将HF废液输送至HF冲洗废水原水池或原酸碱原水池中;当废水水位低于预调之低水位时,PLC自动关闭HF废液原水输送泵;当废水水位高于预调之高高水位时, HF废液原水输送泵自动开启。 1.3、HF冲洗废水处理工艺说明: 车间排放的HF冲洗废水通过高位差自流或液下泵输送至HF冲洗废水原水池中,通过曝气系统调和废水水质。池中设有水位控制装置液位计,当废水水位高于预调之高水位时,PLC开启HF冲洗废水原水输送泵,将废水提升至HF一级反应槽中进行处理。当废水水位低于预调之低水位时,PLC自动关闭HF冲洗废水原水输送泵。池中设有PH计,控制HCl计量泵投加HCl,控制原水的PH在5-6之间。

离子选择性电极法测定水中氟离子

离子选择性电极法测定溶液中氟离子 一、实验目的 1、了解电位分析法的基本原理。 2、掌握电位分析法的操作过程。 3、掌握用标准曲线法测定水中微量氟离子的方法。 4、了解总离子强度调节液的意义和作用。 二、实验原理 一般氟测定最方便、灵敏的方法是氟离子选择电极。氟离子选择电极的敏感膜由LaF 3单晶片制成,为改善导电性能,晶体中还掺杂了少量0.1%~0.5% 的EuF 2和1%~5%的CaF 2。膜导电由离子半径较小、带电荷较少的晶体离子氟 离子来担任。Eu 2+、Ca 2+代替了晶格点阵中的La 3+,形成了较多空的氟离子点阵,降低了晶体膜的电阻。 将氟离子选择电极插入待测溶液中,待测离子可以吸附在膜表面,它与膜上相同离子交换,并通过扩散进入膜相。膜相中存在的晶体缺陷,产生的离子也可以扩散进入溶液相,这样在晶体膜与溶液界面上建立了双电层结构,产生相界电位,氟离子活度的变化符合能斯特方程: --=F a F RT K E lg 303.2 氟离子选择电极对氟离子有良好的选择性,一般阴离子,除OH -外,均不干扰电极对氟离子的响应。氟离子选择电极的适宜pH 范围为5-7。一般氟离子电极的测定范围为10-6~10-1mol /L 。水中氟离子浓度一般为10-5mol /L 。 在测定中为了将活度和浓度联系起来,必须控制离子强度,为此,应该加入惰性电解质(如KNO 3)。一般将含有惰性电解质的溶液称为总离子强度调节液 (total Ionic strength adjustment buffer ,TISAB)。对氟离子选择电极来说,它由KNO 3、柠檬酸三钠溶液组成。 用离子选择电极测定离子浓度有两种基本方法。方法一:标准曲线法。先测定已知离子浓度的标准溶液的电位E ,以电位E 对lgc 作一工作曲线,由测得的未知样品的电位值,在E-lgc 曲线上求出分析物的浓度。方法二:标准加人法。首先测定待分析物的电位E1,然后加人已知浓度的分析物,记录电位E2,通过能斯特方程,由电位E1和E2可以求出待分析物的浓度。本实验测定氟离子采用标准曲线法。 三、仪器与试剂 氟离子选择电极一支;饱和甘汞电极一支;恒温水浴锅一台。100mL 烧杯若干个,50mL 容量瓶若5个,25mL 移液管、10mL 移液管,1mL 和10mL 有分刻度的移液管各一支,100mL 容量瓶一个。 NaF(基准试剂);KNO 3(分析纯);柠檬酸三钠(分析纯);NaOH(分析纯)。 氟标准溶液0.5g/L :称取于120°C 干燥2小时并冷却的NaF 1.106g 溶于去离子水中,而后转移至1000 mL 容量瓶中,稀释至刻度,摇匀,保存在聚乙烯塑料瓶中备用。 氟标准溶液0.2g/L :移取0.5g/L 氟离子标准溶液20mL 稀释到50mL 。实验前随配随用,用完倒掉洗净容量瓶。 依照上述方法依次配制0.01g/L 、0.04g/L 的氟标准溶液。

相关文档
最新文档