格林函数习题解答

格林函数习题解答
格林函数习题解答

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

格林函数()

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u ? 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u ? (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v ? (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u ? 亦即

.)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 ∑ 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=?? ? (12-1-4) 第一、第二、第三类边界条件可统一地表为 ),( M u n u ?βα=??????+??∑ (12-1-5) 其中 ?(M )是区域边界 ∑ 上的给定函数。α=0,β ≠0为第一类边界条件,α ≠0,β=0是第二类边界条件,α、β 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。§5.3中介绍的 δ 函数正是描述一个单位正点量的密度分布函数。因此,若以v (r ,r 0)表示位于r 0点的单位强度的正点源在r 点产生的场,即v (r ,r 0)应满足方程 ).() ,(00r r r r v ????-=?δ (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。以v (r ,r 0)乘(12-1-4),u (r )乘(12-1-6),相减,然后在区域T 中求积分,得 . )( )(0?????????--=?-?T T T dV r r u vfdV dV v u u v ? ?δ (12-1-7) 应用格林公式将上式左边的体积分化成面积分。但是,注意到在r =r 0点,?v 具有δ 函数的奇异性,格林公式不能用。解决的办法是先从区域T 中挖去包含r 0的小体积,例如半径为 ε 的小球K ε(图12-1),∑ε 的边界面为∑ε 。对于剩下的体积,格林公式成立,

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

格林函数法求解场的问题

格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: Heat Eq.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Green ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题: ()()()()()201 f s u r r u r u r r n ρεαβ???=-??? ????+=??????? 这里讨论的是静电场()u r , ()f r ρ 代表自由电荷密度。

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数习题解答

第一章习题解答 1、证明 A Y(B I C)=(A Y B)I(A Y C) 证明:设x∈A Y(B I C),则x∈A或x∈(B I C),若x∈A,则x∈A Y B,且 x∈A Y C,从而x∈(A Y B)I(A I C)。若x∈B I C,则x∈B且x∈C,于是x∈A Y B 且x∈A Y C,从而x∈(A Y B)I(A Y C),因此 A Y(B I C) ? (A Y B)I(A Y C) (1) 设x∈(A Y B) I(A Y C),若x∈A,则x∈A Y(B I C),若x∈A,由x∈A Y B 且x∈A Y C知x∈B且x∈C,所以x∈B I C,所以x∈A Y(B I C),因此 (A Y B)I(A Y C) ? A Y(B I C) (2) 由(1)、(2)得,A Y(B I C)=(A Y B)I(A Y C) 。 2、证明 ①A-B=A-(A I B)=(A Y B)-B ②A I(B-C)=(A I B)-(A I C) ③(A-B)-C=A-(B Y C) ④A-(B-C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I C)-(B Y D) (A-B)=A I B A-(A I B)=A I C(A I B)=A I(CA Y CB) =(A I CA)Y(A I CB)=φY(A I CB)=A-B (A Y B)-B=(A Y B)I CB=(A I CB)Y(B I CB) =(A I CB)Yφ=A-B ②(A I B)-(A I C)=(A I B)I C(A I C) =(A I B)I(CA Y CC)=(A I B I CA)Y(A I B I CC)=φY[A I(B I CC)]= A I(B-C) ③(A-B)-C=(A I CB)I CC=A I C(B Y C) =A-(B Y C) ④A-(B-C)=A I C(B I CC)=A I(CB Y C) =(A I CB) Y(A I C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I CB)I(C I CD) =(A I C)I(CB I CD)=(A I C)I C(B Y D)

(完整版)《实变函数与泛函分析基础》试卷及答案要点

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数积分理论部分复习题(附答案版)

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞

复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

实变函数题库集答案

实变函数试题库及参考答案本科、题 1设A, B为集合,贝U ABUB_AUB (用描述集合间关系的符号填写) 2?设A是B的子集,贝U A_B (用描述集合间关系的符号填写) 3?如果E中聚点都属于E,则称E是闭集 4.有限个开集的交是开集 5?设E i、E2是可测集,则m EUE2 _mE! mE?(用描述集合间关系的符号填写) n * _ 6?设E ?是可数集,则m E=0 7?设f x是定义在可测集E上的实函数,如果 a ?1, E x f x a是可测集,则称f x在E上可测8可测函数列的上极限也是可测函数 9?设f n x f x , g n x g x ,贝V f n X g n x f X g x 10 ?设f x在E上L可积,贝y f x在E上可积 11 ?设A, B为集合,则B A U A A (用描述集合间关系的符号填写) 12?设A 2k 1 k 1,2丄,则A=a (其中a表示自然数集N的基数) 13?设E ?n,如果E中没有不属于E,则称E是闭集 14 ?任意个开集的并是开集 15?设E1、E2是可测集,且E1 E2,则mE1 mE2 16.设E中只有孤立点,贝U m E =0 17?设f x是定义在可测集E上的实函数,如果a ?1, E x f x a是可测,则称f x在E上可测 18 ?可测函数列的下极限也是可测函数 19?设f n x f x , g n x g x,贝卩f n x g n x f X g X 20?设n X是E上的单调增收敛于f x的非负简单函数列,贝y E f x dx lim E n x dx 21 ?设A, B为集合,则A B UB B 22?设A为有理数集,则A=a (其中a表示自然数集N的基数) 23?设E ?n,如果E中的每个点都是内点,则称E是开集 24 ?有限个闭集的交是闭集

实变函数题库集答案

实变函数试题库及参考答案 本科 一、题 1.设,A B 为集合,则()\A B B U =A B U (用描述集合间关系的符号填写) 2.设A 就是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 就是闭集 4.有限个开集的交就是开集 5.设1E 、2E 就是可测集,则()12m E E U ≤12mE mE +(用描述集合间关系的符号填写) 6.设n E ??就是可数集,则*m E =0 7.设()f x 就是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??就是可测集,则称()f x 在E 上可测 8.可测函数列的上极限也就是可测函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +?()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A U ?A (用描述集合间关系的符号填写) 12.设{}211,2,A k k =-=L ,则A =a (其中a 表示自然数集N 的基数) 13.设n E ??,如果E 中没有不属于E ,则称E 就是闭集 14.任意个开集的并就是开集 15.设1E 、2E 就是可测集,且12E E ?,则1mE ≤2mE 16.设E 中只有孤立点,则* m E =0 17.设()f x 就是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??

复变函数习题答案第4章习题详解

第四章习题详解 1.下列数列a是否收敛?如果收敛,求出它们的极限: n 1)a n 1 1 ni mi ; 2) a n n i 1; 2 3)a i n n1; n1 4) ni 2 a n e; 1ni a n e。 n 5)2 0,a1 2.证明:lim n a n 1 , , a a1 1 不存在,a1,a1 3.判别下列级数的绝对收敛性与收敛性:n i 1) ;n n1 n i 2) ;ln n n2 3) 65i n 08 n;

4) n cos 02 n in 。 4.下列说法是否正确?为什么? 1)每一个幂级数在它的收敛圆周上处处收敛; 1

2)每一个幂级数的和函数在收敛圆内可能有奇点; 3)每一个在z连续的函数一定可以在z 0的邻域内展开成泰勒级数。 5.幂级数 n c能否在z0收敛而在z3发散? n z2 n0 6.求下列幂级数的收敛半径: 1) n1 n z p n (p为正整数); 2 n! n 2)z ; n nn1 3) 1 n n iz; n0 4) i n ez; n n1 5) n1 i n chz1; n nz 6) 。ln in n1 7.如果 n c n z的收敛半径为R,证明 n Re的收敛半径R。[提示: c n z n n Re c n zcz] n n0n0 8.证明:如果 c n1 lim存在,下列三个幂级数有相同的收敛半径 nc n n c n z; c n1z n1 n1 ; n1 nc n z。

2

9.设级数c收敛,而 n c发散,证明 n n c n z的收敛半径为1。 n0n0n0 10.如果级数 n c n z在它的收敛圆的圆周上一点z0处绝对收敛,证明它在收敛圆所围的闭区域上绝对收n0 敛。 11.把下列各函数展开成z的幂级数,并指出它们的收敛半径: 1) 11 3 z ; 2) 11 z 22 ; 3) 2 cos z; 4)shz; 5)chz; 6)e 2 z sin; 2 z z 7) z1 e; 8) 1 sin。 1z 12.求下列各函数在指定点z处的泰勒展开式,并指出它们的收敛半 径: 1) z z 1 1 ,z1; 2) z z 1z2 ,z2; 3

实变函数试题库参考答案

《实变函数》试题库及参考答案(完整版) 选择题 1,下列对象不能构成集合的是:( ) A 、全体自然数 B 、0,1 之间的实数全体 C 、[0, 1]上的实函数全体 D 、全体大个子 2、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{全体小个子} D 、{x : x>1} 3、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体 胖子} 4、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体瘦子} 5、下列对象不能构成集合的是:( ) A 、{全体小孩子} B 、{全体整数} C 、{x :x>1} D 、{全体实 数} 6、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体大人} C 、{x :x>1} D 、{全体整 数} 7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I ∈?= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)

8、设}1111:{i x i x A i -≤≤+-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1] 9、设}110:{i x x A i +≤≤=, N i ∈, 则i i A ∞=?1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、 (0, +∞) 10、设}1211:{i x i x A i +<<-=, N i ∈, 则i i A ∞=?1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、 (1, 2) 11、设}2 3:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、 {0} 12、设}11:{i x i x A i <<-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0} 13、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈,则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1] 14、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1]

完整word版,实变函数试题库1及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ?? 是可数集,则* m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1 a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) A ()\ B A A =?I B ()\A B A =?I C ()\A B B A =U D ()\B A A B =U 2.若n R E ?是开集,则( ) A E E '? B 0E E = C E E = D E E '= 3.设(){} n f x 是E 上一列非负可测函数,则( ) A ()()lim lim n n E E n n f x dx f x dx →∞ →∞≤?? B ()()lim lim n n E E n n f x dx f x dx →∞ →∞ ≤?? C ()()lim lim n n E E n n f x dx f x dx →∞ →∞≤?? D ()()lim lim n n E E n n f x dx f x →∞→∞ ≤?? 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E = 中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ?? 是无限集,则( )

相关文档
最新文档