概率统计讲课稿第十三章马尔可夫链(习题课)

概率统计讲课稿第十三章马尔可夫链(习题课)
概率统计讲课稿第十三章马尔可夫链(习题课)

第十三章马尔可夫链(习题课)

习题十三

1. 已知齐次马尔可夫链的转移概率矩阵

?

?=03131P 323132????????

?31310

问此马尔可夫链有几个状态?求二步转移概率矩阵.

解 因为转移概率矩阵是三阶的, 故此马尔可夫链的状态有三个;

二步转移概率矩阵

2)

2()2()(P p P ij ==

?

?=0313*******????????

?31310

?

?031313

23132?????????31310

??=929293949594????????

?

939292 .

2. 在一串贝努利试验中,事件A 在

每次试验中发生的概率为p ,令

?

??=发生次试验第不发生次试验第A n A n X n ,1,0 ,Λ,3,2,1=n

(1) },2,1,{Λ=n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3) 求n 步转移概率矩阵.

解 (1) 根据题设条件

知道ΛΛ,,,,2

1

n

X X X 是相互独立的, 所以 },2,1,{Λ=n X n 是马尔可夫链, 又转移概率

???=======++1

,0,}{}|{1

1j p j q j X P i X j X P n n n

与n 无关,

故},2,1,{Λ=n X n 是齐次马尔可夫链; (2) 状态空间}1,0{=S ,

一步转移概率矩阵

)(ij p P = ?

?=q q ??

??

p p , ?

??========++1,0,}{}|{1

1j p j q j X P i X j X P p n n n ij . (3) n 步移概率矩阵

n

n ij

n P p

P

==)()()

( ?

?=q q ??

??

p p . 3. 从次品率)10(<

X 表示前n 次抽查出的次品数,

(1) },2,1,{Λ=n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3)如果这批产品共有100个,其中混杂了3个次品,作有放回抽样,求在抽查出2个次品的条件下,再抽查2次,共查出3个次品的概率. 解 (1)根据题意知,

},2,1,{Λ=n X n 是齐次马尔可夫链; (2) 状态空间},,,2,1,0{ΛΛn S =, p 是次品率,p q -=1是正品率,

根据题意知 ????

???+>+==<====+1

,01

,,,0}|{1

i j i j p i j q i j i X j X P p

n n ij

, ΛΛ,,,2,1,0,n j i = ;

(3)次品率03.0=p , 所求概率为

)

2(232}2|3{p X X P n n ===+

∑+∞

==0

32k k k p p Λ

++?+?++=000q p p q

0582.097.003.022=??==pq .

4. 独立重复地掷一颗匀称的骰子,

以n

X 表示前n 次掷出的最小点数, (1) },2,1,{Λ=n X n 是否齐次马尔可夫链?

(2) 写出状态空间和转移概率矩阵; (3)求}3|3,3{21===++n n n X X X P ; (4)求}1{2=X P .

解 (1) 根据题意知,

},2,1,{Λ=n X n 是齐次马尔可夫链;

(2)状态空间 }6,5,4,3,2,1{,=S , }|{1i X j X P p n

n ij ===+

?

??≥=====+2,01

,1}1|{1

1j j X j X P p n n j ,

????

?????≥======+3,02

,6

5

1,61

}2|{1

2j j j X j X P p n n j

????

?????≥======+4,03

,6

4

2,1,61

}3|{1

3j j j X j X P p n n j ,

????

?????=======+6,5,04

,6

3

3,2,1,61

}4|{1

4j j j X j X P p n n j ,

????

?????=======+6,05

,6

2

4,3,2,1,61

}5|{1

5j j j X j X P p n n j ,

6,,2,1,6

1

}6|{16Λ==

===+j X j X P p n n j ;

(3) }3|3,3{2

1===++n n n X X X P

}3|3{1===+n n X X P }3,3|3{12===?++n n n X X X P

}3|3{1===+n n X X P }3|3{12==?++n n X X P

9

4

64643333=?=?=p p ;

(4) }|1{}{}1{126

1

12

i X X P i X P X

P i ==?===∑=

361161611616

2

=?+?=∑=i . 5.设齐次马尔可夫链},2,1,0,{Λ=n X n 的

转移概率矩阵为

?

?=03131P 323132????????

?31310 ,

且初始

,3

1

}{)0(0===j X P p j 3,2,1=j ,

(1) 求}3,2,1{321===X X X P ; (2) 求}3{2=X P ; (3) 求平稳分布.

解 (1)}3,2,1{321===X X X P

}

1,2|3{}1|2{}1{123121=======X X X P X X P X P

}2|3{}1|2{}1{23121======X X P X X P X P

23121}1{p p X P ??==

23

1203

110}|1{}{p p j X X P j X P j ??====∑= 23123

1

10

}{p p p j X

P j j ??==∑=

81

4)03131(313132=++??=

; (2)

}3{2=X P }|3{}{03

120j X X P j X P j ====∑=

)

2(33

1

}{j j p j X

P ∑===

277

)939292(31=++= ;

(3)平稳分布),,(321p p p 满足方程组

031

313211p p p p ++=,

32

31323212p p p p ++=,

31

3103213p p p p ++=,

1321=++p p p

解之得

4

1

,42,41321===p p p .

例6.具有三状态:0,1,2的一

维随机游动,以j t X =)(表示时刻t 粒子处在状态),2,1,0(=j j 过程

},,,),({210Λt t t t t X =的一步转移概率矩阵

??=0q q P q p 0 ???

?

?p p 0 , (1) 求粒子从状态1经二步、经三

步转移回到状态1 的转移概率;

(2) 求过程的平稳分布.

解 (1)}1)(|1)({2

)2(11

===+n

n t X t X P p

pq pq qp p p

k k k

2012

1=++==∑=,

??==222)

2(q q q P P pq pq pq 2 ?????

?+22

2

p pq p p ,

?

?+++==2333223)

3(2pq q pq q p q q P P q p pq pq qp pq 222

2++ ??????++323

2222p q p p q p p 于是

pq t X t X P p n n ====+}1)(|1)({3)

3(11,

(2) 平稳分布),,(210p p p 满足方程组 02100p q p q p p ++=, q p p p p p 21010++=, p p p p p p 21020++=,

1210=++p p p ,

解之得

pq q p -=120 , pq

pq

p -=11

,pq p p -=122 . 例7.设同型产品装在两个盒内,盒

1内有8个一等品和2个二等品,盒2内有6个一等品和4个二等品.作有放回地随机抽查,每次抽查一个,第一次在盒1内取.取到一等品,继续在盒式内取;取到二等品,继续在2盒内取.以n X 表示第n 次取到产品的等级数,则},2,1,{Λ=n X n 是齐次马尔可夫链.

(1) 写出状态空间和转移概率矩阵;

(2) 恰第3、5、8次取到一等品的概率为多少?

(3) 求过程的平稳分布

解(1)根据题意, 状态空间}2,1{=S

5

4108}1|1{111

==

===+n n X X P p

, 51102}1|2{112=====+n n X X P p , 5

3106}2|1{121==

===+n n X X P p ,

5

2

104}2|2{1

22=====+n n X X P p , 转移概率矩阵

??=535

4P ??

???

?

5251 ; (2) 54}1{1==X P ,5

1

}2{1

==X P , }1,1,1{853===X X X P

}

1,1|1{}1|1{}1{358353=======X X X P X X P X P }1|1{}1|1{}1{58353

======X X P X X P X

P

)

3(11)2(113}1{p p X P ==

)

3(11)2(112

1

131

}|1{}{p p i X X P i X

P i ∑=====

)3(11)2(112

1

)2(11

}{p p p i X

P i i ∑===,

??==251825192)

2(P P ?????

?257256,

??==125

93125

943)

3(P P

?????

?1253212531,

}1,1,1{853===X X X P

)

3(11

)2(112

1)2(11}{p p p i X P i i ∑===

752.076.0)72.02.076.08.0(???+?=

429783.0= ;

(3) 平稳分布),(21p p 满足方程组

5354211p p p +=,

5

25121

2p p p +=, 121=+p p ,

解之得 43

1=p , 412=p .

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

马尔可夫链蒙特卡罗在实践中的应用

2012年第12期 吉林省教育学院学报 No.12,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总300期) Total No .300 收稿日期:2012—11—14 作者简介:孟庆一(1989—),女,吉林长春人,新加坡籍华人,英国伦敦大学数学系,本科生,研究方向:MCMC 统计学。 浅议马尔可夫链蒙特卡罗在实践中的应用 孟庆一 (英国伦敦大学,英国伦敦) 摘要:本文概括地介绍了马尔可夫链蒙特卡罗(Markov chain Monte Carlo ———MCMC ),一种随机模拟贝叶斯推断的方法。主要的抽样方法包括吉布斯采样(Gibbs Sampling )和Metropolis -Hastings 算法。本文也对MCMC 主题和应用的拓展进行了讨论。 关键词:马尔可夫链;蒙特卡罗;Gibbs 抽样;Metropolis -Hastings 中图分类号:O29 文献标识码:A 文章编号:1671—1580(2012)12—0120—02 统计学中的贝叶斯推理在过去的几十年里有前 所未有的突破,统计学家们发现了一种非常简单,但又非常强大的模拟技术,统称为MCMC 。这种技术可以运用到各种复杂的贝叶斯范例和实际情况。 贝叶斯推理: 贝叶斯方法把所给的模型里所有的未知量的不确定性联系在一起。利用所知的信息,贝叶斯方法用联合概率分布把所有未观察到的数量综合起来,从而得出的推论。在这里,给定已知的未知分布被称为后验分布。有关未知量的推理被称为预测,它们的边缘分布称作为预测分布。 贝叶斯推理根据贝叶斯规则计算后验概率: P (H |E )= P (E |H )·P (H ) P (E )然而,在大多数情况下,所给的模型的复杂性不允许我们运用这个简单的操作。因此,我们需要使用随机模拟, 或蒙地卡罗技术来代替。概述MCMC : MCMC 采用未知量的高维分布,为难度极高的模拟复杂模型的问题提供了一个答案。 一个马尔可夫链是一个序列的随机变量X 1,X 2,X 3,...这个序列有马尔可夫的属性———给予目前的状态,未来和过去的状态是独立的。从数学公 式上看, Pr (X n +1=x |X 1=x 1,X 2=x 2,…,X n =x n )=Pr (X n +1=x |X n =x n )X i 的可能的值可数的集合S 称 为链的状态空间。 幸运的是,在马尔可夫链里,我们也有与大数定律和中心极限定理类似的定理。 另外一个问题存在于如何建立一个马尔可夫链的极限分布与所需的分配一模一样。一种可行的解决方案是Gibbs 抽样。它是基于一个马尔可夫链,其前身的依赖性是由模型中出现的条件分布所决定的。另一种可能性是Metropolis -Hastings 算法。它是基于一个马尔可夫链,其前身的依赖性是分裂成两个部分:一个是建议,另一个是接受这一建议。 Metropolis -Hastings 算法: Metropolis -Hastings 算法,可以从任何概率分布中抽取样品,只要求是可计算函数的密度成正比。在贝叶斯的应用程序中,归一化因子计算往往是非常困难的,所以,和其他常用的抽样算法一样,能够在不知道这个比例常数的情况下产生样本是Metropolis -Hastings 算法的重要特征。 该算法的总体思路是产生一系列在一个马尔可 夫链里的样品。在足够长的时间后,所生成的样品的分布与分布相匹配。 该算法基本上按如下方式工作(这是一个特殊 的例子,其建议密度是对称的情况下):首先,选择一个任意的概率密度Q (x'|x t ),这表明一个新的采样值x'给定样本值x t 。对于简单的Metropolis 算法,这个建议密度必须是对称的Q (x'| 21

马尔可夫链模型简介

马尔可夫链模型简介 设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ??????,2,1,2,1,两两互斥,则陈i E 为状态。N i ???=,2,1。称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。 定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关; (2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。 定义2 向量),,,(21n u u u u ???= 成为概率向量,如果u 满足: ?? ???=???=≥∑=n j j j u n j u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。 如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。 定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵 ????????????????????????=32 12222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。 转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(

其中)(k P 为k 次转移矩阵。 定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。(此处2≥m ) 定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。 马尔可夫链模型如下: 设系统在0=k 时所处的初始状态 ),,() 0()0(2)0(1)0(N S S S S ???=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ???=),2,1(???=k ,则 ??????? ?????? ?????????????=NN N N N N k P P P P P P P P P S S 212222111211)0() ( 此式即为马尔可夫链预测模型。 由上式可以看出,系统在经过k 次转后所处的状态)(k S 取决与它的初始状态)0(S 和转移矩阵P 。 马尔可夫引例 例1:市场占有率预测 设有甲、乙、丙三家企业,生产同一种产品,共同供应1000家用户,各用户在各企业间自由选购,但不超出这三家企业,也无新的用户,假定在10月末经过市场调查得知,甲,乙,丙三家企业拥有的客户分别是:250户,300户,450户,而11月份用户可能的流动情况如下表所示:

串并联可靠性模型的应用及举例

上海电力学院 选修课大型作业 课程名称:机电系统可靠性与安全性设计报告名称:串并联可靠性模型的应用及举例院系:能源与机械工程学院 专业年级:动力机械140101 学生姓名:潘广德 学号:14101055 任课教师:张建平教授 2015年4月28日

浅谈串并联可靠性模型的应用并举例 摘要 详细阐述了机械可靠性工程中串并联可靠性模型的应用,并详细的举例说明。系统可靠性与组成单元的数量、单元可靠性以及单元之间的相互联接关系有关。以便于可靠性检测,首先讨论了各单元在系统中的相互关系。在可靠性工程中,常用可靠性系统逻辑图表示系统各单元之间的功能可靠性关系。在可靠性预测中串并联的应用及其广泛。必须指出,这里所说的组件相互关系主要是指功能关系,而不是组件之间的结构装配关系。 关键词:机械可靠性串联并联混联应用举例 0前言 学技术的发展,产品质量的含义也在不断的扩充。以前产品的质量主要是指产品的性能,即产品出厂时的性能质量,而现在产品的质量已不仅仅局限于产品的性能这一指标。目前,产品质量的定义是:满足使用要求所具备的特性,即适用性。这表明产品的质量首先是指产品的某种特性,这种特性反应这用户的某种需求。概括起来,产品质量特性包括:性能、可靠性、经济性和安全性四个方面。性能是产品的技术指标,是出厂时产品应具有的质量属性,显然能出厂的产品就赢具备性能指标;可靠性是产品出厂后所表现出来的一种质量特性,是产品性能的延伸和扩展;经济性是在确定的性能和可靠性水平下的总成本,包括购置成本和使用成本两部分;安全性则是产品在流通和使用过程中保证安全的程度。在上述产品特性所包含的四个方面中,可靠性占主导地位。性能差,产品实际上是废品;性能好,也并不能保证产品可靠性水平高。反之,可靠性水平高的产品在使用中不但能保证其性能实现,而且故障发生的次数少,维修费用及因故障造成的损失也少,安全性也随之提高。由此可见,产品的可靠性是产品质量的核心,是生产厂家和广大用户所努力追求的目标。 1串联系统可靠性模型的工作原理 如果一个系统中的单元中只要有一个失效该系统就失效,则这种系统成为串联系统。或者说,只有当所有单元都正常工作时,系统才能正常工作的系统称为串联系统。 设系统正常工作时间(寿命)这一随机变量为t,则在串联系统中,要使系统能正常工作运行,就必须要求每一个单元都能正常工作,且要求每一单元的正常工作时间都大于系统正常工作时间t。假设各个单元的失效时间是相互独立的,按照概率的乘法定理和可靠性定

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫链

马尔可夫链 马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。 1) 离散时间参数的马尔可夫链 ①基本概念 定义 5.7 设{()0,1,2,}X n n ???=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数 时间120k n n n ???≤<<<,以及任意状态12,, ,k i i i E ∈,都有条件概率 11{()|()}k k k k P X n i X n i --=== (5-17) 即过程{()0,1,2,}X n n ???=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称 {()0,1,2,}X n n ???=,是一个离散时间参数的马尔可夫链。当E 为可列无限集时称其为可列无限状态的马尔可 夫链,否则称其为有限状态的马尔可夫链。 定义5.8 设{()0,1,2,}X n n ???=,是状态空间{0,1,2, }E =上的马尔可夫链,条件概率 (,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18) 称为马尔可夫链{()0,1,2,}X n n ???=,在m 时刻的k 步转移概率。 k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状 态j 的条件概率。特别地,当1k =时, (,1){(1)|()}ij p m P X m j X m i =+== (5-19) 称为一步转移概率,简称转移概率。 如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。 定义5.9 设{()0,1,2,}X n n ???=,是状态空间{0,1,2,}E ???=上的马尔可夫链,矩阵 0001010 11101(,)(,)(,)(,)(,)(,)(,)(,)(,) (,) n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ?? ???? ? ?=? ?????? ? (5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。 当1k =时,(,1)P m 称为一步转移概率矩阵。 对于齐次马尔可夫链,容易推得k 步转移概率矩阵与一步转移概率矩阵具有关系 ()(),,1k P m k P m =????,1,2,k ???= (5-21)

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知{ EMBED Equation.KSEE3 \* MERGEFORMAT |[]5.00,0|0====Y X Z P , , , , , , 即题目实际上给出了八个个条件概率和四个概率 由于X ,Y 相互独立,则有 = 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且,,求: 1)的分布律与数学期望 2)的分布律与数学期望 3)大于10的概率 4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。 X Y 5 6 1 0.2 0.3 2 0.1 0.4

分析: 1) 2) 说明:主要考虑联合分布律与随机变量函数分布律的关系 3) 4) and so on. 3、已知随机变量的概率密度函数为,其中,为的函数,求: 1)随机变量X 小于或等于5的概率 2)随机变量Y 的概率密度函数 3)随机变量Y 大于10的概率 4)随机变量Y 的数学期望 分析 1) 2)假设用分别表示随机变量X 的分布函数、随机变量Y 的概率密度函数和分布函数,则有: 有 3) 4) 4、已知随机变量和的联合概率密度函数为 ,。 1)求随机变量Z 的数学期望 2)求随机变量Z 的概率密度函数 3)结合习题3,总结连续随机变量的函数的数学期望的一般表达式,包括包括一元和多元 Z1 6 7 9 10 P 0.2 0.3 0.1 0.4

_马尔可夫链蒙特卡洛_MCMC_方法在估计IRT模型参数中的应用

IRT自20世纪60年代出现以来,由于其理论模型的科学性和精确性见长,一开始就受到心理和教育测量学的研究者和实际工作者的关注和兴趣。至今已成为考试技术学研究领域中最有影响的一种现代测量理论。但理论的严谨性又导致了计算的复杂性,因而也影响了IRT的普及和应用乃至它的考试研究2006年10月第2卷第4期ExaminationsResearchOct.2006Vol.2,No.4 “马尔可夫链蒙特卡洛”(M CM C)方法在估计IRT 模型参数中的应用[1][2] 王权编译【摘要】本文介绍和阐述怎样运用“马尔可夫链蒙特卡洛”(MCMC)技术,并结合Bayes方法来估计IRT的模型参数。首先简要地概述了MCMC方法估计模型参数的基本原理;其次介绍MCMC方法估计模型参数的一般方法,涉及Gibbs抽样、取舍抽样、Metropolis-Hastings算法等概念和方法;最后以IRT的“二参数逻辑斯蒂”(2PL)模型为例,重点介绍了用“Gibbs范围内的M-H算法”估计项目参数(β1jβ2j)的算法过程。结束本文时还解说了MCMC方法的特点。 阅读本文需具有随机过程、Markov链、Bayes方法等概率论的基本知识。 【关键词】项目反应理论 马尔可夫链蒙特卡洛Gibbs抽样取舍抽样作者简介王权,教授,浙江大学教育系。浙江杭州,310028。45

《考试研究》第2卷第4期 发展速度。令我们欣喜的是在20世纪90年代,国外统计学家又推陈出新地提出了参数估计的新方法,使IRT的应用和发展又迈出了新的一步。 模型参数的估计是IRT的核心内容。以往的参数估计方法主要有“条件极大似然估计”(CMLE)、“联合极大似然估计”(JMLE)、“边际极大似然估计” (MMLE)和“条件期望—极大化算法”(E-MAlgorithm)等,大致上后一种算法均是前一种算法的改进[3]。E-M算法是由R.D.Bock和M.Aitkin于1981年创立,它是以MMLE方法为基础发展而成。在E-M算法中,E步要涉及精确的数字积分计算,或者在M步要涉及偏导计算,当模型较复杂时,计算就十分困难。加之,它还难以将项目参数估计中的“不可靠性”(uncertainty)结合进能力参数估计时不可靠性的计算;反之亦然。 “马尔可夫链蒙特卡洛”(MarkovChainMonteCarlo,MCMC)方法是一种动态的计算机模拟技术,它是根据任一多元理论分布,特别是根据以贝叶斯(Bayes)推断为中心的多元后验分布来模拟随机样本的一种方法。它在估计IRT模型参数的应用中,一方面继承了以往估计能力参数和项目参数时所采用的“分而治之”(divide-and-conquer)的策略,采用能力参数与项目参数交替迭代计算的方法生成Markov链;然后采取迥然不同于极大似然方法的思路,充分发挥计算机模拟技术的优势,采集充分大的状态样本,用初等的方法来估计模型参数,绕开了E-M算法中的复杂计算,从而提高了估计的成功率。 —“Gibbs采样1992年统计学家J.H.Albert首先将一种特殊的MCMC方法—— 法”应用于IRT问题的研究。现在它已被推广应用于多种复杂的IRT模型,在应用于大范围的教育测验评价中尤显它的长处。本文主要介绍MCMC方法的基本原理和基本方法,为说明方便,只列举应用于较为简单状况的二参数逻辑斯蒂模型,它是进一步推广应用的基础。 一、MCMC方法的基本原理 用MCMC方法估计IRT的模型参数的基本思路是:首先定义一Markov链,M0,M1,M2,…,Mk,…状态Mk=(θk,βk),k=1,2,…其中θ为能力参数,β为项目参数,θ和β可以为多维;然后根据Markov链模拟观测(即模拟状态);最后用所得的模拟观测推断参数θ和β。在一定的规则条件下,随着k的增长,状态Mk的46

马尔可夫链

3.5 马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

概率统计讲课稿第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 设随机过程}),({T t t X ∈的状态空间S 是有限集或可列集, 对任意正整数n ,对于T 内任意1+n 个参数121+<

112211{(),(),,(),()}n n n n P X t j X t j X t j X t j ++==???== 而 112211{(),(),,(),()}n n n n P X t j X t j X t j X t j ++==???== 11221111{()}{()|()}{()|(),,n n n n P X t j P X t j X t j P X t j X t j X ++====???==L 这就归结为求形如 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++的条件概率。在何种条件下这类条件概率容易算出来? 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集, 如果对任意正整数n ,对于T 内任意1+n 个参数121+<

马尔科夫链模型及其在基因遗传分析中的应用研究

马尔科夫链模型及其在基因遗传分析中的应用研究 内容提要 文中简述了马尔科夫链模型的基本原理,介绍了利用马尔科夫链对农作物基因遗传过程进行的分析研究,从而得出了基因类型的分布情况和农作物种植最适宜的换种代数间隔,使得可以更好的种植农作物。 关键词 马尔可夫链模型 基因遗传 换种间隔 一、引言 对基因遗传的分析一直是人们较为关心的话题。在研究出某物种基因的遗传分布后,对人们今后的对该物种进行的各种改良提供了良好的依据,尤其是对农作物基因类型的研究。在研究出农作物的各代之间基因类型的关系和分布情况之后,我们可以据此改善农作物的种植方法,从而提高产量。本文依据马尔科夫链的两种重要类型对农作物的基因遗传进行了分析研究,同时,分析研究马尔科夫链在一对父母的大量后代中,雌雄随机的配对繁殖,一系列后代的基因类型的演变过程中的应用。 二、马尔科夫链 1.马尔可夫链的基本概念 定义 ①.设{(),0,1,2,}n X X w n ==???是定义在概率空间(,,)F P Ω上,取值在非负整数上的随机变量序列,其表示对每个n 系统的状态。当状态1,2,,(1,2,)n X k n =???=???时表示共有k 个状态;n 时刻由状态n X i =,下一个时刻n+1变到状态1n X j +=的概率记作ij p ,则1(|)i j n n p P X j X i +===表示在事件n X i =出现的条件下,事件1n X j +=出现的条件概率,又称它为系统状态X 的一步转移概率。如果对任意的非负整数121,,,,,n i i i i j -???及一切0n ≥有 1(|,,1,2,,1)n n k k P X j X i X i k n +====???-=1(|)()n n ij ij P X j X i p n p +====, 则称X 是马尔科夫链。 ②.矩阵(ij p )称为马尔科夫链X 的一步转移概率矩阵。称10()(|)(|)ij n n m m p n P X j X i P X j X i ++======为马尔科夫链X 的n 步转移概率,而(()ij p n )为X 的n 步转移矩阵。

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

概率统计讲课稿第十三章马尔可夫链(习题课)

第十三章马尔可夫链(习题课) 习题十三 1. 已知齐次马尔可夫链的转移概率矩阵 ? ?=03131P 323132???????? ?31310 问此马尔可夫链有几个状态?求二步转移概率矩阵. 解 因为转移概率矩阵是三阶的, 故此马尔可夫链的状态有三个; 二步转移概率矩阵 2) 2()2()(P p P ij == ? ?=0313*******???????? ?31310 ? ?031313 23132?????????31310 ??=929293949594???????? ? 939292 . 2. 在一串贝努利试验中,事件A 在 每次试验中发生的概率为p ,令

? ??=发生次试验第不发生次试验第A n A n X n ,1,0 ,Λ,3,2,1=n (1) },2,1,{Λ=n X n 是否齐次马尔可夫链? (2) 写出状态空间和转移概率矩阵; (3) 求n 步转移概率矩阵. 解 (1) 根据题设条件 知道ΛΛ,,,,2 1 n X X X 是相互独立的, 所以 },2,1,{Λ=n X n 是马尔可夫链, 又转移概率 ???=======++1 ,0,}{}|{1 1j p j q j X P i X j X P n n n 与n 无关, 故},2,1,{Λ=n X n 是齐次马尔可夫链; (2) 状态空间}1,0{=S , 一步转移概率矩阵 )(ij p P = ? ?=q q ?? ?? p p , ? ??========++1,0,}{}|{1 1j p j q j X P i X j X P p n n n ij . (3) n 步移概率矩阵

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

第十二章马尔可夫链第一节第二节(上)

第十二章 马尔可夫链 马尔可夫过程是一类特殊的随机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 设随机过程}),({T t t X ∈的状态空间S 是有限集或可列集, 对任意正整数n ,对于T 内任意1+n 个参数121+<

我们需要知道 112211{(),(),,(),()}n n n n P X t j X t j X t j X t j ++==???== 而 112211{(),(),,(),()}n n n n P X t j X t j X t j X t j ++==???== 11221111{()}{()|()}{()|(),,n n n n P X t j P X t j X t j P X t j X t j X ++====???==这就归结为求形如 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++的条件概率。在何种条件下这类条件概率容易算出来? 一.定义 定义 1 设随机过程}),({T t t X ∈的状态空间S 是有限集或可列集, 如果对任意正整数n ,对于T 内任意1+n 个参数121+<

相关文档
最新文档