分离技术在化工生产中的应用

分离技术在化工生产中的应用
分离技术在化工生产中的应用

分离技术在化工生产中的应用摘要:主要介绍了膜分离技术、超滤技术、新型吸附技术、微波萃取、耦合分离技术的原理、现状、化工生产中的应用及发展趋势。

关键词:膜分离技术;超滤技术;新型吸附技术;微波萃取;耦合分离

前言

化工分离技术是化学工程的一个重要分支,无论是石油炼制、塑料化纤、湿法冶金、同位素分离,还是生物制品的精制、纳米材料的制备、烟道气的脱硫和化肥农药的生产等等都离不开化工分离技术。

化工生产中的原料和产物绝大多数都是混合物,需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯。它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。伴随着化工行业的快速发展,分离技术也获得了高速的发展。一方面,对传统分离技术的研究和应用不断进步,分离效率提高,处理能力加大,工程放大问题逐步得到解决,新型分离装置不断出现;另一方面,为了适应技术进步提出了新的分离要求,膜分离技术、超临界萃取技术、吸附技术等现有分离技术的开发、研究和应用已成为分离工程研究的前沿课题。

1 膜分离技术在化工生产中的应用

膜分离技术是一种借助外界能量或化学位的推动,以选择性透过膜为分离介质,对两组分或多组分气体或液体进行分离、分级和富集的。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩;具有高效、节能,工艺过程简单,投资少,污染小等优

点, 因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。

膜技术被认为是固液分离的新型技术,由于化工母液具有高温、高压、强腐蚀的特点,因此对膜分离过程提出了更高的要求。

捷[1] 利用膜分离方法提取合成氨施放气中的氢,通过二级膜分离流程,回收氢的浓度达98%以上,回收的氢用于合成氨生产可增产2%~3%,加上节电等效应,因此能给企业带来明显的经济效益。仲民[2]在实验中利用超滤法回收造纸黑液中的木质素,结果显示能回收95.9%木质素。宜江[3]利用瓷微滤膜澄清钛白废酸,研究结果显示瓷膜对钛白废酸具有很好的澄清效果, 渗透液浊度小于0.5NTU,并提出了压力、温度、浓度与通量的相互关系。王志斌[4]等人用微滤膜对天然脱落酸进行了分离研究, 结果发现在一定操作工艺条件下能有效的除去母液中的水分。周花[5]等人采用SNF- 150 膜对活性红3BS进行了脱盐浓缩研究, 结果发现染料的着色强度达到150%左右,提高了约50%;料液浓缩达3倍,染料的固含量从11.7%提高到20%~30%,且中试设备的平稳膜通量可达50 L/m2·h 以上。柴红[6]等人用CA 钠滤膜对苯胺蓝染料水溶液的脱盐浓缩进行了研究,结果发现染料的截留率大于99.9%,总脱盐率达到51%,染料的浓度提高了2.76倍,回收率达到约97%。何毅[7]等人利用CA50 纳滤膜对水溶性黄染料进行了分离试验研究,结果表明,纳滤技术能将主体染料的纯度提高20%,且染料工业的经济、环境和社会效益得到了显著提高,刚[8]等人利用CA 纳滤膜对荧光增白染料进行了过滤研究,结果表明Nacl 浓度由1.05mol/L降到0.023 mol/L,NT浓度由0.14 mol/L提高到0.25 mol/L以上,且NT产品稳度和白度提高,NT成分平均截留率达到99.8%。晖[9]等人利用DK纳滤膜对活性黑染料进行间歇恒容渗透的研究,研

究结果表明,在25℃和1 MPa 条件下,经过7次80 h 的过滤后,染料纯度从76%提高到87%以上,在提高活性黑染料产品质量的同时,还降低了后续干燥工序中的能耗。Yu[10]等人将纳滤脱盐和浓缩技术应用于实际生产中,结果使得浓缩液中染料质量分数大于25%,盐质总分数低于1%,纳滤膜的使用寿命超过了33年。

膜分离虽然在化工中得到广泛应用,但对化工生产中高温、高压、强腐蚀的介质而言,对膜材提出了特殊要求,因此需要开发出适用化工生产围广的膜材料;此外,化工生产一般规模较大, 需要的处理量也大,所以需要研究出过滤时间长、通量大的强化膜过程。

2 超滤技术在化工生产中的应用

超滤是一种新型膜分离技术,能够将溶液净化、分离或者浓缩。超滤是介于微滤和纳滤之间的一种膜分离过程。在所有膜分离手段( 如微滤、超滤、反渗透、渗透、电渗析及气体膜分离)中,超滤技术的应用最广泛,也最成熟。自1977 年Heztherball 等人研究并利用超滤技术榨苹果汁以来,超滤技术得到了迅速发展。超滤膜是超滤技术的心脏,超滤膜的优劣直接关系到超滤性能。

2.1 合成氨

(1)可用于高压机后新鲜气油分离。采用超滤技术除去新鲜气中的油水尘等杂质,大大改善了冷交换器的油污和积炭堵塞现象,进一步优化了操作条件,降低了能耗,有效保护了合成塔触媒。

(2)用于氨分离改造。可实现高效氨分离,能降低从气体分离出的雾状液氨的入塔氨含量,降低能耗,直接经济效益显著。

(3)用于循环机后油分离器。主要作用是除去气体中夹带的油-水杂质,保护合成触媒,降低能耗。

(4)用于变换器后过滤器。主要作用是除去变换器中的油-水杂质,保护变换触媒。

2.2 尿素生产

主要用于除去CO2气体中的油污,降低能耗,提高产品质量。如某化肥厂在CO2压缩机后使用了超滤技术。使用后发现一、二段分解加热器的油污情况大为改善,传热效果明显提高,尿素产品质量提高。

2.3 硝酸生产

主要用于除去氨气中的油污,保护昂贵的触煤铂网,延长其工作寿命。如某硝铵厂在硝酸氧化炉前,气氨过滤器采用了超滤过滤器。使用后,氧化炉铂金属

丝网寿命延长,现已连续运转3年多,同时其过滤清洗周期比原布袋过滤器长,减少了不少工作量。

2.4 硝铵生产

主要用于除去氨气中夹带的油污,防治氨气带油进入硝铵中和工段,提高系统安全性,防止意外。如某化肥厂硝铵车间,在氨压缩机气氨档板过滤器之后加装了超滤过滤器,根据2000 年8 月份投产以来的情况看,气氨中的油气体积分数,由进口的50 ~60μL /L 降至6 ~10μL /L,完全满足了硝铵中和工段的要求,对系统的安全运行起到了重要的作用。

3 超临界萃取技术

超临界流体萃取(Super Critical Fluid Extraction)的原理是在超临界状态下, 将超临界流体与待萃取的物质接触,利用超临界流体(SCF)的高渗透性、高扩散性和高溶解能力, 对萃取物中的目标组分进行选择性提取,然后借助减压、升温的方法,使SCF变为普通气体,被萃取物质则基本或完全排出,从而达到分离提纯的目的。超临界流体与萃出物即溶质的分离方法有3 种:恒温减压溶质与气体分离;恒压升温溶质与气体分离;吸附分离(在分离器中加入吸附剂吸附不需要的溶质后, 萃取物的目标产物与气体分离)。

3.1超临界萃取分离技术在天然香料提取中的应用

3.1.1精油的萃取

采用传统的水蒸气蒸馏法来提取精油,只能收集到漂浮在水面上的油珠,得到的挥发油量极小,而且只能提取其中的水溶性成分,部分脂溶性成分如酮、酯等物质则不能被取出,并且高温操作条件下对有效成分造成破坏严重。超临界萃取避免了水蒸气蒸馏过程中热敏组分的分解,以及可能由水解和增溶作用造成的

组分的流失[11]。蔡定建应用科技2009年7月21日第十七卷第14期等人[12]采用超临界萃取技术从桂树皮中提取桂皮油,在相对较低的压力和温度下就获得了高质量的桂皮油。最佳提取工艺条件为:萃取压力120bar,萃取温度45℃,萃取时间150min,桂皮油的收率为3.75%,其出油率高于传统的水蒸气蒸馏法。峰等人[13]采用超临界二氧化碳萃取玫瑰精油,最佳工艺条件为:压力24MPa,温度35℃,萃取时间2h。由于二氧化碳是非极性分子,而玫瑰精油中的香味主要来自于具有一定极性的芳樟醇等醇类,因此在萃取时需加入少量极性溶剂作夹带剂对萃取过程进行强化,提高萃取收率。研究表明选择水和乙醇-水作为夹带剂,可以增加精油收率,且不影响玫瑰油的品质。夹带剂的流量为0.17L/min时,玫瑰油的收率最高可达1.38%,远高于水蒸气蒸馏法0.3%的收率。另外,超临界流体萃取还广泛用于从甜橙皮中提取橙皮油[14],从八角茴香中提取八角茴香油[15]以及生中特性成分油的提取[16]等。

3.1.2浸膏的萃取

浸膏的传统生产方法是使用有机溶剂在低温时浸提。渭溪等人[17]采用超临界流体二氧化碳提取桂花浸膏。研究表明,用超临界流体萃取所得浸膏在气味和色泽方面均优于化学溶剂提取的浸膏,且超临界萃取分离技术及其在精细化工领域的应用产物收率从0.3%提高到0.5%。另外,超临界二氧化碳萃取工艺还用于啤酒花浸膏的生产,萃取率高,产品质量好,具有很大的开发价值[18]。

3.2 超临界萃取分离技术在食品添加剂中的应用

3.2.1天然色素的萃取

西北大学的王玉琪等人[19]采用超临界萃取法制备辣椒红色素。采用传统的溶剂法提取的辣椒红色素有机溶剂的残留量较高,使产品的应用受到很大的限

制。王玉琪等以溶剂法生产出的辣椒树脂为原料,采用超临界CO2萃取法进行辣椒红色素的分离纯化,最优工艺参数为:萃取压力20MPa,萃取温度35℃,萃取时间6h。制取的辣椒红色素产品符合国家标准,主要指标色价、己烷残留等均优于国标要求。另外,超临界萃取技术还用于番茄红素[20]等天然色素的提取。 3.2.2天然食品抗氧化剂茶多酚的萃取茶多酚具有显著的杭氧化性和积极的清除自由基的能力,是一种理想的天然食品抗氧化剂。另外茶多酚还是良好的除臭剂、保色剂、保鲜剂,在食品工业中具有广泛的应用前景。军、王朝瑾等人[21,22]均研究了超临界二氧化碳萃取茶多酚的工艺。研究表明,茶多酚的萃取需加入乙醇水溶液作夹带剂。在压力为350bar、温度为50℃时茶多酚的萃取率为10.5%。产品不含咖啡因,这是目前其他茶多酚萃取方法所无法比拟的优势。

3.3 超临界萃取分离技术在生物碱的提取中的应用

生物碱是动植物中一类具有碱性的含氮物质。它们大多是极有价值的药物。中草药含有很多种生物碱,其疗效大多是由此而来。由于生物碱往往具有一定的极性,因此在萃取时也需加入少量极性溶剂作夹带剂,提高生物碱在超临界二氧化碳中的溶解度,提高和维持萃取的选择性[23]。如在咖啡碱的提取中,纯超临界CO2几乎不能从干燥的咖啡豆中萃取出咖啡碱,而预先加入水,可减弱咖啡碱与咖啡母体间化学健的强度,使咖啡碱游离出来溶于超临界CO2之中[24]。又如在益母草总生物碱的提取研究中,发欢[25]等采用常规方法提取时总生物碱的收率仅为0.20%,纯度为2.67%。采用超临界萃取技术,以氯仿为夹带剂,优化工艺条件后,益母草总生物碱收率达1.73%,纯度为26.6%,大大提高了产品质量。与传统提取方法相比,超临界萃取最大的优点在于可在近常温条件下提取分

离不同极性、不同沸点的化合物,几乎保留药材中所有的有效成分,没有有机溶剂残留。因此,其产品纯度高,收率高,操作简单,节约能源[26]。

超临界流体技术具有许多传统技术所没有的快速、高效、低能耗、污染少等优点,而且超临界流体无毒、不易燃、不污染环境。与传统提取方法相比,超临界流体萃取法最大的优点是可以在近常温的条件下提取分离, 有利于热敏性物质和易氧化物质的萃取,而且几乎保留产品中全部有效成分,产物没有有机溶剂残留,产品纯度高,操作简单、节能。因此,在化工、医药、香料食品及能源工业等领域都得到工业化应用。

4 新型吸附技术

新型吸附技术,如模拟移动床、变压吸附、层析、扩床等新分离方法在研究开发的基础上,将在工业中发挥较大的作用。

4.1 变压吸附

固体吸附剂对不同的气体组分具有一定的吸附选择性且平衡吸附量随组分分压升高而增加,利用此特性进行加压吸附、减压脱附实现混合物的分离。变压吸附一般是常温操作,循环周期短,易于实现自动化。变压吸附在工业生产的应用迅速增长,目前的应用领域有: 空气干燥, 氢的纯化(可生产纯度高达99.999 %的H2), 从含有支链异构体和环烃的混合物中分离正构烷烃,空气分离等。变压吸附已应用于炼钢、有色金属冶炼、材料、医药、环保、惰性气体保护、食品保鲜等各方面。

4.2 层析

在层析分离中, 亲固定相的分子在体系中移动较慢,而亲流动相的分子则较快地流出体系,从而实现了不同物质之间的分离。按两相相互作用的原理不同, 可

以分为吸附层析、离子交换层析、疏水作用层析、亲和层析、固定化金属离子亲和层析、凝胶过滤层析等不同的过程。层析是分离能力很强的技术,在工业上用于一些分离纯化要求很高的过程, 如生物活性物质的提取、天然动、植物资源中有效成分的提取、重稀土金属的分离。在生物技术产品的分离提取过程中,层析是一种特别重要的手段。

4.3 扩床吸附技术

通常的生物产品的分离纯化过程包括发酵液预处理、固液分离、分离、纯化、产品加工等步骤,操作复杂、处理时间长, 造成提取过程收率低、分离成本高。其中,当料液中颗粒小、料液黏度高时对料液化学与黏合的固液分离是一个很困难的过程,处理不当容易造成生物活性物质的失活。与固定床吸附不同,扩床在吸附操作时其床层处于膨松的亚流化状态,同时又保持了较低的返混, 因而可以处理含较多颗粒的“脏”料液,如发酵液等,并达到良好的分离效果;在脱附时则反向以固定床方式进行。扩床吸附将固液分离、吸附分离和浓缩集中成为一个操作过程,简化了分离工艺, 提高了产品回收率, 是一项应用前景广阔的生化分离新技术。目前, 扩床技术已成功地应用于基因过程的人工血清蛋白的分离。

4.4 吸附树脂

吸附树脂是一种人工合成的具有多孔网状结构和表面活性的材料, 是在离子交换剂和其他吸附剂应用基础上发展起来的一类新型树脂。树脂吸附的原理是利用吸附树脂和被吸附分子(吸附质)之间的德华引力,通过它巨大的比表面而进行物理吸附的。主要通过调节交联度、单体种类和选择适宜的制孔剂等来调节控制树脂的孔容、孔径、孔型、孔径分布、比表面等达到选择性吸附某种物质的目的。吸附树脂可以从水溶液、混合有机溶液或混合气体中选择吸附净化各种

有机化合物,具有高效节能、操作工艺简单、经济效益好等优点。树脂吸附技术已应用于制药及天然植物中活性成分如皂甙、黄酮、脂、生物碱等大分子化合物的提取分离;苯、氯苯、苯酚、苯胺、水酸、萘磺酚等苯环结构的有机物的吸附与回收等。

5 微波萃取

微波萃取(Microwave Extraction)的基本原理是微波直接与被分离物作用, 微波的激活作用导致样品基体不同成分的反应差异使被萃取物与基体快速分离,进入溶剂中。微波萃取时,不同的基体所使用的溶剂不同。影响微波萃取的主要因素是萃取溶剂、萃取时间、萃取温度以及试样中水分或湿度。微波萃取的特点有如下几方面:①选择性。极性较大的分子可获得较多的微波能, 因而运动速度较快,利用这一性质可选择性地提取一些极性成分。②快速。被加热的样品往往放在微波透明且为热的不良导体的容器中, 所以微波不需要加热容器而直接加热样品,使样品迅速升温。③加热均匀。若微波场是均匀的,样品受热也是均匀的。④高效。微波萃取具有设备简单、使用围广、萃取效率高、重现性好、节省时间、节省试剂、污染小的优点,在中药和天然香料提取分离中得到应用。

6 耦合分离技术

近年来, 诸如催化剂精馏、膜精馏、吸附精馏、反应萃取、络合吸附、反胶团、膜萃取、发酵萃取、化学吸收和电泳萃取等新型耦合分离技术得到了长足的发展, 并成功地应用于生产。它们综合了两种分离技术的优点, 具有独到之处。催化精馏在MTBE 等工艺中的成功应用和反应萃取在己酰胺工艺中的成功应用充分说明了这类新方法具有简化流程、提高收率和降低消耗的突出优点。耦合分离技术还可以解决许多传统的分离技术难以完成的任务, 因而在生物工程、制药

和新材料等高新技术领域有着广阔的应用前景。如发酵萃取和电泳萃取在生物制品分离方面得到了成功的应用。采用吸附树脂和有机络合剂的络合吸附具有分离效率高和解析再生容易的特点。电动耦合色谱可高效地分离维生素。CO2 超临界萃取和纳米过滤耦合可提取贵重的天然产品等。由于耦合分离技术往往比较复杂,设计放大比较困难, 因此也推动了化工数学模型和设计方法的研究。

在新世纪到来之际, 分离工程的发展面临着巨大的挑战与机遇,随着科学技术的进步,在从事分离工程研究与开发的科技工作者的努力下, 本学科将为化学工业和相关工业的技术进步做出重大的贡献。

参考文献:

[1] 捷.膜分离法提取合成氨弛放气中的氢及其应用[J] .化工, 1997, 2: 5~7。

[2] 仲民, 童法.超滤法回收造纸黑液中木质素的研究[J] .化学工程, 2003,

31( 1) : 49~52。

[3] 宜江, 邢卫红, 徐.瓷微滤膜澄清钛白废酸研究[J] .化学工程, 2003, 31( 5) : 58~61。

[4] 王志斌, 文梅, 唐必文.旋转流过滤在脱落酸中的应用与膜管再生研究[J] .过滤与分离, 2002, 12( 4) : 1~2。

[5] 周花, 林煜, 蓝伟光, 等.纳滤在制备高浓度活性红3BS 中的应用[J] .膜科学与技术, 2001, 21( 5) : 42~47。

[6] 柴红, 周志军, 欢林.纳滤膜脱盐浓缩染料的研究[J] .高校化学工程学报, 2000, 14( 5) : 461~464。

[7] 何毅, 鹏祥, 光明, 等.纳滤膜在染料工业脱盐浓缩中的应用[J] .水处理技术, 2005, 31( 2) : 73~76。

[8] 刚, 邢卫红, 徐.应用膜技术精制水溶液染料[J] .膜科学与技术, 2002, 22( 2) : 24~28。

[9] 晖, 吴沪宁, 沙文博, 等.活性黑染料纳滤脱盐浓缩的研究[J] .化工时代, 2004, 18( 7) : 46~47。

[10]朱家文.化工分离工程与高新科技发展[J].化学工业与工程技术, 2000,2:1~5。

[11]高彦祥,超临界CO2萃取香料精油的研究[J]。食品与发酵工业,1996(6):8-12。

[12]蔡定建,周玉琴,毛春林。林杰萃取GC-MS分析桂皮又成分研究[J]。中国食品添加剂,2008(6):91-98。

[13]峰,芸,王志祥。超临界CO2萃取玫瑰精油的研究[J]。精细与专用化学品,2008(16)13:11-13。

[14]郭明学。超临界CO2萃取甜橙皮油的研究[J],化学工程,1990,(1):28-31

超临界萃取分离技术及其在精细化工领域的应用.

[15]飘英,邹德正。用超临界技术提取八角茴香油的研究[J]。广西大学精细化工研究所会议论文,1993:79-85。

[16]周晓东。超临界CO2萃取升降特性组分—油的研究[J]。精细月专用化学品,2004,12(9):13-15 。

[17]渭溪。超临界二氧化碳提取桂花浸膏的研究[J]。香料香精化妆品,1997,(2):22-25。

[18]疆。周红。超临界萃取技术及其在啤酒花浸膏生产上的应用[J]。酿酒,2008,35(3):53-55 。

[19]王玉琪,开勒,瑞清。超临界萃取法制备辣椒红色素[J]。化学工程,2008,36(38):18-21。

[20]庆杰,丁宵林。超临界CO2萃取番茄红素的初步研究[J]。食品也发酵工业,1999,24(1):3-6。

[21]军,耀声。超临界二氧化碳萃取茶多酚的研究[J]。天然产物研究与开发,1996,8(3):42-47。

[22]王朝瑾,马红青。超临界二氧化碳萃取茶多酚的工艺研究。第七届全国天然有机化学学术研讨会会议论文,2008-09-1。

[23]卫民,金波,毅凡,中药现代化与超临界流体萃取技术[M]。:中国医药科技,2002,74-75,95-98。

[24]Li Shufen,Hartland Stanley. New industry process for extracting coca butter and xanthines with supereritical carbon dioxide[J]. JAOCS,1996,423-423.

[25]发欢,史庆龙,许静芬。超临界CO2萃取益母草总生物碱[J]。中药材,2001(6):415。

[26]蔡艳华,卫红,钟本和。中草药中生物碱的提取与分离[J]。化工,2005.8(1):21-24。

分析化学中的分离技术课程论文。

离子液体及其在萃取中的应用 姓名: 许文洁专业: 物理化学学号: 030130248 摘要:环境问题日益成为人们关注的焦点。离子液体作为一种绿色溶剂可以较好的解决原有的挥发性有机溶剂造成的环境污染问题。本文阐述了离子液体在萃取分离中的应用进展。重点介绍了离子液体在萃取分离有机物、金属离子和生物分子及燃料脱硫方面的应用研究。 关键词:离子液体;绿色溶剂;金属离子;萃取;分离 Abstract:Environmental problem is increasingly become the focus of attention. As a green solvent, ionic liquid is a good solution to the original environment pollution problem caused by the volatile organic solvents. This paper expounds the application of ionic liquids in extraction and separation. Focus on the ionic liquids applied research in extraction and separation of organic matter, metal ions and biological molecules and fuel desulfurization aspects. Key Words:ionic liquid;green solvent;metal ions;extraction;separation 1.离子液体 离子液体是指呈液态的离子化合物,最简单常见的离子液体是处于熔融状态的氯化钠。由于一般的离子化合物都是固体,所以在以往的印象中离子液体必然是与高温相联系的。但高温状态下物质的活性大、易分解,很少可以作为反应、分离溶剂使用。室温离子液体是指在室温附近很大的温度范围内均为液体的离子化合物,它很好的解决了高温条件下的不稳定问题,因此室温离子液体具有很大的潜力作为溶剂使用。现在在研究当中称离子液体一般即指室温离子液体。离子液体体系中没有分子而均为离子,因此液体具有很高的导电性,常被用于作为电池的电解液[1,2]。由于离子液体是离子态的物质,挥发性很低,不易燃,对热稳定,这就保证了它对环境没有以往挥发性有机溶剂(VOC)所无法避免的污染。正是如此,它被称为是一种绿色溶剂,可以被用来替代原有的有机溶剂作为反应和分离介质来开发清洁工艺[2,3]。由于环境的压力在逐渐加大,室温离子液体的研究开发逐渐得到更多的重视。 2.离子液体的合成方法 离子液体的合成步骤一般包括阴离子和阳离子的合成以及阴阳离子的反应结合。以烷基咪唑类离子液体为例,合成时首先在咪唑的1,3 位上引入烷基基团变成氯化1-甲基-3-乙基咪唑,然后与目标阴离子进行阴离子交换反应形成所需产物。以往一般使用银作为与目标阴离子配对的阳离子,然后银盐和氯化1-甲基-3-乙基咪唑在水相或者在甲醇水体系中进行离子交换。这种方法的缺点在于它需要使用价格较高的银。现在的离子交换反应一般在非水相中进行,也就是采用将氯化1-乙基-3-甲基咪唑溶解在丙酮或乙腈中,然后将铵化阴离子再溶解到其中形成需要的离子液体化合物,这一步的关键是在于NH4Cl 在有机相中不溶,从而可以推动整个反应趋向平衡[5]。 3.离子液体的性质研究 室温离子液体研究的一个关键问题是如何降低体系的熔点,这直接关系到离子液体的使用温度范围。离子液体的熔点是通过选用不同的阴阳离子来调节的,为了削弱离子键,一般都使阳离子在结构上不对称,分子尺寸相对较大。对于烷基咪唑类和烷基吡啶类的离子液体,烷基侧链的分子数越多,则分子尺寸越大,熔点就越低,然而当分子数增加到一定时,不同的烷基链间的分子间作用力加强,有可能会抵消离子键的削弱,反而会导致熔点升高。J.D.Holbrey 等[4]对1,3-二烷基咪唑类离子液体中烷基的碳原子个数多少对熔点的影响作了研究。以[BF4]- 为阴离子的1-烷基-甲基咪唑,碳原子数目在5~9时熔点最低达到- 90。C,如果再增加碳原子的数目熔点反

新型绿色化工分离技术及其应用

新型绿色化工分离技术及其应用 摘要:伴随着能源危机、环境污染,现在对资源利用与清洁生产提出较高要求,此也推动了新型绿色分离技术的快速发展。文章则主要介绍了膜分离技术、分子蒸馏技术及超临界萃取技术的原理及应用。 关键字:新型绿色分离技术膜分离技术分子蒸馏技术超临界萃取技术 前言 化工分离技术是化学工程的一个重要分支,石油炼制、塑料化纤、同位素分离,以及生物制品的精制、纳米材料的制备、烟道气的脱硫和化肥农药的生产等等都离不开化工分离技术。化工生产中的原料和产物绝大多数都是混合物, 需要利用体系中各组分物性的差别或借助于分离剂使混合物得到分离提纯,它往往是获得合格产品、充分利用资源和控制环境污染的关键步骤。伴随着煤炭与石油危机引起的能源危机,对资源利用与清洁生产也提出了要求,这就对分离技术的要求越来越高。正是人们希望采用更高效的节能、优产的方法以及所采用的过程与环境友好,推动了新型分离技术的快速发展。文章对膜分离技术、分子蒸馏技术和超临界萃取的应用进行阐述。 1膜分离技术 近20年来膜技术发展及其迅速,已从单独的海水与苦咸水脱盐,纯水及超纯水的制备,工业用水的回用,逐步拓展到环保、化工、医药、食品等领域中,发展前景备受关注。膜分离技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势[1],是现代分离技术中一种效率较高的分离手段[1,2,3]。目前常见的膜分离过程课分为以下几种:微滤(Microfiltration,MF),超滤(Ultrafiltration,UF),纳滤(Nanofilatration,NF),反渗透(Reverseosmosis,RO),电渗析(Electrodialysis,ED)等。 1.1微滤 1.1.1微滤原理 微滤又称精过滤,其基本原理属于筛网状过滤,在静压差的作用下,利用膜的“筛分”作用,小于膜孔的粒子通过滤膜,大于膜孔的粒子则被截留到膜面上,

化工分离工程复习题及答案..

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V = SL)。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

化工分离过程重点

1、相平衡:指混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态,从热力学上看,整个物系的自由焓处于最小的状态;从动力学看,相间表观传递速率为零。 2、区域熔炼:是根据液体混合物在冷凝结晶过程中组分重新分布的原理,通过多次熔融和凝固,制备高纯度的金属、半导体材料和有机化合物的一种提纯方法。 3、独立变量数:一个量改变不会引起除因变量以外的其他量改变的量。 4、反渗透:是利用反渗透膜选择性地只透过溶剂(通常是水)的性质,对溶液施加压力克服溶液的渗透压,使溶剂从溶液中透过反渗透膜而分离出来的过程。 5、相对挥发度:溶液中的易挥发组分的挥发度与难挥发组分的挥发度之比。 6、理论板:是一个气、液两相皆充分混合而且传质与传热过程的阻力皆为零的理想化塔板。 7、清晰分割:若馏出液中除了重关键组分外没有其他的重组分,而釜液中除了轻关键组分外没有其他轻组分,这种情况为清晰分割。 8、全塔效率:完成给定任务所需要的的理论塔板数与实际塔板数之比。默弗里板效率:实际板上的浓度变化与平衡时应达到的浓度变化之比。 9、泡点:在一定压力下,混合液体开始沸腾,即开始有气泡产生时的温度。露点:在一定压力下,混合气体开始冷凝,即开始出现第一个液滴时的温度。10、设计变量:设计分离装置中需要确定的各个物理量的数值,如进料流率,浓度、压力、温度、热负荷、机械工的输入(或输出)量、传热面大小以及理论塔板数等。这些物理量都是互相关联、互相制约的,因此,设计者只能规定其中若干个变量的数值,这些变量称设计变量。 简答题: 1、分离操作的重要意义 答:分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或者催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物起着分离提纯的作用,已得到合格的产品,并使未反应的反应物得以循环利用。此外,分离操作在环境保护和充分利用资源方面起着特别重要的作用。2、精馏塔的分离顺序答:确定分离顺序的经验法:1)按相对挥发度递减的顺序逐个从塔顶分离出各组分;2)最困难的分离应放在塔序的最后;3)应使各个塔的溜出液的摩尔数与釜液的摩尔数尽量接近;4)分离很高回收率的组分的塔应放在塔序的最后;5)进料中含量高的组分尽量提前分出。 3、精馏过程的不可逆答:精馏过程热力学不可逆性主要由以下原因引起:1、通过一定浓度梯度的动量传递;2、通过一定温度梯度的热量传递或不同温度物流的直接混合;3、通过一定温度梯度的质量传递或者不同化学位物流的直接混合。 4、填料塔的选择板式塔与填料塔的选择应从下述几方面考虑1)系统的物性:A当被处理的介质具有腐蚀性时,通常选用填料塔;B对于易发泡的物系,填料塔更适合;C对热敏性物质或真空下操作的物系宜采用填料塔;D进行高粘度物料的分离宜用填料塔;E 分离有明显吸热或放热效应的物系以采用板式塔为宜;2)塔的操作条件;3)塔的操作方式。 5、填料种类的选择:A填料的传质效率要高;B填料的通量要大,在同样的液体负荷条件下,填料的泛点气速要高;C具有同样的传质效能的填料层压降要低;D单位体积填料的表面积要大,传质的表面利用率要高;E填料应具有较大的操作弹性;F 填料的单位重量强度要高;G填料要便于塔的拆装、检修,并能重复利用。(简述)6.进料板位置的选择:答:从上往下计算时,如果 S j HK j LK R j HK j LK y y y y ? ? ? ? ? ? < ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , ,式中下标R和S分别表示用精馏段和提馏段操作线计算的结果,则第j级不是进料级,继续做精馏段的逐级计算; 如果S j HK j LK R j HK j LK y y y y ? ? ? ? ? ? > ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , ,则第j级是进料级。由精馏段操作线确定yi,j,再由平衡关系求出xi,j,而下一级的yi,j+1应由提馏段操作线计算; 当从下往上逐级计算时,进料位置的确定方法是: 如果S j HK j LK R j HK j LK x x x x ? ? ? ? ? ? < ? ? ? ? ? ? , , , , 和S j HK j LK R j HK j LK x x x x ? ? ? ? ? ? > ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , 则第j级是适宜进料位置,xi,j+1应换成平恒精馏段操作线计算。第一章2、分离过程可以分为机械分离和传质分离两大类,传质分离又可分为平衡分离过程和速率分离过程。3、分离媒介可以是能量媒介(ESA)或物质媒介(MSA)。4、当分离组分间隔相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分离时,就要考虑萃取精馏。5、如果由精馏塔顶引出的气体不能完全冷凝,可从塔顶加入吸收剂作为回流,这种单元操作叫做吸收蒸出(或精馏吸收)。6、能形成最低共沸物的系统,采用一般精馏是不合适的,常常采用共沸精馏。7、离子交换也是一种重要的单元操作,采用离子交换树脂,有选择性的除去某组分,而树脂本身能够再生。第二章1、相平衡热力学是建立在化学位概念基础上的,lewis提出了等价于化学位的物理量——逸度。3、Φi s为校正处于饱和蒸汽压下的蒸汽对理想气体的偏离,指数校正项也称普瓦廷因子,是校正压力偏离饱和蒸汽压的影响。4、若按照所设温度T和求得∑K i X i>1,标明K i值偏大,所设温度偏高。根据差值大小降低温度重算;若∑K i X i<1,则重设较高温度。 第三章 1、设计分离装置就是要求确定各个物理量的数值,如进料流率、浓度、压力、温度、热负荷、机械功的输入量、传热面大小、理论塔板数等。2、N v是描述系统的独立变量数,N c是约束关系数,设计变量数N i,则有N i=N v-N c。3、约束关系式包括:1)、能量平衡式;2)、物料平衡式;3)、相平衡关系式;4)、化学平衡关系式;5)、内在关系式。 4、设计变量数N i可进一步区分为固定设计变量数N x e和可调设计变量数N a e。 5、不同装置的变量数尽管不同,其中固定设计变量的确定原则是共同的,只与进料物流数和系统内压力等级数有关。 6、轻关键组分:关键组分中相易挥发的那个组分;重关键组分:不易挥发的关键组分。 7、多组分精馏与二组分精馏在浓度分布上的区别可归纳为:a、在多组分精馏中,关键组分的浓度分布有极大值;b、非关键组分通常是非分配的,因此重组分仅出现在釜液中,轻组分仅出现在流出液中;c、重、轻非关键组分分别在进料板上下形成几乎恒浓的区域;d、全部组分均存在于进料板上,但进料板浓度不等于进料浓度,塔内各组分的浓度分布曲线在进料板是不连续的。 8、由于分离作用主要取决于液汽比L/V,流量相当大的变化对液汽比的影响不大,而对分离效果影响也小。级间饿两流量越接近于相等,即操作越接近于全回流,则流量变化对分离的影响也越小。

现代分离技术论文

分离技术的发展现状和展望 摘要: 简要阐述了分离技术的产生和发展概况,各主要常规和新型分离技术的发展现状、研究前沿及未来的发展方向,并讨论了分离技术将继续推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手。 关键词:分离技术;发展现状;展望 Development Status and prospect on separation technology Abstract:The history of produce and development on separation engineering is briefly introduced. The status and study advance of most traditional and new separation techniques and its developing direction in future is briefed. In the past, separation technology brought into important play in chemical engineering.It is discussed that it will also impel modern chemical engineering and relative industries in future. Moreover it will strut its stuff in high technology. Key words: separation technology; development; prospect 本文从分离技术的产生和发展概况入手,综述了精馏、吸附、干燥等常规分离技术和超临界流体分离、膜分离、耦合分离等新型分离技术的研究,并分析了各种技术在现代化工中的重要作用。

分离技术论文

分离技术论文 目录 一.超临界萃取技术的简介 二.超临界萃取技术的原理 三.超临界萃取技术的特点 四.超临界萃取技术的技术应用 五.超临界萃取技术的装置 六.综述 一.超临界萃取技术的简介 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。二.超临界萃取技术的原理 所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而急剧增大。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。 超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。将物质溶解出来,然后通过减压又将其释放出来。该过程中CO2循环使用。在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。该技术除可替代传统溶剂分离法外,还可以解决生物大分子、热敏性和化学不稳定性物质的分离,因而在食品、医药、香料、化工等领域受到广泛重视。超临界流体的萃取流程 三.超临界萃取技术的特点 (1)、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; (2)、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天

泡沫分离技术综述论文

泡沫浮选分离技术--曹肖烁 摘要:综述了泡沫浮选技术的定义、分类以及原理,介绍了泡沫浮选分离技术中使用的试剂(捕收剂、起泡剂、活化剂、无机调整剂、有机调整剂)、浮选机械等因素对分离效果的影响,并介绍了泡沫浮选分离技术的应用,指出了泡沫浮选分离技术的发展前景。 一.泡沫浮选的定义与分类 泡沫浮选是以气泡分离介质来浓集表面活性物质的一种新型分离技术,主要特点是利用气泡的气-液界面,分离被水润湿性不同的物料。疏水的物料随气泡漂浮到水面上,形成含某种成分很高的泡沫层;而被水润湿的物料,沉于水中,因而可以把它们分开[1]。人们通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫浮选分离技术,简称泡沫浮选技术。 根据被分离物质的不同,它可以分为两类:一类是本身具有表面活性物质的分离以及各种天然或合成表面活性剂的分离,例如医药生物工程中蛋白质、酶、病毒的分离;另一类是本身为非表面活性剂,但可以通过配合或其它方法使其具有表面活性,这类体系的分离被广泛地用于工业污水中各种金属离子如铜、锌、铁、汞、银等的分离回收。 根据被分离物质的溶解性,泡沫分离也可以分为不溶物的浮选和溶解物的浮选两大类。矿物浮选在不溶物浮选中最重要,也是最成熟的。表面活性剂在固体颗粒的表面形成半胶束单分子吸附层,且呈亲水基向里憎水基向外的状态,从而降低固体表面的润湿性,表现出疏水性吸附至气泡界面的倾向,使浮选得以进行。离子浮选是溶解物浮选的一类。其过程和前述过程十分相似,所不同的是表面活性剂并非吸附在被浮选物的表面。气泡形成时气液界面有表面活性剂吸附层,被浮选的离子通过静电吸引被束缚在气泡的界面上而随气泡上升。分子浮选是溶解物浮选的另一类别,是将少量溶解的分子如点白纸、醇等有机物从水中分离的过程。被分离物被气泡气液界面表面活性剂半胶束单分子层增溶富集而随气泡上升,得以浮选[2]。

化工分离技术

化工分离技术的若干新进展 吉林化工学院化工1202 游海洋12110210 [摘要]化工分离技术是人类发展不可或缺的一门技术,随着现代化进程加剧,对其相关技术有了越来越高的要求。文章主要就最近几年化工分离的新方法及应用情况进行阐述,并对其发展前景进行了展望。 [关键词]化工分离萃取膜分离耦合 化工分离过程是将混合物分离成各组分组成各不相同的两种(或几种)产品的操作。一套标准的化工生产装置,应包括一个反应器和具有提纯原料、中间产物与产品以及后处理的多个分离设备构成。首先,分离过程必须能够去除原料杂质,为化学反应提供纯度达到工业生产要求的原料,减少杂质带来的影响(副反应增加,催化剂中毒等);再者,分离过程能够对反应产物进行处理,获得所需产品的同时分离出未完全反应的反应物,循环利用;此外,分离过程还需要在工业废水处理与环境保护方面发挥作用,减少工业三废的排放。因此,我们看到化工分离过程在化学工业生产中占据着非常重要的地位。下面文章主要就最近几年化工分离技术的若干新进展进行简单阐述。 1超临界流体萃取技术 1.1煤的热解SFE 近年来,对煤的边热解边进行SFE技术取得一定进展。使用轻有机溶剂,如己烷、苯、甲苯、甲苯四氢化萘,可以使煤热解生成有机组分,同时将生成物直接萃取出来。例如,在653 K, 14. 8MPa 压力下,以甲苯四氢化萘为溶剂时,煤的一次转化率可达42. 9% 。本法的基本工艺是将溶剂升压并打入预热器,然后送入装有煤的萃取器内。系统保持一定的萃取温度和压力,经抽提后的萃取物,分离出溶剂即得液化油产品. 1.2利用SCF技术促进化学反应与改善化工过程 利用SCF作化学反应溶剂,可以在保持高转化率前提下,提高反应的选择性、可以使非均相反应转变成均相反应、可方便地将产物和反应溶剂、催化剂及副产物分开。此外,由于反应速度常数对压力非常敏感,以及溶解在SCF中溶质的非理想性质,当操作区处于混合物的临界区域时,可以大大加快反应速度。例如,在纤维素的热裂解反应中使用超临界丙酮作反应介质时,降低了反应温度,增加了产率。此外在某些反应中, SCF既可作反应溶剂,又可作催化剂,反应与分离纯化可以一步完成,可使流程简化,也节省能量。 1.3在工业废水处理中用SCF萃取有机物 用SFE处理含酚废水时, 常使用夹带剂, 当夹带剂苯的加入量为6% 摩尔浓度时,苯酚在CO2 中的溶解度可以提高两倍。与此相反,若用甲醇为夹带剂,因为甲醇是一种极性化合物,它能无限溶于水中,从而使苯酚(极性化合物)也保留于水相中,而用非极性化合物(如苯)作夹带剂,它能高度溶解在超临界相中,有助于使苯酚从水相转移到超临界相,。但苯是有毒物质,须控制苯的浓度,低于毒性指标( 0. 2×10- 6 )。除了苯以外,还可以用烷烃、1 戊烯、甲苯、氯烷烃、氯苯等作夹带剂。实线是LCVM模型[用于处理含共溶剂的CO2 /H2O /有机污染剂(芳烃,苯酚,甲酚)体系的热力学模型的计算值[1]。

节能新技术在化工分离工程中的应用

节能新技术在化工分离 工程中的应用 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

论文题目节能新技术在化工分离工程中的应用

摘要 近年来,随着市场经济的快速发展,化工行业也迅速崛起。但是,由于化工行业巨大的污染性,而使其成为我国环境污染的源头之一,在当前追求低碳经济和绿色经济的大环境下,化工行业的发展受到了一定的限制。 关键词 化工分离节能新技术研究进展 引言 当前,随着社会的发展和进步,越来越多的人认识到节约资源、保护环境的重要性。国家的“十二五”规划纲要指出:“十二五”期间要大力开发和积极推广低碳技术,节能减排工作不断深入,“十二五”末高耗能产品单耗达到国际先进水平,能耗在“十一五”末的基础上再下降10%,主要产品实现清洁生产,主要污染物排放总量在“十一五”末的基础上再下降10%。进一步提高高耗能、高排放和产能过剩行业准入门槛。这就意味着当前高污染、高耗能的化工行业的节能减排进程必须加快。 正文 我国化工行业主要是从事化学工业生产和开发的能源工业以及基础原材料工业。化工行业是我国国民经济体系中的一个重要部门,它对经济发展、国防事业以及人们的社会生活都发挥着极其重要的作用。改革开放以来,我国的石油化工产业取得了巨大的成就。但是由于化学工业本身的缺点和局限,导致在生产过程中排放的污染物种类多、数量大、

毒性高,严重影响生态环境和人类的身体健康。当前,由于在节能减排技术开发上的滞后,导致我国化工行业节能减排和环保技术水平落后,也使得化工行业生产过程中的高耗能、高污染现状持续得不到缓解。从而导致我国化工行业的能耗量始终排在全国工业领域的前列。而化工行业的废水排放量甚至长期高居全国工业领域的第1位。 化工分离过程是将混合物分离成各组分组成各不相同的两种(或几种)产品的操作。一套标准的化工生产装置,应包括一个反应器和具有提纯原料、中间产物与产品以及后处理的多个分离设备构成。首先,分离过程必须能够去除原料杂质,为化学反应提供纯度达到工业生产要求的原料,减少杂质带来的影响(副反应增加,催化剂中毒等);再者,分离过程能够对反应产物进行处理,获得所需产品的同时分离出未完全反应的反应物,循环利用;此外,分离过程还需要在工业废水处理与环境保护方面发挥作用,减少工业三废的排放。因此,我们看到化工分离过程在化学工业生产中占据着非常重要的地位。 膜分离技术是利用特定膜的渗透作用,在外界能量或化学位差的推动下。对气相或液相混合物进行分离、分级、提纯和富集,膜分离过程大多尤相变,常温操作,高效、节能、工艺简便、污染小。20世纪80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。 离子膜烧碱不但能生产出高纯度烧碱和氢气,而且节能效果显着,比隔膜法节约能耗约30%。因此,离子膜法将逐步取代隔膜法生产烧

西安交通大学17年9月课程考试《化工分离过程》作业考核试题

西安交通大学17年9月课程考试《化工分离过程》作业考核试题 一、单选题(共35 道试题,共70 分。) 1. 简单精馏塔是指 A. 设有中间再沸或中间冷凝换热设备的分离装置 B. 有多股进料的分离装置 C. 仅有一股进料且无侧线出料和中间换热设备 D. 无 正确答案: 2. 平均吸收因子法() A. 假设全塔的温度相等 B. 假设全塔的压力相等 C. 假设各板的吸收因子相等 D. 无 正确答案: 3. 如果二元物系有最低压力恒沸物存在,则此二元物系所形成的溶液一定是() A. 正偏差溶液 B. 理想溶液 C. 负偏差溶液 D. 不一定 正确答案: 4. 气液两相处于相平衡时,() A. 两相间组分的浓度相等 B. 只是两相温度相等 C. 两相间各组分的逸度相等 D. 相间不发生传质 正确答案: 5. lewis提出了等价于化学位的物理量() A. 蒸馏 B. 吸收 C. 膜分离 D. 离心分离 正确答案:

6. 关于均相恒沸物的那一个描述不正确() A. P-X线上有最高或低点 B. P-Y线上有最高或低点 C. 沸腾的温度不变 D. 部分气化可以得到一定程度的分离 正确答案: 7. 液相双分子吸附中,U型吸附是指在吸附过程中吸附剂() A. 始终优先吸附一个组分的曲线 B. 溶质和溶剂吸附量相当的情况 C. 溶质先吸附,溶剂后吸附 D. 溶剂先吸附,溶质后吸附 正确答案: 8. 二无理想溶液的压力组成图中,P-X线是() A. 曲线 B. 直线 C. 有最高点 D. 有最低点 正确答案: 9. 平衡常数较小的组分是 A. 难吸收的组分 B. 较轻组份 C. 挥发能力大的组分 D. 吸收剂中的溶解度大 正确答案: 10. 关于均相恒沸物的那一个描述不正确() A. P-X线上有最高或低点 B. P-Y线上有最高或低点 C. 沸腾的温度不变 D. 部分气化可以得到一定程度的分离 正确答案: 11. A. B. C. D. 正确答案: 12. 约束变量数就是() A. 过程所涉及的变量的数目; B. 固定设计变量的数目 C. 独立变量数与设计变量数的和; D. 变量之间可以建立的方程数和给定的条件. 正确答案: 13. 约束变量数就是()

化学除杂分离和提纯的专项培优练习题含答案解析

一、中考初中化学除杂分离和提纯 1.为除去下表样品中的少量杂质(括号内为杂质),所选试剂及操作方法均正确的是 A.A B.B C.C D.D 【答案】B 【解析】 【分析】 【详解】 A、KCl易溶于水,MnO2难溶于水,可采取加水溶解、过滤、蒸发的方法进行分离除杂,故A错误; B、NH4HCO3在加热条件下生成氮气、水和二氧化碳,碳酸钠受热不分解,能除去杂质且没有引入新的杂质,符合除杂原则,故B正确; C、KNO3和NaCl的溶解度受温度的影响不同,硝酸钾溶解度受温度影响较大,而氯化钠受温度影响较小,所以可采取加热水溶解配成饱和溶液、冷却热饱和溶液使KNO3先结晶出来、再过滤、蒸发的方法;故C错误。 D、MgCl2能与氢氧化钠溶液反应生成氢氧化镁沉淀和氯化钠,但NaOH溶液是过量的,能除去杂质但引入了新的杂质NaOH,不符合除杂原则,故D错误。故选B。 2.下列除去物质中少量杂质的方法正确的是( )

A.A B.B C.C D.D 【答案】A 【解析】 【分析】 【详解】 A、铁粉能被磁铁吸引,木炭粉不能,能除去杂质且没有引入新的杂质,符合除杂原则,故选项所采取的方法正确。 B、氯化氢能与足量硝酸银溶液反应生成氯化银沉淀和硝酸,应再进行干燥,故选项所采取的方法错误。 C、碳酸氢钙、碳酸钙高温下均能分解,不但能把杂质除去,也会把原物质除去,不符合除杂原则,故选项所采取的方法错误。 D、碳酸钠能与过量硝酸钙溶液反应生成碳酸钙沉淀和硝酸钠,能除去杂质但引入了新的杂质硝酸钠、硝酸钙(过量的),不符合除杂原则,故选项所采取的方法错误。 故选:A。 【点睛】 根据原物质和杂质的性质选择适当的除杂剂和分离方法,所谓除杂(提纯),是指除去杂质,同时被提纯物质不得改变。除杂质题至少要满足两个条件:①加入的试剂只能与杂质反应,不能与原物质反应;②反应后不能引入新的杂质。 3.除去下列物质中的少量杂质,所选用的试剂和操作方法均正确的是() A.A B.B C.C D.D 【答案】D

[化工分离技术论文]膜分离技术

[化工分离技术论文]膜分离技术 化工分离技术是通过采用化工设备的专有作用,对相应的化合物质利用其表现出来的物理特性和化学特性对整体化合物就行有效分离的一个技术,下面是由小编整理的化工分离技术论文,谢谢你的阅读。 化工分离技术论文篇一 化工分离技术新技术研究与进展 [摘要]本文主要从现今化工分离技术的应用范围和化工分离技术的新进展方向进行分析,并结合市场社会的要求,对化工分离技术的成本要求进行评价,并最终以活性炭纤维(ACF)投入市场应用的例子来阐明化工分离技术新技术的具体应用。 [关键词]化工分离技术;新技术;应用前景 中图分类号:TQ028 文献标识码:A 文章编号:

化工分离技术是通过采用化工设备的专有作用,对相应的化合物质利用其表现出来的物理特性和化学特性对整体化合物就行有效分离的一个技术,是化工研究整体的一个重要分支,在所有的化工生产中,化工分离这一技术都贯穿在整个的生产过程中。从化工分离技术的发展历史来看,化工分离技术逐渐原来的单一理论研究逐渐转变为理论和实践的有效结合,并在能源、生物、环境等领域进行切实有效的化工分离技术实践,把理论知识利用到现实生活中,方便人们的生活和工作效率的提高。而在此基础上,化工分离技术又产生了新的分离技术方式,可以运用于更多的领域,这种更大程度上的化工分离技术的普及使得化工分离技术的发展逐渐变得成熟。 一、现今化工分离技术新技术的应用范围 1、环境保护工程 随着人类社会发展的原来越成熟和科技运用的越来越普及,人们的生活水平得到了极大的提升,但环境污染的现实情况却是很让人担忧。各种废水及其他污染物的肆意排放使得人们的生活环境质量不断下降,甚至因为有些废气、废水的慢性污染,人们还会因此患上一些不治之症。例如上世纪很有名的日本水俣病。从化工分离的角度来看,在很多工业制造过程中排出的各种废气、废水并不是别无它用的,无论是硫

节能新技术在化工分离工程中的应用

论文 节能新技术在化工分离工程中的应用 题目 摘要 近年来,随着市场经济的快速发展,化工行业也迅速崛起。但是,由于化工行业巨大的污染性,而使其成为我国环境污染的源头之一,在当前追求低碳经济和绿色经济的大环境下,化工行业的发展受到了一定的限制。 关键词 化工分离节能新技术研究进展 引言 当前,随着社会的发展和进步,越来越多的人认识到节约资源、保护环境的重要性。国家的“十二五”规划纲要指出:“十二五”期间要大力开发和积极推广低碳技术,节能减排工作不断深入,“十二五”末高耗能产品单耗达到国际先进水平,能耗在“十一五”末的基础上再下降10%,主要产品实现清洁生产,主要污染物排放总量在“十一五”末的基础上再下降10%。进一步提高高耗能、高排放和产能过剩行业准入门槛。这就意味着当前高污染、高耗能的化工行业的节能减排进程必须加快。 正文 我国化工行业主要是从事化学工业生产和开发的能源工业以及基础原材料工业。化工行业是我国国民经济体系中的一个重要部门,它对经济发展、国防事业以及人们的社会生活都发挥着极其重要的作用。改革开放以来,我国的石油化工产业取得了巨大的成就。但是由于化学工业本身的缺点和局限,导致在生产过程中排放的污染物种类多、数量大、毒性高,严重影响生态环境和人类的身体健康。当前,由于在节能减排技术开发上的滞后,导致我国化工行业节能减排和环保技术水平落后,也使得化工行业生产过程中的高耗能、高污染现状持续得不到缓解。从而导致我国化工行业的能耗量始终排在全国工业领域的前列。而化工行业的废水排放量甚至长期高居全国工业领域的第1位。

化工分离过程是将混合物分离成各组分组成各不相同的两种(或几种)产品的操作。一套标准的化工生产装置,应包括一个反应器和具有提纯原料、中间产物与产品以及后处理的多个分离设备构成。首先,分离过程必须能够去除原料杂质,为化学反应提供纯度达到工业生产要求的原料,减少杂质带来的影响(副反应增加,催化剂中毒等);再者,分离过程能够对反应产物进行处理,获得所需产品的同时分离出未完全反应的反应物,循环利用;此外,分离过程还需要在工业废水处理与环境保护方面发挥作用,减少工业三废的排放。因此,我们看到化工分离过程在化学工业生产中占据着非常重要的地位。 膜分离技术是利用特定膜的渗透作用,在外界能量或化学位差的推动下。对气相或液相混合物进行分离、分级、提纯和富集,膜分离过程大多尤相变,常温操作,高效、节能、工艺简便、污染小。20世纪80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。 离子膜烧碱不但能生产出高纯度烧碱和氢气,而且节能效果显著,比隔膜法节约能耗约30%。因此,离子膜法将逐步取代隔膜法生产烧碱。离子膜也开始应用于医疗、食品工业除去电解质,分离氨基酸及海水淡化等。 膜分离氢气技术已成功地用在合成氨厂从驰放气中回收氢气,甲酸装置从合成气、水煤气脱氢气得到90%的一氧化碳,炼厂从催化重整过剩气中分离出95%含量的氢气作为加氧裂解原料等。从空气中富集浓缩氧和氮,比深冷分离法要节能得多。 膜萃取是膜过程与液一液萃取过程相结合的分离过程,特点是:(1)萃取剂选择范围宽;(2)料液夹带损失小;(3)过程不受“返混”的影响和“液泛”条件的限制;(4)可实现同级萃取和反萃取过程;(5)可提高传质效率。膜萃取技术在分离生物化工产品和实现发酵耦合过程方面正成为研究工作的热点。 膜蒸馏技术是膜技术与蒸发过程相结合的分离技术。过程是在常压和低于溶液沸点下进行,热侧溶液可以在较低的温度下操作,因而可利用废热或低温热源,达到节能效果。该技术弱点是单程效率较低,阻碍了其大规模应用。 微滤膜主要用于超纯水制取和除菌,微滤膜可制取电子工业用水,微滤膜除菌的水可以直接饮用。 结晶分离是分离混合物常用的方法之一。传统的结晶分离,如浓缩结晶,冷却(冷冻)结晶,耗能很大。目前国际上新型结晶技术已取得了突破性进展,并得到实际应用。

新型分离技术综述-分离技术在各方面的应用

河北工业大学结课论文 课程名称:新型分离技术基础 课程编号:14B15C0103 姓名:唐猛 学号:201511501014 班级:化学工程与技术 学院:化工学院

新型分离技术综述 ——分离技术在各方面的应用 摘要:现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术,他们在中药制药、农产品加工和环保工程中都得到了广泛应用。 主题词:中药制药农产品加工环保工程超临界流体萃取分子蒸馏膜分离 正文: 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。按机理划分,可大致分为五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 1、超临界流体萃取技术及其应用 超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。 超临界流体具有一系列重要的性质: 1)超临界流体相当粘稠,其密度接近于液体,具有较大的溶解能力; 2)超临界流体的扩散系数比液体大23个数量级,其粘度类似于气体,远小于液体。这对于分离过程的传质极为有利,缩短了相平衡所需时间,大大提高了分离效率,是高效传质的理想介质; 3)具有不同寻常的、巨大的压缩性,使得压力的微小变化将会引起流体密度和介电常数的很大变化。 由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 1.1 超临界流体萃取技术特点 1)由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使革取后溶剂与溶质容易分离。

化工分离过程试题库精选文档

化工分离过程试题库精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、固有分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(气液传质分离)过程的基础。相平衡的条件是(所有相中的温度压力相等、每一组分的逸度也相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有( 1个)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。

12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=N v-Nc ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(L = AV)。 23、精馏有(2)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 26、超临界流体具有类似液体的(溶解能力)和类似气体的(扩散能力)。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

相关文档
最新文档