钢制车体疲劳强度校核方法

钢制车体疲劳强度校核方法
钢制车体疲劳强度校核方法

高强度螺栓疲劳校核

16、轮盘连接高强度螺栓疲劳强度校核 说明: 轮盘在设备的设计使用寿命期限内,始终处于受压状态,其三根弦杆承受压力作用,轮盘的整体弯矩由内、外弦杆的压力调幅来平衡,弦杆法兰连接的高强度螺栓承受的、由单独弦杆的弯矩引起的交变力很小。 由于法兰结合面的载荷全部为压力载荷,故螺栓的工作应力都小于其预紧力,故螺栓的拉力载荷总在预紧力一下某一范围波动。对螺栓而言,保证法兰结合面不松开,其压力载荷越大,螺栓残余预紧力就越小,螺栓的拉力就越小。本文的计算模型转变为较小圆角过度的阶梯轴拉伸(如图一),校核过渡截面的疲劳应力。 观览车的运行速度很慢,每周循环的时间为20分钟,考虑50年的使用寿命期,每年300天,每天工作8小时,共运行300000次循环,选小于结构钢S-N曲线的转折点的循环次数,且本文的计算载荷为正常满载+15m/s风载的载荷情况,故计算结果有一定的保守性。 疲劳设计方法是一门以试验为基础的设计方法,本计算选取的疲劳性能数据选自国内公开的《机械设计手册》数据。 图一:计算模型

附:螺栓无限寿命校核说明书 一、螺栓参数和预紧力: 螺栓直径:M30x160 性能等级:10.9级 过渡圆角:r=0.5mm 螺栓材料的破断强度:1000MPa 螺栓副连接的相对刚度:m b b C C C +=0.25 选用的单个螺栓预紧力矩:Nm T 1600= 则预紧力:kN N d T Q p 2671067.2030 .02.016002.05=?=?== 二、螺栓组载荷: 主管法兰圆周应力分布及载荷谱: 530*30螺栓组主管件轴力, 六点方位N=-4729kN ,七点半N=-4487kN ,九点N=-3785kN ,十点半N=-3181kN ,十一点N=-2961kN ,十二点N=-2300kN ,一点N=-2960kN ,一点半N=-3253kN ,三点N=-3891kN ,四点半N=-4552kN 。 最大压力:kN F a 4729-= 换算到单个螺栓的最大压力载荷:kN F F a 39412/472912/-=-== 螺栓最小拉力:kN F F C C C Q Q m b b p 1680.25267min =+=++ = 最小压力:kN F a 2300-=

疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要 的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。运用这些计算方法,对零件疲劳极限进行了计算上的确定。并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。 Abstract:The fatigue strength of parts is a worthy of deep discussion, have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength. 关键词:零件疲劳寿命疲劳强度 Key word:Spare parts Fatigue life Fatigue strength

第三章疲劳强度计算练习题

第三章机械零件的疲劳强度设计 一、选择题 3-1 45钢的持久疲劳极限σ-1=270MPa,,设疲劳曲线方程的幂指数m=9,应力循环基数N0=5×106次,当实际应力循环次数N=104次时,有限寿命疲劳极限为____________MPa。 (1)539 (2)135 (3)175 (4)417 3-2 有一根阶梯轴,用45钢制造,截面变化处过渡圆角的疲劳缺口系数Kσ=1.58,表面状态系数β=0.28,尺寸系数εσ=0.68,则其疲劳强度综合影响系数KσD=____________。 (1)0.35 (2)0.88 (3)1.14 (4)2.83 3-3 形状、尺寸、结构和工作条件相同的零件,采用下列不同材料制造:a)HT200;b)35钢;c)40CrNi钢。其中设计零件的疲劳缺口系数最大和最小的分别是____________。 (1)a)和b)(2)c)和a)(3)b)和c) (4)b)和a)(5)a)和c)(6)c)和b) 3-4 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之____________。 (1)增高(2)不变(3)降低 3-5 零件的形状、尺寸、结果相同时,磨削加工的零件与精车加工相比,其疲劳强度____________。 (1)较高(2)较低(3)相同 3-6 零件表面经淬火、渗氮、喷丸、滚子碾压等处理后,其疲劳强度____________。 (1)增高(2)降低(3)不变(4)增高或降低视处理方法而定 3-7 影响零件疲劳强度的综合影响系数KσD或KτD与____________等因素有关。 (1)零件的应力集中、加工方法、过载 (2)零件的应力循环特性、应力集中、加载状态 (3)零件的表面状态、绝对尺寸、应力集中 (4)零件的材料、热处理方法、绝对尺寸。 3-8 已知设计零件的疲劳缺口系数Kσ=1.3、尺寸系数εσ=0.9、表面状态系数βσ=0.8。则疲劳强度综合影响系数KσD为____________。 (1)0.87 (2)0.68 (3)1.16 (4)1.8 3-9 已知零件的极限应力σr=200MPa,许用安全系数[S]=2,影响零件疲劳强度的系数为Kσ=1.2,εσ=0.83,βσ=0.90。则许用应力为[σr]___________MPa。 (1)160.6 (2)106.7 (3)62.25 (4)110.7 3-10 绘制设计零件的σm-σa极限应力简图时,所必须的已知数据是___________。 (1)σ-1,σ0,σs,Kσ(2)σ-1,σ0,σs, KσD (3)σ-1,σs, ψσ,Kσ(4)σ-1,σ0,ψσ, KσD 3-11 在图示设计零件的σm-σa极限应力简图中,如工作应力点M所在的ON线与横轴间夹角θ=45o,则该零件受的是___________。

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

钢筋疲劳计算

这部分要求大家掌握: 影响疲劳强度的主要因素包括,应力幅,应力循环次数,结构构造细节(构造细节决定了应力集中程度,教材按照规范把不同的构造分成了8种类型),疲劳强度的计算。 疲劳破坏属于脆断。 GB50017-2003规定,小结如下: 1、直接承受动力荷载重复作用的钢结构及其连接,当应力变化的循环次数n 等于或大于5万次时(美国规范是2万次),应进行疲劳计算; 2、应力循环中不出现拉应力的部位,可不计算疲劳; 3、计算疲劳时,应采用荷载的标准值; 4、对于直接承受动力荷载的结构,计算疲劳时,动力荷载标准值不乘动力系数; 5、疲劳计算应采用容许应力幅法,应力按弹性状态计算。区分为常幅疲劳和变幅疲劳。常幅疲劳计算如下:Δσ≤[Δσ] Δσ——对焊接部位为应力幅,Δσ=σmax -σmin 对非焊接部位为折算应力幅,Δσ=σmax -0.7σmin βσ/1][?? ? ??=?n C ,n ——应力循环次数;C 、β参数,查表确定。 6、规定不适用于特殊条件(如构件表面温度大于150℃,处于海水腐蚀环境,焊后经热处理消除残余应力以及低周-高应变疲劳条件等)下的结构构件及其连接的疲劳计算。 规范存在的问题: (1)不出现拉应力的部位可不计算疲劳。但对出现拉应力的部位,例如 σmax =140MPa 、σmin =-10MPa 和σmax =10MPa 、σmin =-140MPa 两种应力循环,Δσ都是150, 按规范计算疲劳强度相同,显然不合理。 (2)螺栓受拉时,螺纹处的应力集中很大,疲劳强度很低,常有疲劳破坏的实例,但规范没有规定,应予补充。

【计算例题】 某承受轴心拉力的钢板,截面为400mm ×20mm ,Q345钢,因长度不够而用横向对接焊缝如图所示。焊缝质量为一级,焊缝表面加工磨平,。钢板承受重复荷载,预期循环次数610=n 次,荷载标准值0,1365min max ==N kN N ,荷载设计值kN N 1880=。试进行疲劳计算。 提示:容许应力幅βσ/1][?? ? ??=?n C ,4,1061.812=?=βC ,2/295mm N f =。 更详细些的规定(不需要大家掌握):GB50017-2003规范对疲劳计算所作的说明 6.1一般规定 6.1.1本条阐明本章的适用范围为直接承受动力荷载重复作用的钢结构,当其荷载产生应力变化的循环次数4105?≥n 时的高周疲劳计算。需要进行疲劳计算的循环次数,原规范规定为510≥n 次,考虑到在某些情况下可能不安全,参考国外规定并结合建筑钢结构的实际情况,改为4105?≥n 次。 6.1.2本条说明本章的适用范围为在常温、无强烈腐蚀作用环境中的结构构件和连

齿轮接触疲劳强度试验方法

齿轮接触疲劳强度试验方法(GB/T14229-93) 1主题内容与适用范围 本标准规定了测定渐开线圆柱齿轮接触疲劳强度的试验方法,以确定齿轮接触承载能力所需的基础数据。 本标准适用于钢、铸铁制造的渐开线圆柱齿轮由齿面点蚀损伤而失效的试验。其它金属齿轮的接触疲劳强度试验可参照使用。 4试验方法 确定齿轮接触疲劳强度应在齿轮试验机上进行试验齿轮的负荷运转试验。当齿面出现接触疲劳失效或齿面应力循环次数达到规定的循环基数N。而未失效时(以下简称“越出”),试验终止并获得齿面在试验应力下的一个寿命数据。当试验齿轮及试验过程均无异常时,通常将该数据称为“试验点”。根据不同的试验目的,选择小列不同的试验点的组合,经试验数据的统计处理,确定试验齿轮的接触疲劳特性曲线及接触疲劳极限应力。 4.1常规成组法 常规成组法用于测定试验齿轮的可靠度-应力-寿命曲线(即R-S-N曲线),求出试验齿轮的接触疲劳极限应力。 试验时取4~5个应力级,每个应力级不少于5个试验点(不包括越出点)。最高应力有中的各试验点的齿面应力循环次数不少于1×106。最高应力级与次高应力级的应力间隔为总试验应力范围的40%~50%,随着应力的降低,应力间隔逐渐减少。最低应力级至少有一个试验点越出。 4.2少试验点组合法 少试验点组合法通常用于测定S-N曲线或仅测定极限应力。 试验时试验点总数为7~16个。测定S-N曲线时,应力级为4~10个,每个应力级取1~4个试验点。 测定极限应力时可采用升降法。 采用正交法进行对比试验时,每个对比因素至少有3个试验点。 5试验条件及试验齿轮 5.1齿轮接触疲劳强度试验按下述规定的试验条件和试验齿轮进行(对比试验的研究对象除外),上此可确定试验齿轮的接触疲劳极限应力σHlim。

高速动车组车体疲劳强度分析

高速动车组车体疲劳强度分析 刘东亮,张娜,李欣伟 (唐山轨道客车有限责任公司,唐山063035) 摘要:本文采用ABAQUS与FE-safe对高速动车组车体的疲劳进行分析,为车体结构的设计提供指导。 关键字:动车组;车体;疲劳 Fatigue Analysis Of High-speed EMU Carbody Liu Dongliang,Zhang Na,Li Xinwei (Tangshan Railway Vehicle Co., Ltd., Tangshan 063035) Abstract:This paper uses ABAQUS and the FE-safe on high-speed EMU carbody fatigue analysis, and aims to provide guidance for carbody structure design. Keywords: EMU; carbody; fatigue 1 前言 车体是高速动车组的主要承载结构,其抗疲劳性能与列车运营的安全性、可靠性密切相关。本文依据标准EN12663-1:2010的要求,对高速动车组车体的疲劳强度进行分析。车体结构如图1所示,标准中的疲劳载荷如表1所示。 图1 车体模型 表1 疲劳载荷 2 建模及计算方式 疲劳分析的静力学结果准备工作采用ABAQUS软件完成,疲劳性能分析采用FE-SAFE 软件完成,有限元建模采用hypermesh,结果查看采用hyperview。

其中,静力学结果准备工作完成表2所列基本载荷工况的计算。此部分工作有两个目的: 1.为疲劳分析提供有限元分析结果; 2.确定疲劳分析区域。 表2 静力学工况 对于表1所列疲劳载荷而言,表2中与之对应的工况的计算结果的应力水平反映了了该疲劳载荷作用下的应力变化的幅值。由于表1的交变疲劳载荷均与垂向(Y向)1*g的重力叠加,因而,表2中LC02的计算结果同时又反映了疲劳载荷的平均应力。 疲劳分析时,需要关注的区域必定是应力幅值较大、或者应力均值较大、或者幅值与均值都较大的区域。因而,分别确定LC01~LC03下应力水平较高的区域,然后将确定的3个区域的并集作为疲劳评估时的分析区域。 关于较高应力,没有明确的界定规范,本文以该工况最高计算应力的1/5为限,大于该数值的,即将其界定为该工况的较高应力区域。图2中分别给出了工况LC01~LC03的较高应力区域以及最终确定的疲劳分析区域。 图2 疲劳分析区域(LC01~LC03较高应力区域的并集) 3 疲劳分析及结果 采用最大主应力法进行无限寿命评估,疲劳分析区域的各个单元的各个节点的最严厉应力循环的应力均值、应力幅值打点至Goodman图中,如图3所示;应力幅值云图、应力均值云图如图4所示。 由图3可知,疲劳评估区域的应力均值、应力幅值在Goodman图中的点均位于V型焊

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

客车车身骨架准静态疲劳强度分析.

第9期 2010年9月 文章编号:1001-3997(2010)09-0099-03 机械设计与制造 MachineryDesign&Manufacture 99 客车车身骨架准静态疲劳强度分析* 朱健苏小平陈本军 )(南京工业大学机械与动力工程学院,南京210009 Pseudo-staticfatiguestrengthanalysisofbusbodyframework ZHUJian,SUXiao-ping,CHENBen-jun (SchoolofMechanicalandPowerEngineering,NanjingUniversityofTechnology,Nanjing210009,China) 【摘要】运用有限元方法建立了某轻型客车车架骨架的有限元模型,在确定载荷的简化和施加方 法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此对其进一步的疲劳分析。为该车车身骨架的优化设计和进一步研究提供了理论依据。 关键词:车身骨架;有限元;疲劳分析 【Abstract】Finiteelementmodelingofthebusframeworkisestablishedbyusingfiniteelementmeth-ods.Whenthesimplifiedloadandloadwayexertingontheframeworkareensured,thefiniteelementsimula-tionofbusframeworkisexecutedunderfullyloadedbendingcondition.Andthenfurtherfatigu eanalysisfinishes.Theseresultsprovidetheoreticalbasisforoptimizationandfurtherstudyoft hebusframework. Keywords:Busframework;Finiteelementanalysis;Fatigueanalysis 1引言 车身骨架是客车的主要承载结构,车身骨架的强度、刚度及安全性、操作稳定性等疲劳性能都直接影响着客车的使用寿命、 基本性能。本文运用通用有限元分析软件对某客车车身进行了准 *来稿日期:2009-11-06 弦弧公差:叶盆、叶背为1;进布点方法生成,选取U=V=0.5的截面, ********************************************* 的问题,提高了系统检测的安全性。

曲柄轴的强度设计、疲劳强度校核及刚度计算

材料力学课程设计 班级: 作者: 题目:曲柄轴的强度设计、疲劳强度校核及刚度计算 指导老师 2015.6.6

一、课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。三、设计题目 某柴油机曲轴材料为球墨铸铁(QT400-10),[σ]=120MPa,曲柄臂抽象为矩形(如图),h=1.2D,b/h=2/3(左、右臂尺寸相同),l=1.5e,l4=0.5l,已知数据如下表: F/kN W/kN l1/mm l2/mm l3/mm e/mm α(?) 20 5.4 380 230 120 120 12 1. 画出曲轴的内力图。 2. 按照强度条件设计主轴颈D和曲轴颈的直径d。 3. 校核曲柄臂的强度。

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 李明1李源2陈斌3 (1湖南工业大学机械工程学院,湖南株洲,412008;2国防科学技术大学指挥军官基础教育学院,湖南长沙,410072;3 湖南大学汽车车身先进设计制造国家重点实验室,湖南长沙,410082) 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue对该型商用车白车身进行S-N全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用 结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 Body-in-white Fatigue Analysis and Optimization Design of the Commercial Vehicle LI Ming1, LI Yuan2, CHEN Bin3 (1 School of Mechanical Engineering , Hunan University of Technology, Zhuzhou, Hunan 412008, China; 2 College of Basic Education for Officers, National University of Defense Technology, Changsha, Hunan 410072, China;3 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082,China) Abstract:Based on the results of stress analysis, this paper took the effective way of the fatigue life estimating, used the professional durability fatigue life analysis system MSC. Fatigue, and the S-N life-cycle analysis of the certain type of commercial vehicle body-in-white finite element model, got the distribution of fatigue life and the fatigue life value of the danger points. Finally, by the structural optimization and material selection, writer improved the fatigue life of white body structure. Keywords: B ody-in-white structure, FEM, Static analysis, Fatigue lifetime analysis; Optimization 0 前言 在车身结构疲劳领域的国内研究中,1994年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,

螺栓强度计算.doc

15.2.1 单个螺栓连接的强度计算 螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。 螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。采用标准件时,这些部 ,然后按照标准选定螺纹公称直分都不需要进行强度计算。所以,螺栓连接的计算主要是确定螺纹小径d 1 径(大径)d,以及螺母和垫圈等连接零件的尺寸。 1. 受拉松螺栓连接强度计算 松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。)外,连接并不受力。图15.3所示吊钩尾部的连接是其应用实例。当螺栓承受轴向工作载荷 F (N)时,其强度条件为 (15-6) (15-7) 或 ——螺纹小径,mm; 式中: d 1 [σ]——松连接螺栓的许用拉应力,Mpa。见表 15.6。 图15.3 2. 受 拉 紧 螺 栓 连 接 的 强 度 计 算 根

所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三

。 ①只受预紧力的紧螺栓连接 右图为靠摩擦传递横向力F 的受拉螺栓连接,拧紧螺母后,这时

栓杆除受预紧力F`引起的拉应力σ=4 F` /π 2 d 1外,还受到螺纹力矩T1引起的扭转切应力:

对于螺栓 故螺栓 或 式 ② 受 预 紧 力 和 工 作 载 荷 的 紧 螺 栓 连 接 。 图 15 .5 所 示 压 力 容 器

高铁车体结构件应力分析与疲劳强度评估 王磊 但龙 姜晓艳

高铁车体结构件应力分析与疲劳强度评估王磊但龙姜晓艳 发表时间:2019-07-15T16:09:32.903Z 来源:《当代电力文化》2019年第05期作者:王磊但龙姜晓艳 [导读] 2007年4月18日,我国的高铁开始正式投入使用,由于是刚刚开始进行高铁的建设,因此在高铁运营过程中往往会出现各种各样的问题和缺陷。 中车青岛四方机车车辆股份有限公司山东青岛 266000 摘要:2007年4月18日,我国的高铁开始正式投入使用,由于是刚刚开始进行高铁的建设,因此在高铁运营过程中往往会出现各种各样的问题和缺陷。其中有80%的机械零件都是因为疲劳破坏而失效的。高铁车体结构大部分都是采用金属材料制作的,而金属不可能做无数次的交变载荷试验,都存在一个疲劳强度,一旦所加的应力值超过金属材料的疲劳强度,就会导致金属变形,从而出现严重事故。基于此,本文首先简单的介绍一下影响疲劳强度的因素;随后详细的介绍一下计算疲劳强度的疲劳试验方法。以此仅供相关人士进行交流与参考。 关键词:高铁车体结构件;应力分析;疲劳强度评估 引言: 在这短短的十几年间,我国的高铁行业得到了突飞猛进的发展,装备生产、运行管理等质量水平也在不断的进步和提高。而机械零件作为高铁车体结构的一个重要组成部分,确实应该引起高铁部门的重视。本文首先介绍一下影响机械零件疲劳强度的因素,随后介绍一下计算机械零件疲劳强度的疲劳试验方法,从而准确的进行疲劳强度的评估,从而不断提高高铁结构件的质量。 一、影响高铁车体结构的疲劳强度因素 高铁车体结构件的疲劳强度评估研究一直都在进行,其中最初的评估方法就是对零件疲劳极限进行测定。但由于实际零件在制作过程中尺寸、形状、材料等都各有不同,因此通过测定零件疲劳极限来评估疲劳强度的试验方法在实施起来具有很大的困难。以此,我们可以通过研究影响机械零件疲劳强度的因素来评估机械零件的疲劳强度。影响机械零件疲劳强度的因素主要是应力集中与梯度;尺寸效应以及表面加工质量这三点(见图一)。 (一)应力集中与梯度 为了满足高铁车体结构的要求,机械零件的制作和加工一般都有拐角、切口、沟槽等缺口,这些缺口自然而言的就出现了应力集中,从而提高了零件的局部应力。在零件部件承载静载荷时,随着静载荷的增加,零件会出现一个宏观塑性变形的阶段,重新分配应力并趋于均匀。而对于疲劳破坏而言,零件并不会出现明显的宏观塑性变形,也不会重新分配应力,因此缺口处的疲劳强度比光滑部位高,出现问题的概率也比较大。缺口处的最大局部应力ɑmax和名义应力ɑn的比值为理论应力集中系数K,K=ɑmax/ɑn。K可以用来表示应力集中提高零件局部应力作用,也被称为形状系数,一般采用弹性力学解析方法或者是光测弹性力学试验来求解[1]。 (二)尺寸效应 机械零件的尺寸对于疲劳强度的影响较大,尺寸效应指的就是当尺寸增大时,疲劳强度就会降低。一般用尺寸系数ε来表示尺寸效应作用的大小。δ-1d为零件的疲劳极限,δ-1为几何相似式样的疲劳强度,d为试样和零件的尺寸(一般在6mm到7.5mm),所以ε=δ-1d/δ-1。引起尺寸效应的因素可以分为制作工艺因素和比例因素。制作工艺因素主要是指机械零件在加工制造过程中因为制作差异出现的尺寸变化[2]。而且铸造件的规模大小也会不同程度的增加铸造困难,一般体积越大的铸造件铸造难度更高,也比较容易出现气孔、沙眼等缺陷,这些缺陷都会成为零件的薄弱部分,从而降低零件的疲劳强度。 (三)表面加工质量 表面加工质量一般由表面粗糙度来衡量,金属种类的不同、加工方法的不同都会对表面加工质量造成影响,像金属表面切削深度、切削用量等,都会对零件部件的疲劳强度产生影响。根据相关研究证明,金属式样的疲劳强度随硬化程度的增加而增加,而且应变硬化的式样都会产生残余的压应力,这种压应力会大大提高零件的拉伸疲劳强度,进而降低零件的疲劳强度[3]。 (图一)影响高铁车体结构的疲劳强度因素 二、计算疲劳强度的疲劳试验方法 (一)常规疲劳试验方法介绍 在进行疲劳实验之前,首先要制备好疲劳式样,疲劳式样需要经过机械加工、热处理以及尺寸测量、表面检验等步骤,保证疲劳式样能够达到疲劳试验的设备要求标准。常规的疲劳试验方法主要用于式样个数不多、生产任务紧急的情况,该方法可以直接给出零件式样的

第6章结构件及连接的疲劳强度计算原理分解

148 第6章 结构件及连接的疲劳强度 随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。 6.1 循环作用的载荷和应力 起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。 起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个 循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。 6.1.1 循环应力的特征参数 (1) 最大应力 一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。 (2) 最小应力 一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。 (3) 整个工作循环中最大应力值 构件或连接整个工作循环中最大应力的数值,用max ?σ 表示。 (4) 应力循环特性值 一个循环中最小应力与最大应力的比值,用min max r σσ=表示。 (5) 循环应力的应力幅 一个循环中最大的应力与最小的应力的差的绝对值,用σ?表示。

整车疲劳耐久性能开发(1)

整车疲劳耐久性能开发2019年

耐久性能开发意义 在整车开发前期或后期,通过CAE仿真和试验验证手段降低结构失效的风险,或解决已经出现失效问题,保证达到整车质保要求。 结构耐久性能改进 结构的耐久性能是制约结构轻量化的关键指标,只有精准地评估整车结构 的耐久性能,才能更科学地实现结构轻量化目标。 结构轻量化设计

耐久性能整体解决方案 基于实测载荷谱的耐久性能开发主要过程包括:载荷谱处理后,通过多体动力学模型将轮心载荷分解到底盘各个接附点,进行有限元疲劳强度仿真及优化;以及载荷工况的等效、仿真和试验的精度对比。 载荷分解 结构疲劳性能仿真 载荷谱 结构静强度性能仿真 试验场/台架可靠性试验 仿真与试验对标

耐久性能开发目录 1、载荷谱采集 ?2.1 技术路线?2.2 分析体系及规范?2.3 试验标定?2.4 试验对标?2.5 疲劳分析 2、CAE分析 3、试验验证 4、规范制定 5、虚拟试验场 开发 ?3.1 材料寿命曲线测试 ?3.2 疲劳台架试验 ?4.1 用户关联?4.2 试验场关联?4.3 台架关联 ?5.1 几何谱采集?5.2 路面构建?5.3 轮胎辨识?5.4项目案例 ?1.1 采集设备?1.2 零部件标定?1.3 关键传感器?1.4 采集记录?1.5 数据后处理?1.6 商用车载荷采集?1.7 商用车案例 A B C D E

1 、载荷谱采集 乘用/商用车车轮 六分力传感器 位移传感器 数据采集系统 加速度传感器 无线/轴端信号传输 GPS接收器 力矩方向盘陀螺仪摄像仪 乘用/商用车三 向力传感器 1.1 采集设备

相关文档
最新文档