SQLServer2008数据挖掘全过程详解

SQLServer2008数据挖掘全过程详解
SQLServer2008数据挖掘全过程详解

实验三详细步骤讲解

第一部分OLAP讲解

1目的

针对现在企业存在海量数据,需要对其中隐藏的数据进行分析,从而帮助决策这一事实,我们设计了一个虚拟情景:我们是一家大型连锁超市的技术顾问,我们要分析企业现存的数据,从而了解此超市的运营现状,针对分析出的信息提出企业的改进目标。

2安装SQL Server 2008

2.1实验环境:

操作系统:windows 7;

处理器:AMD Turion(tm) x2 Dual-Core Moblie RM-72,2.10GHz;

系统类型:32 位操作系统;

内存:3GB

2.2步骤详解

选择安装文件中的setup.exe开始安装。

上图为安装主界面,包含了有关SQL Server 2008 的各种信息,很直观,开始安装选择:全新SQL Server 独立安装或向现有安装添加功能;

一些必需条件检查;

然后是产品序列号输入,这也是SQL Server 首次采用此种授权管理方式;从微软网站下载的版本其实和正式版本无异,你如果有正式的序列号,在此输入即可成为正式版;当然

在此处你也可以选择安装企业评估版,待以后通过上图的安装中心界面可将试用版升级为

其它版本的正式版。这里,我们输入企业版序列号:JD8Y6-HQG69-P9H84-XDTPG- 34MBB;

SQL Server 2008 企业版授权协议;

这里需要一些组件的安装

点击安装过后,有一小段等待的时间

另外一些必要条件的检查

安装组件选择,默认情况下什么也没有选中,根据情况选择即可,一般情况下,不明白的就全选;

配置实例并选择安装路径;从图中可以看出,虽然实例安装到了 D 盘,但只用了784M,将近2G 的内容都安装到了 C 盘,因此我们选择直接安装在C盘默认文件夹下;

这里为实例配置,我们只需选择默认的,然后”下一步”;

显示安装后预计战胜的硬盘空间

配置各SQL Server 服务的帐户名和启动类型,对开发人员来说非常实用;

配置身份验证模式,和以往版本没有什么不同;但新增了一个”指定SQL Server 管理员”的必填项,该管理员是指Windows 帐户,你可以新建一个专门用于SQL Server 的帐户,或点击”添加当前用户”添加当前用户为管理员;同时”数据目录”页可指定各种类型数据文件的存储位置,不过我们这里只需要选择”添加当前用户”,其他的默认就好;

接下来,根据选择项目,会有一些不同的项目要配置,对于非专业人员来说,基本原则就是”添加当前用户”,这样简洁并且不易出错;

Reporting Sevice配置,直接默认,选择”下一步”;

错误和使用情况报告,这里我们不选择向微软发送错误报告,直接”下一步”;

再一次对必要信息进行检查;

安装信息汇总,安装前的最后一步

开始安装并安装完成用时大约 1 小时,当然这取决于你安装的组件。

之后安装成功,从开始菜单中选择相应的程序,Microsoft SQL Server 2008——SQL Server Management Studio单击即可打开。

安装后运行图例

至此SQL Server 2008安装成功

安装中的注意事项:

安装sql server 2008前可能需要安装visual studio,我们建议最好最好安装最新的版本,以免出现一些不必要的问题。

3OLAP分析

3.1目的:

联机分析处理(简写为OLAP)是共享多维信息的、针对特定问题的联机数据访问和分析的快速软件技术。它通过对信息的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。决策数据是多维数据,多维数据就是决策的主要内容。OLAP专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方案。

联机分析处理具有灵活的分析功能、直观的数据操作和分析结果可视化表示等突出优点,从而使用户对基于大量复杂数据的分析变得轻松而高效,以利于迅速做出正确判断。它可用

于证实人们提出的复杂的假设,其结果是以图形或者表格的形式来表示的对信息的总结。它并不将异常信息标记出来,是一种知识证实的方法。

总之,OLAP(联机分析处理)是帮助用户理解、分析大量数据并建立模型的一种解决方案,而Microsoft SQL Server 2008中的SQL Server Business Intelligence Development Studio则是完成这一任务的出色工具。

3.2相关知识介绍:

Microsoft SQL Server 2008中的BI(商业智能)模块集成了一些我们在商业应用领域上的技术,在真正应用时,我们将BI分为五层,即BI 五层模型:

*数据源层

*数据转换层

*数据存取层

*分析层

*表示层

我们将BI模块中的Integration services项目对应于数据源层和数据转换层;SQL Server Management Studio对应于数据存取层;analysis services项目对应于分析层;最后将报表模型项目对应于表示层。下面我们将结合我们的案例背景,即我们作为大型超市的技术顾问,为企业决策者提供相应的运营信息。

3.3具体步骤:

3.3.1数据源的转换:

开始——Microsoft SQL Server 2008——SQL Server Business Intelligence Development Studio,打开如下图所示界面:

然后单击新建文件——新建——项目,出现如下图所示界面,然后选择integration services 项目:

之后出现下图所示界面:

数据挖掘试卷一

数据挖掘整理(熊熊整理-----献给梦中的天涯) 单选题 1.下面哪种分类方法是属于神经网络学习算法?() A. 判定树归纳 B. 贝叶斯分类 C. 后向传播分类 D. 基于案例的推理 2.置信度(confidence)是衡量兴趣度度量( A )的指标。 A、简洁性 B、确定性 C.、实用性 D、新颖性 3.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 4.数据归约的目的是() A、填补数据种的空缺值 B、集成多个数据源的数据 C、得到数据集的压缩表示 D、规范化数据 5.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声? A.数据清理 B.数据集成 C.数据变换 D.数据归约 6.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?(B) A 第一个 B 第二个 C 第三个 D 第四个 7.下面的数据操作中,()操作不是多维数据模型上的OLAP操作。 A、上卷(roll-up) B、选择(select) C、切片(slice) D、转轴(pivot) 8.关于OLAP和OLTP的区别描述,不正确的是: (C) A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同. B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务. C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高. D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的 9.下列哪个描述是正确的?() A、分类和聚类都是有指导的学习 B、分类和聚类都是无指导的学习

空间数据挖掘工具浅谈_汤海鹏

第28卷第3期2005年6月 测绘与空间地理信息 G E O M A T I C S &S P A T I A LI N F O R M A T I O NT E C H N O L O G Y V o l .28,N o .3 J u n .,2005 收稿日期:2004-09-14 基金项目:国家重点基础研究发展规划(973)资助项目(2001C B 309404) 作者简介:汤海鹏(1979-),男,湖南沅江人,本科,主要从事信息化管理和信息化建设等方面的研究。 空间数据挖掘工具浅谈 汤海鹏1 ,毛克彪 2,3 ,覃志豪2,吴 毅 4 (1.公安部出入境管理局技术处,北京100741;2.中国农业科学院自然资源与农业区划研究所农业遥感实验室, 北京100081;3.中国科学院遥感所,北京100101;4.黑龙江乌苏里江制药有限公司,黑龙江哈尔滨150060) 摘要:数据挖掘是一个利用各种分析工具在海量数据中发现模型和数据间关系的过程,这些模型和关系可以 用来做出预测。空间数据挖掘有十分广阔的应用范围和市场前景,目前已出现大量的数据挖掘工具用于企业决策、科学分析等各个领域。文中对2个数据挖掘工具进行讨论,介绍它们的功能、所使用的技术以及如何使用它们来进行数据挖掘。 关键词:数据挖掘;空间数据挖掘;数据立方体;知识库引擎 中图分类号:P 208 文献标识码:A 文章编号:1672-5867(2005)03-0004-02 AS u r v e y o f D a t a Mi n i n g T o o l s T A N GH a i -p e n g 1 ,M A OK e -b i a o 2,3 ,Q I NZ h i -h a o 2 ,W UY i 4 (1.B u r e a uo f E x i t a n dE n t r y A d m i n i s t r a t i o n ,M i n i s t r y o f P u b l i c S e c u r i t y ,B e i j i n g 100741,C h i n a ;2.T h e K e y L a b o r a t o r y o f R e m o t e S e n s i n g a n d D i g i t a l A g r i c u l t u r e ,C h i n a A c a d e m y o f A g r i c u l t u r e R e m o t e S e n s i n g L a b o r a t o r y ,B e i j i n g 100081,C h i n a ; 3.I n s t i t u t eo f R e m o t e S e n s i n g A p p l i c a t i o n s ,C h i n e s e A c a d e m y o f S c i e n c e s ,B e i j i n g 100101,C h i n a ; 4.H e i l o n g j i a n g Wu s u l i j i a n g P h a r m a c e u t i c a l C o .L t d .,H a r b i n 150060,C h i n a ) A b s t r a c t : B e c a u s e o f c o m m e r c i a l d e m a n d s a n dr e s e a r c hi n t e r e s t ,a l l k i n d s o f s p a t i a l d a t a m i n i n g s o f t w a r e t o o l s e m e r g e .I n o r d e r t o g e t u s e o f t h e d a t a m i n i n g t o o l s ,t w o o f t h e ma r e i n t r o d u c e d i n t h i s p a p e r a n d m a k e p r o s p e c t o f i n t e g r a t i o n o f G I S ,R S ,G P S a n d d a t a m i n -i n g .K e yw o r d s :d a t a m i n i n g ;s p a t i a l d a t a m i n i n g ;d a t a c u b e ;d a t a b a s e e n g i n e 0 引 言 随着数据获取手段(特别是对地观测技术)及数据库 技术的快速发展,科研机构、政府部门在过去的若干年里都积累了大量的数据,而且,目前这些数据仍保持迅猛的增长势头。如此大量的数据已远远超过传统的人工处理能力,怎样从大量数据中自动、快速、有效地提取模式和发现知识显得越来越重要。数据挖掘与知识发现作为一个新的研究领域和新的技术正方兴未艾,用于从巨量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式[1~2],很好地满足了海量数据处理的需要。 具体应用中,数据挖掘工具很多。它们在功能和方法等方面差别很大。如何选择适合具体挖掘需求的工具,是进行挖掘工作必须考察的前提。选择某一工具时,应考虑数据类型,主要是考察工具能处理的数据:①关系 数据库的数据。包括数据仓库数据、文本文档、空间数据、 多媒体数据、W e b 数据等;②功能和方法。数据挖掘功能是数据挖掘工具(或系统)的核心,一些数据挖掘工具仅提供一种功能(如分类),另一些工具可能支持另外的挖掘功能(如描述、关联、分类、预测和聚类等);③其他考虑的方面如:系统问题、数据源、可伸缩性、可视化、数据挖掘查询语言和图形用户接口、工具和数据库或数据仓库系统等。 在众多的数据中,有近80%的数据可以通过空间关系表达。现在,通过卫星扫描地球,每天都能获得大量的关于地表的遥感图像。要从大量的数据中判读出每一个图片所潜藏的信息,就必然要用到数据挖掘技术。本文将通过介绍专业的航空遥感图像处理系统E r d a s 和D B -M i n e r 来阐述处理空间数据和关系数据的这一过程及这2种软件的特点。

数据挖掘复习章节知识点整理

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: 1.学习应用域 2.目标数据创建集 3.数据清洗和预处理 4.数据规约和转换 5.选择数据挖掘函数(总结、分类、回归、关联、分类) 6.选择挖掘算法 7.找寻兴趣度模式 8.模式评估和知识展示 9.使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总; (2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较; (3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

(完整版)数据挖掘概念课后习题答案

第 1 章 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。 使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。 ?特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征可被提出,形成所 有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩 (GPA:Grade point a ve r s ge) 的信息,还有所修的课程的最大数量。 ?区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比 较。例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。最 终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级 计算机科学专业的学生,而具有低GPA 的学生的65%不是。 ?关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。 例如,一个数据挖掘系统可能发现的关联规则为: m a j or(X,“c omput i ng s c i e nc e”) ?owns(X, “pe r s ona l c omput e r”) [s uppor t=12%,c on f i d e nc e=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台 。 个人计算机。这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度) ?分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或,而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。它们的 功能) 相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是 预测缺失的数字型数据的值。 ?聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。 ?数据延边分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数 据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分 析、序列或周期模式匹配、和基于相似性的数据分析 1.9 列举并描述说明数据挖掘任务的五种原语。 五种原语是: ?任务相关数据:这种原语指明给定挖掘所处理的数据。它包括指明数据库、数据库表、或 数据仓库,其中包括包含关系数据、选择关系数据的条件、用于探索的关系数据的属性或 维、关于修复的数据排序和分组。 ?挖掘的数据类型:这种原语指明了所要执行的特定数据挖掘功能,如特征化、区分、关 联、分类、聚类、或演化分析。同样,用户的要求可能更特殊,并可能提供所发现的模式必 须匹配的模版。这些模版或超模式(也被称为超规则)能被用来指导发现过程。 ?背景知识:这种原语允许用户指定已有的关于挖掘领域的知识。这样的知识能被用来指导 知识发现过程,并且评估发现的模式。关于数据中关系的概念分层和用户信念是背景知识的 形式。 ?模式兴趣度度量:这种原语允许用户指定功能,用于从知识中分割不感兴趣的模式,并且 被用来指导挖掘过程,也可评估发现的模式。这样就允许用户限制在挖掘过程返回的不感兴 趣的模式的数量,因为一种数据挖掘系统可能产生大量的模式。兴趣度测量能被指定为简易 性、确定性、适用性、和新颖性的特征。 ?发现模式的可视化:这种原语述及发现的模式应该被显示出来。为了使数据挖掘能有效地

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

数据挖掘流程模型CRISP-DM

CRISP-DM 1.0 数据挖掘方法论指南 Pete Chapman (NCR), Julian Clinton (SPSS), Randy Kerber (NCR), Thomas Khabaza (SPSS), Thomas Reinartz (DaimlerChrysler), Colin Shearer (SPSS) and Rüdiger Wirth (DaimlerChrysler)

该手册描述了CRISP-DM(跨行业数据挖掘标准流程)过程模型,包括CRISP-DM的方法论、相关模型、用户指南、报告介绍,以及一个含有其他相关信息的附录。 本手册和此处的信息均为CRISP-DM协会以下成员的专利:NCR Systems Engineering Copenhagen (USA and Denmark), DaimlerChrysler AG (Germany), SPSS Inc. (USA) and OHRA Verzekeringen en Bank Groep B.V (The Netherlands)。 著作权? 1999, 2000 本手册中所有商标和服务标记均为它们各自所有者的标记,并且为CRISP-DM协会的成员所公认。

前言 1996年下半年,数据挖掘市场尚处于萌芽状态,CRISP-DM率先由三家资深公司共同提出。DaimlerChrysler (即后来的Daimler-Benz) 在其商业运营中运用数据挖掘的经验颇为丰富,远远领先于其他大多数商业组织。SPSS(即后来的ISL)自1990年以来一直致力于提供基于数据挖掘的服务,并于1994年推出了第一个商业数据挖掘平台——Clementine。至于NCR,作为对其Teradata数据仓库客户增值目标的一部分,它已经建立了数据挖掘顾问和技术专家队伍以满足其客户的需要。 当时,数据挖掘所引起的市场关注开始表明其进入爆炸式增长和广泛应用的迹象。这既令人兴奋又使人害怕。随着我们在这条路上不断走下去,所有人都不断研究和发展数据挖掘方法。可是我们做的是否正确?是否每一个数据挖掘的新使用者都必须像我们当初一样经历反复试验和学习?此外,从供应商的角度来看,我们怎样向潜在客户证明数据挖掘技术已足够成熟到可以作为它们商业流程的一个关键部分? 在这种情况下,我们认为急需一个标准的流程模型——非私人所有并可以免费获取——向我们和所有的从业者很好的回答这些问题。 一年后我们组建了联盟,名字CRISP-DM取自CRoss-Industry Standard Process for Data Mining的缩写,由欧洲委员会提供资助,开始实施我们最初的想法。因为CRISP-DM的定位是面向行业、工具导向和面向应用的,所以我们明白必须“海纳百川,博采众家之长”,必须在一个尽可能宽的范围内吸引人们的兴趣(比如数据仓库制造商和管理咨询顾问)。于是我们决定成立CRISP-DM 专门兴趣小组(即大家所知道的“The SIG”)。我们邀请所有感兴趣的团体和个人到阿姆斯特丹参加为期一天的工作会议,讨论并正式成立SIG组织:我们观念共享,鼓励与会者畅所欲言,为发展CRISP-DM共商大计。 当天每个协会成员都心怀惴惴,会不会没有人对CRISP-DM有足够的兴趣?即使有,那他们是否认为实际上并未看到一种对标准化流程的迫切需求?或者我们的想法迄今为止与别人的步调不一致,任何标准化的念头只是不切实际的白日梦? 事实上,讨论的结果大大超出了我们的期望。下面三点最为突出: 当天的与会人数是我们原先期望的两倍 行业需要而且现在就需要一个标准化流程——大家压倒性的一致同意 每个出席者从他们的项目经验出发陈述了自己关于数据挖掘的看法,这使我们越来越清晰地看到:尽管表述上有些区别——主要是在阶段的划分和术语方面,但在如何看待数据挖掘流程上大家具有极大的相似之处。 在工作组结束的时候,我们充满了自信,受SIG的启发和批评,我们能够建成一个标准化流程模型,为数据挖掘事业作出贡献。 接下来的两年半里,我们努力工作来完善和提炼CRISP-DM。我们不断地在Mercedes-Benz、保险部门的伙伴及OHRA的实际大型数据挖掘项目中进行尝试。同时也运用商业数据挖掘工具来整合CRISP-DM。SIG证明了是无价的,其成员增长到200多,并且在伦敦、纽约和布鲁塞尔都拥有工作组。 到该项目的欧洲委员会支持基金部分结束时——1999年年中,我们提出了自己觉得质量优良的流程模型草案。熟悉这一草案的人将会发现,一年以来,尽管现在的CRISP-DM1.0更完整更好,但从根本上讲并没有什么本质不同。我们强烈地意识到:在整个项目中,流程模型仍然是一个持续进行的工作;CRISP-DM还只是在一系列有限的项目中得到证实。过去的一年里,DaimlerChrysler有机会把CRISP-DM运用于更为广阔的范围。SPSS和NCR的专业服务团体采纳了CRISP-DM,而且用之成功地完成了无数客户委托,包括许多工业和商业的问题。这段时间以来,我们看到协会外部的服务供应商也采用了CRISP-DM;分析家不断重复地提及CRISP-DM

数据挖掘 主题:第五章作业

本科生实验报告 实验课程数据挖掘 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名代星 学生学号201413030317 指导教师 实验地点 实验成绩 二〇一六年11月二〇一六年11月

第五章作业题一 第1章实验内容 在UCI上下载一个用于分类的数据集,使用C4.5算法,设置不同的参数建立两个有指导的学习,记录检验集错误率。使用式(5,9)确定两个模型的检验集错误率是否存在显著差异。 第2章实验目的 对于一个用于分类的数据集,使用C4.5算法,设置不同的参数建立两个有指导的学习,记录检验集错误率。使用式(5,9)确定两个模型的检验集错误率是否存在显著差异,从而学会评估有指导的学习模型。 第3章算法思想 选择具有最大增益率的属性作为分支节点来分类实例数据。 第4章实验过程 4.1数据准备 数据集名为IRIS.xls,选择所有150个实例和5个属性,其中4个属性作为输入属性,第5个属性Iris_type作为输出属性,生成.csv文件,加载到Weka。 4.2 建立模型 使用Weka进行有指导的学习训练,选择C4.5数据挖掘算法,在Weka中名为J48,将test options 设置为 Percentage split ,使用百分比72%,选择Iris_type 作为输出属性。单击Moreoptions按钮,打开Classifier evaluation options 对话框,在Output predictions点击choose选中PlainText。表示将在输入结果中显示作为检验集实力的计算输出。单击Start按钮,执行程序。查看混淆矩

阵,计算错误率为9.5%。 通过分析混淆矩阵,重新设置参数使用百分比66%,重复上述步骤,执行程序,计算错误率为3.9%,较之前有了些许提升。 接下来通过假设检验来比较两个用同样训练集创建的有指导的学习模型。公式如上图所示。其中E1为模型M1的检验集分类错误率;E2为模型M2的检验集分类错误率;q为两个模型分类错误率的平均值,即q=(E1+E2)/2;n1和n2分别是检验集A和B的实例个数;q(1-q)是用E1和E2计算出来的方差值。代入数据可得最后的Z=0.057,如果Z值大于等于1.96,就有95%的把握认为M1和M2的检验集性能差别是显著的。此时算出来的是0.057,就说明两个聚类算法的性能差别不是显著的。 第5章实验结果 1、修改参数前:C4.5数据挖掘算法:

数据挖掘过程说明文档

生产再生钢的过程如下:组合后的废钢通过炉门送入炉子,电流通过悬浮在炉内的电极输送到熔化的废钢中。提供给这些电极的高电流通过电弧传输到内部的金属废料,对其加热并产生超过3000°C的温度。 通过添加各种活性气体和惰性气体以及固体物质来维持和优化炉内条件。然后,钢水从熔炉中流出,进入移动坩埚,并浇铸到钢坯中。 你将得到一个数据集,代表从各种金属废料lypes生产回收钢坯的过程。Hie数据集包含大 ?这是一个基于团队的项目。你需要组成一个小组,由三名(或两名)组员来完成这项练习。?您可以使用Weka或任何其他可用的数据挖掘资源和软件包来帮助您制定问题、计算、评

估等。 ?您的团队绩效将完全根据团队的结果和您的报告进行评估。 ?作为一个团队,您需要决定给定问题的性质;什么类型的数据挖掘问题公式适合解决此类问题;您的团队可以遵循什么样的基本数据挖掘过程;您的团队希望尝试什么类型的算法;以何种方式,您可以进一步利用或最大化您的性能,等等。 ?您的团队应致力于涵盖讲座、教程中包含的领域,考虑预处理、特征选择、各种算法、验证、测试和性能评估方法。 ?对于性能基准,建议您使用准确度和/或错误率作为评估指标。 ?表现最好的球队将被宣布为本次迷你KDD杯冠军,并将获得10%的加分,最高100%满分。 数据挖掘流程: 一、数据建模 1. 数据获取 2. 数据分析 3. 数据预处理 二、算法建模 1. 模型构建 2. 模型检验 三、评估 一、数据建模 1.数据获取及分析 数据集:EAF_process_dataqqq.csv 根据《assignment 2》中,数据集的说明,可知:

大数据挖掘技术之DM经典模型(上)

大数据挖掘技术之DM经典模型(上) 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 实际上,所有的数据挖掘技术都是以概率论和统计学为基础的。 下面我们将探讨如何用模型来表示简单的、描述性的统计数据。如果我们可以描述所要找的事物,那么想要找到它就会变得很容易。这就是相似度模型的来历——某事物与所要寻找的事物越相似,其得分就越高。 下面就是查询模型,该模型正在直销行业很受欢迎,并广泛用于其它领域。朴素贝叶斯模型是表查找模型中一种非常有用的泛化模型,通常表查询模型适用于较低的维度,而朴素贝叶斯模型准许更多的维度加入。还有线性回归和逻辑回归模型,都是最常见的预测建模技术。回归模型,用于表示散点图中两个变量之间的关系。多元回归模型,这个准许多个单值输入。随后介绍逻辑回归分析,该技术扩展了多元回归以限制其目标范围,例如:限定概率估计。还有固定效应和分层回归模型,该模型可将回归应用于个人客户,在许多以客户为中心的数据挖掘技术之间搭建了一座桥梁。 1、相似度模型 相似度模型中需要将观察值和原型进行比较,以得到相应的相似度得分。观察值与原型相似度越高,其得分也就越高。一种度量相似度的方法是测量距离。观察值与原型值之间的距离越近,观察值的得分就越高。当每个客户细分都有一个原型时,该模型可以根据得分把客户分配到与其最相似的原型所在的客户细分中。 相似度模型有原型和一个相似度函数构成。新数据通过计算其相似度函数,就可以计算出相似度得分。 1.1、相似度距离 通过出版社的读者比一般大众要富有,而且接受教育的程度要高为例。通常前者要比后者在富有程度、教育程度的比例大三倍。这样我们

可视化空间数据挖掘研究综述

可视化空间数据挖掘研究综述 贾泽露1,2 刘耀林2 (1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。 关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS; 空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。 一、空间数据挖掘研究概述 1.1 空间数据挖掘的诞生及发展 1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的 作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。 作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。

数据挖掘课后答案

第一章 1.6 (1)数据特征化是目标类数据的一般特性或特征的汇总。 例如,在某商店花费1000元以上的顾客特征的汇总描述是:年龄在40—50岁、有工作和很好的信誉等级。 (2)数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。 例如,高平均分数的学生的一般特点,可与低平均分数的学生的一般特点进行比较。由此产生的可能是一个相当普遍的描述,如平均分高达75%的学生是大四的计算机科学专业的学生,而平均分低于65%的学生则不是。 (3)关联和相关分析是指在给定的频繁项集中寻找相关联的规则。 例如,一个数据挖掘系统可能会发现这样的规则:专业(X,“计算机科学”)=>拥有(X,”个人电脑“)[support= 12%,confidence = 98%],其中X是一个变量,代表一个学生,该规则表明,98%的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人电脑的可能性是98%。12%的支持度意味着所研究的所有事务的12%显示属于计算机科学专业的学生都会拥有个人电脑。 (4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。 例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。 (5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。 例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定。 (6)数据演变分析描述行为随时间变化的对象的规律或趋势,并对其建模。这可能包括时间相关数据的特征化、区分、关联和相关分、分类、预测和聚类,这类分析的不同特点包括时间序列数据分析、序列或周期模式匹配和基于相似性的数据分析。 例如:假设你有纽约股票交易所过去几年的主要股票市场(时间序列)数据,并希望投资高科技产业公司的股票。股票交易数据挖掘研究可以识别整个股票市场和特定的公司的股票的演变规律。这种规律可以帮助预测股票市场价格的未来走向,帮助你对股票投资做决策。 1.11 一种是聚类的方法,另一种是预测或回归的方法。 (1)聚类方法:聚类后,不同的聚类代表着不同的集群数据。这些数据的离群点,是不属于任何集群。在各种各样的聚类方法当中,基于密度的聚类可能是最有效的。 (2)使用预测或回归技术:构建一个基于所有数据的概率(回归)模型,如果一个数据点的预测值有很大的不同给定值,然后给定值可考虑是异常的。 用聚类的方法来检查离群点更为可靠,因为聚类后,不同的聚类代表着不同的集群数据,离群点是不属于任何集群的,这是根据原来的真实数据所检查出来的离群点。而用预测或回归方法,是通过构建一个基于所有数据的(回归)模型,然后根据预测值与原始数据的值比较,当二者相差很大时,就将改点作为离群点处理,这对所建立的模型有很大的依赖性,另

数据挖掘复习

1、简单描述一下数据挖掘的过程(P9-P10) (1)数据清洗:清除数据噪声和与挖掘主题明显无关的数据 (2)数据集成:将来自多个数据源中的相关数据组合到一起 (3)数据选择:根据数据挖掘的目标选取待处理的数据 (4)数据转换:将数据转换为易于进行数据挖掘的数据存储形式 (5)数据挖掘:其作用是利用智能方法挖掘数据模式或规律知识 (6)模式评估:其作用是根据一定评估标数据准,从数据挖掘结果中筛选出有意义的相关知识 (7)知识表示:利用可视化和知识表达技术,向用户展示所挖掘的相关知识 从商业应用的角度可以把整个数据挖掘过程描述为三个步骤:首先是数据收集,然后利用数据挖掘相关方法提取出有用的知识,最后以提取出来的知识来辅助相应决策者进行决策。 2、计算均值、中位数、截断均值,并简单说明它们在反应数据中心方面的特点(P24-P25) (1)均值:是描述数据集的最常用的单个度量方法。但通常不是度量数据中心的最好方法。(2)中位数:对于倾斜的(非对称的)数据,中位数是数据中心的一个较好度量 (3)截断均值:均值对极端值很敏感,截断均值可以避免少量极端值影响均值 3、噪声的概念?在数据预处理的时候可以发现并清除噪音数据吗?噪音数据一般有哪些处理方法(P27) 1)噪声是测量变量的随机错误或偏差。噪声是测量误差的随机部分,包含错误或孤立点 值。导致噪声产生的原因有多种,可能是数据收集的设备故障,也可能是数据录入过程中人的疏忽或者数据传输过程中的错误等。 2)可以。数据清理的目的就是试图填充缺失值、去除噪声并识别利群点、纠正数据中的 不一致值。 3)1、分箱:通过考察周围的值来平滑有序数据的值 2、聚类:聚类将类似的值组织成群或簇。落在簇集合之外的值被视为异常值 3、回归:通过回归(线性回归、非线性回归)让数据适合一个函数来平滑数据 4、规范化,MIN-MAX规范化(P29-P30),公式比较难打,举例子吧 最小-最大规范化保持原有数据之间的联系,如果今后的输入落在原始数据值之外,该方法面临“越界错误”。例如,假定电信客户的年龄属性(year)的最小值和最大值分别为10岁和83岁。用最小-最大规范化将年龄属性映射到区间[0,1],那么year值52岁将变换为(52-10)/(83-10) = 0.583 5、举例说明什么是分类挖掘任务(第三章) 分类是数据挖掘的中的主要分析手段,其任务是对数据集进行学习并构造一个拥有预测功能的分类模型,用于预测未知样本的类标号,把类标号未知的样本映射到某个预先给定的类标号中。例如,预测某个病人的病情为“癌症”或“非癌症”,这里的“癌症”和“非癌症”是预先给定的类标号。 6、举例说明什么是聚类挖掘任务。(第四章) 聚类是将数据划分为相似对象组的过程,使得同一组中对象相似度最大而不同组中对象相似度最小。如电子商务网站中的客户群划分。根据客户的个人信息、消费习惯、浏览行为等

医学数据挖掘

第一章 一.填空 1.数据挖掘和知识发现的三大主要技术为:数据库、统计学、机器学习 2.数据挖掘获得知识的表现形式主要有6种:规则、决策树、知识基网络权值、公式、案例 3.规则是由前提条件、结论两部分组成 4.基于案例推理CBR的基础是案例库 5.知识发现的基本步骤:数据选择、处理、转换、数据挖掘、解释与评价。数据挖掘是知识发现的关键步骤 6.数据挖掘的核心技术是:人工智能、机器学、统计学 7.目前数据挖掘在医学领域的应用集中在疾病辅助诊断、药物开发、医院信息系统、遗传学等方面 二.名解 1.数据挖掘DM:在数据中正规的发现有效的、新颖的、潜在有用的、并且最终可以被读懂的模式的过程 2.案例推理CBR:当要解决一个新问题时,CBR利用相似性检索技术到案例库中搜索与新问题相似的案例,再经过对就案例的修改来解决新问题 三.简答 1.数据挖掘的特点 a挖掘对象是超大型的DB,b发现隐含的知识,c可以用于增进人类认知的知识,d不是手工完成的 2.案例是解决新问题的一种知识,案例知识表示为三元组 a问题描述:对求解的问题及周围环境的所有特征的描述,b解描述:对问题求解方案的描述,c效果描述:描述解决方案后的结果情况,是失败还是成功 3.医学数据挖掘存在的关键问题 a数据预处理,b信息融合技术,c快速的鲁棒的书库挖掘算法,d提供知识的准确性和安全性 4.数据挖掘在遗传学方面的应用 遗传学的研究表明,遗传疾病的发生是由基因决定的,基因数据库搜索技术在基因研究上做出了很多重大发现,其工作主要包括:a从各种生物体的大量DNA序列中定位出具有某种功能的基因,b在基因DB中搜索与某种具有高阶结构或功能的蛋白质相似的高阶结构序列 第二章 一.填空 1.DM的对象分为:关系型DB、数据仓库、文本DB、复杂类型DB 2.从用户角度来看,数据仓库的基本组成包括:数据源、数据存储、应用工具、可视化用户界面 3.数据仓库是最流行的数据模型是多维数据模型,多维数据模型将数据看作是数据立方体的形式,数据立方体是由维和事实来定义 4.常用的多维数据模式包括:星型模式、雪花模式、事实星座模式。星型模式是由事实表

数据挖掘期末复习提纲(整理版)

1.熟悉数据挖掘的流程: 提示:1)业务理解2)数据理解3)数据准备4)建立模型5)模型评估6)模型发布 2.数据库系统与数据仓库系统的区别: 数据仓库是一个面向主题的、集成的、时变的和非易失的数据集合,支持管理部门的决策过程:而数据库是面向具体操作的、单一的、实时的、更新的数据集合,支持管理机构日常操作的。数据库系统的主要任务是执行联机事务和查询处理,这种系统称为OLTP系统,涵盖了组织机构的大部分日常操作;另一方面,数据仓库在数据分析和决策方面为用户和知识工人提供服务。 3. 数据聚合需考虑的问题; 4. 利用免费商品做促销的关联规则挖掘问题: 1)找到免费商品的频繁1—项集,记为S1。 2)使用FP增长算法生成那些价格不少于$200的频繁项集,记为S2。这是一个单调约束,因此不必要在每一步使用“生成—测试”过程,这样能 节省一些不必要的计算开销。如果我们有一个频繁项价格至少¥200,则 没必要对这个频繁项的任何超集进行测试。这是因为任何其他商品加到 这个频繁项里,价格肯定会增多。需要检验的是超集是否是频繁的。这 里之所以使用FP增长算法的原因是Apriori算法丢弃了那些价格低于 $200的频繁项集。这样导致了将不能够发现满足约束条件的频繁项集。 FP增长算法不会有这样的问题,因为它保留了关于数据库的完整信息在 一个树结构中。 3)从S1S2中找到频繁项集。 4)生成满足最小置信度且形如2 S 的规则。 1S 5.分布式数据的关联规则挖掘方法: 第一.在每一个站点挖掘局部频繁项集,设CF为四个站点的局部频繁项集的并集; 第二.计算CF中每个频繁项集在各个站点的支持度计数;

相关文档
最新文档