与圆有关的几个定理

与圆有关的几个定理
与圆有关的几个定理

初三数学中考复习《与圆有关几个定理》教学设计

一. 教学内容:

圆有关定理

1. 圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,。

2. 主要定理:

(1)垂径定理及其推论。

(2)圆心角、弧、弦、弦心距之间的关系定理。

(3)圆周角定理、弦切角定理及其推论。

(4)切线的性质

(5)切线判定定理

(5)切线长定理

二. 中考聚焦:

圆这一章六个定理圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。

三. 知识框图:

圆的有关性质

圆的定义

点和圆的位置关系(这是重点)

不在同一直线上的三点确定一个圆

圆的有关性质

轴对称性—垂径定理(这是重点)

旋转不变性

圆心角、弧、弦、弦心距间的关系

圆心角定理

圆周角定理(这是重点)

圆内接四边形(这是重点)

?

?

?

?

?

?

?

?

?

?

?

?

?

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

直线和圆的位置关系

相离

相交

相切

切线的性质(这是重点)

切线的判定(这是重点)

弦切角(这是重点)

和圆有关的比例线段(这是重点难点)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

四.重点知识讲解:

1.垂径定理

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:

①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD 同步自测

1、已知 ⊙

O 中,弦AB 垂直于直径CD ,

垂足为P ,AB=6,CP=1,则 ⊙ 的半径----。

2.已知 ⊙ O 的直径为10cm,A 是⊙ O 内一点,且OA=3cm,则 ⊙ O 中过点A 的最短弦

长=------------- cm

2.圆周角定理

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠

2、圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;

B

D

即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠

推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=?

∴推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==

∴△ABC 是直角三角形或90C ∠=? 3.切线的性质与判定定理

(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理:

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

4.切线长定理

B

A

B

A

O

切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线

的夹角。

=

∴PA PB

PO平分BPA

5.三角形的内心、外心。

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.

7.辅助线总结

圆中常见的辅助线

1).作半径,利用同圆或等圆的半径相等.

2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.

3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.4).作弦构造同弧或等弧所对的圆周角.

5).作弦、直径等构造直径所对的圆周角——直角.

6).遇到切线,作过切点的弦,构造弦切角.

7).遇到切线,作过切点的半径,构造直角.

8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.

9).遇到三角形的外心常连结外心和三角形的各顶点.

10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点.【典型例题】

五.课堂练习

六.课堂小结

初三下册数学圆知识点定理总结

1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理”“弧径定理”“中垂定理”. 几何表达式举例: ∵ CD过圆心 ∵CD⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等. 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”;“等弦对等角”; “等角对等弧”;“等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”. 几何表达式举例: (1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半; (2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如 图) (1)(2)(3)(4) 几何表达式举例: (1)∵∠ACB=∠AOB ∴…………… (2)∵ AB是直径 ∴∠ACB=90° (3)∵∠ACB=90° ∴ AB是直径 (4)∵ CD=AD=BD ∴ΔABC是RtΔ 5.圆内接四边形性质定理: 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD是圆内接四边形 ∴∠CDE =∠ABC ∠C+∠A =180° 6.切线的判定与性质定理: 如图:有三个元素,“知二可推一”;需记忆其中四个定理. (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; (2)圆的切线垂直于经过切点的半径; ※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心. 几何表达式举例: (1)∵OC是半径∵OC⊥AB ∴AB是切线 (2)∵OC是半径 ∵AB是切线 ∴OC⊥AB (3)…………… 7.切线长定理: 从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角. 几何表达式举例: ∵ PA、PB是切线 ∴ PA=PB ∵PO过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论: 几何表达式举例:

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

圆的知识点概念公式大全

圆的知识点概念公式大全 一.圆的定义 1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O. 2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形. 3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小. 二.同圆、同心圆、等圆 1.圆心相同且半径相等的圆叫做同圆; 2.圆心相同,半径不相等的两个圆叫做同心圆; 3.半径相等的圆叫做等圆. 三.弦和弧 1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍. 2.圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的弧记作?AB,读作弧AB. 在同圆或等圆中,能够重合的弧叫做等弧. 3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 4.从圆心到弦的距离叫做弦心距. 5.由弦及其所对的弧组成的图形叫做弓形. 四.与圆有关的角及相关定理 1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1?的圆心角,我们也称这样的弧为1?的弧.圆心角的度数和它所对的弧的度数相等.

2.顶点在圆上,并且两边都和圆相交的角叫做圆周角. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等. 推论2:半圆(或直径)所对的圆周角是直角,90 的圆周角所对的弦是直径. (在同圆中,半弧所对的圆心角等于全弧所对的圆周角) 3.顶点在圆内,两边与圆相交的角叫圆内角. 圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半. 4.顶点在圆外,两边与圆相交的角叫圆外角. 圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角. 6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. 五.垂径定理 1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论: ⑴弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ⑵平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶圆的两条平行弦所夹的弧相等.

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

人教版初三数学上册与圆有关的几个定理

蔡甸区常福中学九年级数学下册教学案 课题:几何计算专题复习--与圆有关的定理 第13周 主备人:袁劲梅 教研组长:向俊伟 审核人______ 授课人: 袁劲梅 授课时间2017.5.28 编号______ 学案 教案 一、课堂导入: 本节课我们学习几何知识里几个新的定理,进一步掌握这些定理的推导和灵活运用。 二、揭示目标: 学生齐读学习目标,了解本节课的学习内容及应达到的目标。 三、合作探究: 1、小组合作探究(讨论质疑) 学生合作完成该部分题目。①要求小组各成员都能不同程度的解答各题,先完成的帮助后进生,老师巡视了解学生的完成情况;②选代表上台讲解解法。 2、组间合作探究(交流释疑) 各组成员可随意请求质疑或发表不同解法; 四、归纳小结 总结:本节课学习了与圆有关的几个定理: 弦切角定理 切割线定理 射影定理 1、熟练掌握这些定理的推导过程; 2、通过这些定理结论,直接解题,提高解题速 一、考点分析 此题型为中考题中的第21题圆的综合题,主要考查圆与直角三角形、切线有关定理、三角函数、相似的计算,命题极为灵活,考查知识面广,有一定的难度。结合图形特征利用定理结论求线段的长度是必考的知识点。 二、学习目标 1、学习一些新的定理,并推导出结论。 2、能够灵活运用这些结论解决圆中线段的长,角的三角函数的计算。 三、课堂前置 如图:在⊙O 中,弦AB 、CD 相交于P, 求证:PA ·PB=PC ·PD 四、课堂新授 知识一:弦切角定理 如图,已知PC 为⊙O 的切线,PBA 为割线. 求证:∠1=∠A 例1:如图:PA 、PB 与⊙O 相切与A 、B 两点,C 为优弧AB 上的一点,若tan ∠ACB=2,则sin ∠APB 的值为______.

与圆有关的概念及性质

圆的有关概念与性质 教学目标:复习与圆有关的概念与性质。 教学重点:巩固垂径定理、圆心角、圆周角定理。并能运用这些定理进行正确的证明。 教学难点:灵活地运用这些定理进行有关的证明。 一、知识回顾 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又 是对称图形,是它的对称中心. 3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的 垂直于弦,并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一 组量,那么它们所对应的其余各组量都分别 . 5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 6. 直径所对的圆周角是,90°所对的弦是 . 例题精讲 例1、如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l ,求弦AB的长. 对应练习1、在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,求油的最大深度.

例2、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,,连接AD,求证:△ABD≌△ACD. 对应练习2、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上的一点,OD⊥AC,垂足为E,连接BD. (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD. 例3、本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取、、 三根木柱,使得、之间的距离与、之间的距离相等,并测得长为120米,到 的距离为4米,如图所示.请你帮他们求出滴水湖的半径. 对应练习3、

圆》的定理、公式的知识点

圆 一、名词解释: 1.弦——连接圆上任意两点的线段叫做弦。 2.弧——圆上任意两点间的部分叫做圆弧,简称弧。 3.半圆——圆的任意一条直径的两个端点把圆分成两条弧,第一条弧 都叫做半圆。 4.等圆——能够重合的两个圆叫做等圆。 5.等弧——在同圆或等圆中,能够互相重合的弧叫做等弧。 6.圆心角——顶点在圆心的角叫做圆心角。 7.圆周角——顶点在圆上,且两边都与圆相交的角叫做圆周角。 8.圆内接多边形——如果一个多边形的所有顶点都在同一个圆上,这 个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。9.外心——外接圆的圆心是三角形三条边垂直平分线的交点,叫做这 个三角形的外心。 10.内心——三角形三条角平分线的交点,叫做三角形的内心。 11.内切圆——与三角形各边相切的圆叫做三角形的内切圆。 12.割线——直线和圆有两个公共点(直线和圆相交),这条直线叫做圆 的割线。 13.切线——直线和圆只有一个公共点(直线和圆相切),这条直线叫做 圆的切线,这个点叫做切点。 14.切线长——经边圆外一点作圆的切线,这点和切点之间的线段的长, 叫做这点到圆的切线长。

15.圆心距——两个圆圆心的距离叫做圆心距。 16.中心——正多边形的外接圆的圆心叫做这个正多边形的中心。 17.中心角——正多边形每一边所对的圆心角叫做正多边形的中心角。 18.边心距——中心到正多边形的一边的距离叫做正多边形的边心距。 19.扇形——由组成圆心角的两条半径和圆心角所对的弧所围成的图形 叫做扇形。 20.母线——连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母 线。 二、定理 1.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 2.圆心角、弦、弧定理:(三者是一组等量关系) ①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 ②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。 ③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。 3.圆周角定理: ●在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所 对的圆心角的一半。 ●半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。 ●圆内接四边形对角互补。

圆的重要定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 【课前测试】 1. PT 切⊙O 于T ,CT 为直径,D 为OC 上一点,直线PD 交⊙O 于B 和A ,B 在线段PD 上,若CD =2,AD =3,BD =4,则PB 等于( ) A. 20 B. 10 C. 5 D. 【知识点回顾】 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

圆中的基本概念及定理知识归纳与练习题及答案

圆中的基本概念及定理(讲义) ? 课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为______,固定的线段长称为_______,还知道半径为r 的圆的周长为_________,面积为__________. 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA ,OB 所组成的图形叫做扇形. 顶点在圆心的角叫做圆心角. ? 知识点睛 1. 平面上到_____的距离等于_____的所有点组成的图形叫做圆,其中,_____称为圆心,_____称为半径;圆O 记作_____. 2. 圆中概念: 弧:_________________________;弧包括______和_______; 弦:_______________________________________________; 圆周角:___________________________________________; 圆心角:___________________________________________; 弦心距:___________________________________________. 3. 圆的对称性: 圆是轴对称图形,其对称轴是_________________________; 圆是中心对称图形,其对称中心为_____________________.

4. 圆中基本定理: *(1)垂径定理:_____________________________________ ______________________________________________; 推论:_________________________________________ ______________________________________________; 总结:知二推三①_______________________________, ②_____________________,③____________________, ④_____________________,⑤____________________. (2)四组量关系定理:在_____________________中,如果 _______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理:___________________________________; 推论1:________________________________________; 推论2:________________________________________,_______________________________________________ 推论3:_______________________________________. (4)三点定圆定理:_________________________________. 三角形的三个顶点确定一个圆,这个圆叫做三角形的_______,三角形叫做圆的___________,外接圆的圆心是____________________,叫做三角形的___________. ? 精讲精练 1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的 是( ) A .CM =DM B .CB ︵=BD ︵ C .∠AC D =∠ADC D .OM =MD 第1题图 第2题图 2. 如图,⊙O 的弦AB 垂直平分半径OC ,若AB ,则⊙O 的半径为_________. 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测

数学-初三-圆的相关概念与垂径定理

精锐教育1对1辅导讲义 棗互钠探索 1、圆是如何确定的?大小怎么判定? 2、圆中有哪些概念? 3、垂径定理如何应用? *曲需提# 【知识梳理1】圆的确定 定理同圆或等圆中半径相等 1?点与圆的位置关系 圆是到定点(圆心)的距离等于定长(半径)的点的集合。 圆的内部是到圆心的距离小于半径的点的集合。 圆的外部是到圆心的距离大于半径的点的集合。 点P与圆心的距离为d,则点P在直线外二d r ;点P在直线上=d = r ;点P在直线内=d :::r。 【例题精讲】例1?如图,圆0的半径为15,O到直线I的距离0H=9,P、Q、R为I上的三点.PH=9,QH=12,RH=15, 请分别说明点P、Q、R与圆0的位置关系

【试一试】 1?矩形ABCD中,AB= 8, BC=3.5,点P在边AB上,且BP = 3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ). (A) 点B、C均在圆P夕卜;(B)点B在圆P夕卜、点C在圆P内; (C)点B在圆P内、点C在圆P夕卜;(D)点B、C均在圆P内. 2?如图所示,已知丄ABC ,乙ACB=90, AC=12, AB “3, CD _ AB于点D,以C为圆心,5为半径作圆C ( ) A.点D在圆内,B、A在圆外 B.点D在圆内,点B在圆上,点A在圆外 C.点B、D在圆内,A在圆外 D.点D、B、A都在圆外 2. 过三点的圆 1. 不在同一直线上的三点确定一个圆。 2. 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。 例2?如图,作出AB所在圆的圆心,并补全整个圆.

圆有关定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 如图1对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角(如图2):顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)∠APC,∠APD,∠BPD,∠BPC 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。即如上图中∠APC=∠CDP等 证明:如图2,连接CD、OC、OP,因为∠CPO=∠PCO,所以∠COP=180?-2∠CPO而∠CPO=90?-∠APC,故∠COP=2∠5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交 弦定 理 ⊙O 中,AB、 CD为 弦,交于 P. PA·PB=PC·PD 连结AC、BD,∠C=∠B,∠A=∠D, 所以△APC∽△DPB 相交 弦定 理的 推论 ⊙O中, AB为直 径,C D⊥AB 于P. PC2=PA·PB 用相交弦定理. 切割 线定 理 ⊙O 中,PT切 ⊙O于T, 割线PB 交⊙O于 A PT2=PA·PB 连结TA、TB,则∠PTA=∠B(弦 切角等于同弧圆周角)所以 △PTA∽△PBT,所以 PT2=PA·PB 图1 图2

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系 【考纲要求】 1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现; 2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活. 【知识网络】 【考点梳理】 考点一、圆的有关概念及性质 1.圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定 不在同一直线上的三个点确定一个圆. 要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条

件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径. 5.圆心角、弧、弦之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角 圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点进阶:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形 (1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系 1.点和圆的位置关系 设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在圆外?d>r; 点P在圆上?d=r; 点P在圆内?d<r. 要点进阶:圆的确定: ①过一点的圆有无数个,如图所示. ②过两点A、B的圆有无数个,如图所示. ③经过在同一直线上的三点不能作圆. ④不在同一直线上的三点确定一个圆.如图所示.

人教版八年级下册数学圆的有关概念与性质

圆的有关概念与性质 ◆课前热身 1.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误 ..的是() D.OD=DE 2.如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是() A. B. C. D. 3.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为() A.5 B.4 C.3 D.2 4.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为() A.2 B.3 C.4 D.5 3,则弦CD 5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm 的长为()

A . 3 cm 2 B .3cm C . D .9cm 【参考答案】 1. D 2. D 3. A 4. A 5. B ◆考点聚焦 1.圆的有关概念,包括圆心、半径、弦、弧等概念,这是本节的重点之一. 2.掌握并灵活运用垂径定理及推论,圆心角、弧、弦、弦心距间的关系定理以及圆周角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是本节难点. 3.理解并掌握圆内接四边形的相关知识,而圆和三角形、?四边形等结合的题型也是中考热点. ◆备考兵法 “垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题. 常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现;垂径定理和勾股定理结合起来常以计算题出现. ◆考点链接 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.

圆中的基本概念及定理(习题)

圆中的基本概念及定理(习题) ? 巩固练习 1. 一条排水管的截面如图所示,已知排水管的截面圆半径OB 为10,截面圆圆 心O 到水面的距离OC 为6,则水面宽AB 的长为( ) A .16 B .10 C .8 D .6 第2题图 2. 如图,AB 是⊙O 的弦,OD ⊥AB 于点D ,交⊙O 于点E ,则下列说法不一定 正确的是( ) A .AD =BD B .∠ACB =∠AOE C .AE ︵=BE ︵ D .OD =DE 3. 如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,若∠BOC =70°,则∠A 的度 数为( ) A .70° B .35° C .30° D .20° A O D C O C B A 第3题图 第4题图 4. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦 BC 的长为( ) A .1 B C .2 D .5. 6. E O D C B A

A 第6题图 第7题图 7. 如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB = __________. 8. 如图,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,若点D 在AB 的延长 线上,且BD =BC ,则∠D =_________. O D C B A 第8题图 第9题图 9. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C , D 为第一象限内⊙O 上的一点,若∠DAB =20°,则∠OCD =_________. 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB =16 m ,半径OA =10 m ,则中间柱CD 的高度为______m . C D B O A D C 第10题图 第11题图 11. 如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有 圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1寸,AB =10寸,则直径CD 的长为_________. 12. 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,若四边形OABC 为 平行四边形,则∠OAD +∠OCD =______.

圆的概念公式及推导(完整版)

〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是…,通常用π表示,计算中常取为它的近似值。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O 相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P <R-r。 【圆的平面几何性质和定理】 〖有关圆的基本性质与定理〗 圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 〖有关圆周角和圆心角的性质和定理〗 在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 〖有关外接圆和内切圆的性质和定理〗

圆概念公式定理

1.圆的周长C=2πr=πd 2.圆的面积S=πr2 3.扇形弧长l=nπr/180 4.扇形面积S=nπr2/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率, 值是 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679..., 通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

圆的有关概念和性质

圆的有关性质 【中考考纲解读】 1.课标要求 ①理解圆及其有关概念,了解弧、弦、圆心角的关系. ②了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征. ③掌握垂径定理,并能应用它解决有关弦的计算和证明问题. 2.考向指南 从2008、2009两年广东省统一中考数学试卷来看,本讲所学的圆的有关概念、弧长的计算、圆周角定理,垂径定理与三角形的联系等知识点考查的可能性较大.题型以选择题和填空题为主,难度不大,所占分值一般在3~5分. 【考点知识网络】 【中考考点剖析】 考点1:圆的有关概念 1. 圆的定义:平面上到定点的距离等于定长的所有点组成的图形.其中,定点为圆心,定长为半径 2. 弦:连接圆上任意两点的线段. 3. 直径:经过圆心的弦. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧. 5. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 6. 优弧:大于半圆的弧,用三个大写字母表示,如ABC . 7. 劣弧:小于半圆的弧,用两个大写字母表示,如AC . 8. 弓形:由弦及其所对的弧组成的圆形. 9. 同心圆:圆心相同,半径不相等的两个圆. 10.等圆:能够重合的两个圆或半径相等的两个圆. 11.等弧:在同圆或等圆中,能够互相重合的弧. 12.圆心角:顶点在圆心的角叫做圆心角. 13.弦心距:从圆心到弦的距离叫做弦心距. 14.圆周角:顶点在圆上,?并且两边都与圆相交的角叫做圆周角. ?? ??????????????? ???? ??基本概念:弧 弦 圆心角 圆周角确定圆的条件对称性圆基本性质垂径定理圆心角 弧 弦的关系 圆周角定理2个推论

最全的人教版初中数学常用概念、公式和定理教程文件

最全的人教版初中数学常用概念、公式和 定理

2017最全的初中数学公式 1.整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数) 都是有理数. 如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2.绝对值:a≥0丨a丨=a;a≤0丨a丨=-a. 如:丨-丨=;丨3.14-π丨=π-3.14. 3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数 字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:-40700=-4.07×105,0.000043=4.3×10-5. 5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1 位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位. 如:已知=0.4858,则=48.58;已知=1.558,则=-0.1588. 6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项 式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项 分别除以这个单项式. 7.幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤(- )n=n.⑥a-n=n,特别:()-n=()n.⑦a0=1(a≠0). 如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=(-)2=,(-3.14)0=1,(-)0=1.

各种圆定理总结.

费尔巴赫定理 费尔巴赫定理三角形的九点圆与内切圆内切,而与旁切圆外切。 此定理由德国数学家费尔巴赫(K·W·Feuerbach,1800—1834)于1822年提出。 费尔巴赫定理的证明 在不等边△ABC中,设O,H,I,Q,Ia分别表示△ABC的外心,垂心,内心,九点圆心和∠A所对的旁切圆圆心.s,R,r,ra分别表示△ABC的半周长,外接圆半径,内切圆半径和∠A 所对的旁切圆半径,BC=a,CA=b,AB=c. 易得∠HAO=|B-C|,∠HAI=∠OAI=|B-C|/2; AH=2R*cosA,AO=R,AI=√[(s-a)bc/s],AIa=√[sbc/(s-a)] 在△AHI中,由余弦定理可求得: HI^2=4R^2+4Rr+3r^2-s^2; 在△AHO中,由余弦定理可求得: HO^2=9R^2+8Rr+2r^2-2s^2; 在△AIO中,由余弦定理可求得: OI^2=R(R-2r). ∵九点圆心在线段HO的中点, ∴在△HIO中,由中线公式可求得. 4IQ^2=2(4R^2+4Rr+3r^2-s^2)+ 2(R^2-2Rr)-(9R^2+8Rr+2r^2-2s^2) =(R-2r)^2 故IQ=(R-2r)/2. 又△ABC的九点圆半径为R/2, 所以九点圆与内切圆的圆心距为 d=R/2-r=(R-2r)/2=IQ. 因此三角形的九点圆与内切圆内切。 在△AHIa中,由余弦定理可求得: IaH^2=4R^2+4Rr+r^2-s^2+2(ra)^2; 在△AOIa中,由余弦定理可求得: IaO^2=R(R+2ra). 在△HIaO中,由中线公式可求得. 4IaQ^2=2(4R^2+4Rr+r^2-s^2+2ra^2)+2(R^2+2Rra)-(9R^2+8Rr+2r^2-2s^2)=(R+2ra) ^2 故IaQ=(R+2ra)/2.

相关文档
最新文档