(完整版)等差等比数列知识点总结

(完整版)等差等比数列知识点总结
(完整版)等差等比数列知识点总结

等差等比数列知识点总结

1. 等差数列:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d,那么这个数列就叫做等差数列,这个常数d叫做等差数列的公差,即

a n a n 1 d (d 为常数)(n 2);

2. 等差中项:

(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:

或2A a b

3. 等差数列的通项公式:

一般地,如果等差数列a n的首项是a1,公差是d,可以得到等差数列的通项公式为:

a n 4 n 1 d

推广:a n a m(n m)d.

a n a m 从而d

n m

4. 等差数列的前n项和公式:

n(a1 a n) n(n 1) , d 2 , 1 2

S n na1 d n 佝d)n An Bn

2 2 2 2

(其中A、B是常数,所以当d M 0时,S是关于n的二次式且常数项为0) 5. 等差数列的判定方法

(1)定义法:若a n a n 1 d或a n 1 a n d (常数n N ) a n是等差数列.

(2)等差中项:数列a n是等差数列

2a n a n-1 a n 1 (n 2)2a n 1a n a n 2 .

(3)数列a n是等差数列a n kn b (其屮k, b是常数)。

(4)数列a n是等差数列S n An2Bn,(其中A、B是常数)。

6.等差数列的证明方法

定义法:若a n a n 1d或a n

1 a n d(常数n N) a n是等差数列.

(2 ) 等差中项数列a n 2a n a n-1 a n i(n 2) 2a n 1 a n a n 2

7.等差数列的性质:

(1)当m n p q 时,则有a m a n a p a q ,特别地,当m n 2p 时,则有

⑵ 若{a n }是等差数列,则S n ,S 2n 5,务 S ?n ,…也成等差数列

和,S n 是前n 项的和 1.当项数为偶数2n 时,

a n

a n 1

2、当项数为奇数2n 1时,则

(其中a n+1是项数为2n+1的等差数列的中间项) 1、 等比数列的定义:旦q q 0 n 2,且

*

n N ,

q 称为公比

a n 1

2

通项公式:

n 1

a n ag

a 〔 n n

1

q A B a-i q 0,A B

0,首项:

a 1 ;公比:q

q

推广:a n

n m

n m

a m q

q

a n

q n m

a m

V a

m

3、 等比中项:

(1)如果a,A,b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2 ab 或

A ab

注意:同号的两个数才有等比中项,并且它们的等比中项 有两个(两个

等比中项互为相反数)

a m a n

2a p .

(3)设数列a n 是等差数列,

d 为公差,S 奇是奇数项的和, S 偶是偶数项项的

n a i

a 2n 1

a

2n 1

— na

n

a 2n

n a 2

a 2n

2

na n 1

na n 1 na n

n a n 1 a n =nd

S 2n 1

S 奇

S 偶

2n

1) a n+1

S 奇 S 偶 a n+1

S 奇 (n 1応+1

S 偶

n a n+1

a i a 3

a 5

a 2 a 4 a 6 na n na n 1

S

为等比数列

6等比数列的证明方法:

7、等比数列的性质:

(3)若{a n }为等比数列,则数列S n ,S 2n S n ,务 dn,,成等比数列 (4)在等比数列{a n }中,当项数为2n(n N *)时,§奇-

S 禺q

(2)数列a n 是等比数列 2 a

n

a n 1 a n 1

4、等比数列的前n 项和S n 公式:

(1)当 q 1 时,S n

na i

(2)当 q 1 时,S.

a, 1

a 〔 a 〔

A A

B n A'B n A' ( A,B,A',B'为

常数)

5、等比数列的判定方法:

(1)用定义:对任意的n,都有am

qa n 或 也 q(q 为常数,a n 0)

{a n }

a n

(2)等比中项:

2 a

n

a n 1a n 1 ( a n 1 a n 1 0) {a n }为等比数列

(3)通项公式:a n

A B n A B 0

{a n }为等比数列

依据定义:若-a ^ q

a n 1

q 0 n 2,且 n

N 或a n 1 qa n {a n }为等比数列

(1) 若 m n s t(m,n,s,t N ),贝U a n a m a s a t 。特别的,当m n 2k 时,

得a n

2

a m a k

注:

a 1 a n a 2 a n 1

a 3a n 2

(2) 如果{a n }是各项均为正数的等比数列, 则数列{log a a n }是等差数列

随堂练习一、选择题

1. 2005是数列7,13,19,25,31, L ,中的第( )项.

A. 332

B.333

C. 334

D. 335

3.等差数列3, 7,11丄,的一个通项公式为( )

A. 4n 7

B.4n7

C.4n 1

D.4n 1

7.记等差数列的前n项和为S

n,若S24,S4 20,则该数列的公差d=( ) A. 2 B.3 C . 6 D . 7

10.已知等差数列a

n的前r1项和为Sb 若14,则a3a

5的值为()

A. 2

B.4

C. 7

D.8

1.已知等比数列{a n}中a n 1a n,且a3a73,a2 a8 2,则a11()

a7

" 1 2 c3

A. B.C D.2

232

2.已知等比数列{a n}的公比为正数,且a3? a9=2a52a2=1,则a1=()

1 p

2 f~

A. -

B. —

C. 一2

D.2

2 2

3.在等比数列{a n}中,a516, a88,则a-()

A. 4

B.4

C.2 D . 2

10.若a n是等比数列,前n项和S n2n 1 ,则a22a2 2 2

a3 L a n ()

典n 2

A. (2 1)

B.1(2n 1)2

C.4n1

D.1(4n 1)

33

二、填空题

13. 等差数列a n中,a3 50,a5 30,贝U a7

14. 等差数列a n中,a3 a524, a? 3,贝U比

15. 已知等差数列a n中,a2与a6的等差中项为5,a3与a?的等差中项为7,则

11.已知数列1, a 1, a 2, 4 成等差数列,1, b 1, b 2, b 3, 4 成等比数列,则

a〔a:

b2 ?

14.在等比数列{a n}中,a1 a2 6? a3 12,S n为数列{a n}的前n项和,则

log 2 (S 2010 2) .

三、解答题

17.已知 f (1) 2 , f (n 1) 2 f (n) 1 (n N ),求 f(101).

1

3,a

2 a

5

4

,a

n 33

,试求n

的值.

(1)求数列{a n }的通项公式a n ;

(2)若 S n

93,求 n.

16. 等比数列a n 的前n 项和为S n ,已知S !,S 3,S 2成等差数列?

1) 求 a n 的公比 q ; 2)

若 a 1 a 3 3

,求 S n .

高考真题

一、选择题 :

18.等差数列a n 中,已知a 1

15.已知等比数列{a n }满足33

12,a 8

-,记其前n 项和为S n .

8

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差等比数列综合习题

等差、等比数列综合习题 一、选择题 1、数列16 14,813,412 ,211…前n 项的和为( ) A 、2212n n n ++ B 、12122+-+n n n C 、n n n 2122-+ D 、12 12)1(+--n n n 2、三个不同实数c b a ,,成等差数列,b c a ,,又成等比数列,则=b a ( ) A 、47 B 、4 C 、-4 D 、2 3、在等差数列}{n a 中,已知30201561=+++a a a a ,则数列的前20项和S 20=( ) A 、100 B 、120 C 、140 D 、150 4、已知数列}{n a 的601-=a ,31-=-n n a a ,那么++||||21a a …||30a +=( ) A 、-495 B 、765 C 、1080 D 、3105 5、某企业的生产总值月平均增长率为p%,则年平均增长率为( ) A 、12p% B 、12%)1(p + C 、1%)1(11 -+p D 、1%)1(12-+p 6、设n S 是等差数列}{n a 的前n 项和,已知331S 与441S 的等比中项为3531,51S S 与44 1S 的等差中项为1,求通项n a 。 7、设有数列,,21a a …n a …又若23121,,a a a a a --…1--n n a a 是首项为1,公比为 31的等比数列。 (1)求n a (2)求++21a a …n a + 8、在等比数列}{n a 中,已知27 21154321= ++++a a a a a ,482111111154321=++++a a a a a ,求3a 。

等差、等比数列知识点总结

等差、等比数列知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1) 1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10 ) 1(9+=,求数列}{n a 的最大项。

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等差等比数列基础练习题

针对练习A1:等差数列 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。 二、选择题 1. 一架飞机起飞时,第一秒滑跑 2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米, 则滑跑的时间一共是( ) A. 15秒 B.16秒 C.17秒 D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( c ) A.84 B.72 C.60 D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为(A ) A.6 B.3 C.12 D.4 4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于( ) A.160 B.180 C.200 D.220 5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 6. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等差等比数列综合题

高二数学必修五数列单元综合练习题 一、选择题: 1.在等差数列{a n }中,若4612a a +=,n S 是数列{a n }的前n 项和,9S 则的值为 (A )48 (B)54 (C)60 (D)66 2.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为 (A )2 (B )4 (C )6 (D )8 3.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A.12 B.24 C.36 D.48 4.在等差数列{}n a 中,若34567a +a +a +a +a =450,则28a +a =( ) 5.在等比数列{}n a 中,如果69a =6,a =9,那么3a 为( ) (A )4 (B)23 (C)9 16 (D)2 6.数列{}n a 中,123,6,a a ==且12n n n a a a ++=+,则2004a =( ) B.-3 C.-6 7.数列n {a }中,对任意自然数n ,n 12n a +a ++a =21???-,则22212n a +a ++a ???等于( ) A.()2n 2-1 B. ()2n 12-13 C.n 4-1 D. ()n 14-13 8.在各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10= ( ) A .12 B .10 C .8 D .2+log 35 9.已知数列{a n }是等比数列,其前n 项和为S n =5n +k ,则常数k= ( ) A . 1 B .1 C .0 D .以上都不对 10.数列 的前n 项和为 ( ) A . B . C . D . 11.对于数列{a n },满足 ,则该数列前100项中的最大项和最小项分别是 ( ) A .a 1,a 50 B .a 1,a 44 C .a 45,a 44 D .a 45,a 50 12.已知一等差数列的前四项的和为124,后四项的和为156,又各项和为210,则此等差数列共有( ) A 、8项 B 、7项 C 、6项 D 、5项 二、填空题: }232{3--n n 22124---n n 22724--+n n 22236-+-n n 32128-+-n n 20052004--=n n a n

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等差等比数列练习题及答案

等差 、 等比数列练习 一、选择题 1、等差数列{}n a 中,10120S =,那么110a a +=( ) A. 12 B. 24 C. 36 D. 48 2、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 3、已知等差数列{}n a 的公差1 2 d =,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32+-n n B .)34(2-n n C .2 3n - D . 3 2 1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( ) A .6 B .8 C .10 D .12 二.填空题 1、等差数列{}n a 中,若638a a a =+,则9s = . 2、等差数列{}n a 中,若2 32n S n n =+,则公差d = . 3、在小于100的正整数中,被3除余2的数的和是

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

等差、等比数列的综合问题

专 题2 数列 知识网络图解 一、数列的概念、性质 例①若数到{αn }满足αn+1 = 若α1=67 则α2009的值为( ) A. 67 B.57 C. 37 D.1 7 ②αn 则数列{αn }最大项为( ) A. α1 B. α45 C. α44 D. α2007 ③通项为αn =n 2 -α n+1的数列{αn }是递增数列,则实数α的取值范围为_________ 二、等差数列、等比数列 知识整合 2αn , 0≤αn <1 2 1 2 ≤αn <1 2αn -1,

要点 热点 探究 例1(1)已知两个等差数列{αn }和{b n }的前n 项和分别为A n 和B n ,且 n n A B =7453 n n ++,则使得 n n a b 为整数的正整数n 的个数是( ) (2)已知等差数列{αn }的前n 项和为S n ,若OB=α6O A +α195OC ,且A 、B 、C 三点共线(该直线不过点O ),则S 200等于( ) (3)与差数列{αn }中,S 6=36,S n =324,S n -6=144,则n =___________ (4)等差数列{αn }共有2n +1次,其中奇数项之和为319,偶数次之和为290则其中间项的值为 ( ) A. α9=10 B. α10 =16 C. α11 =29 D. α12=39 ()121 2112121*(21) 7(21)45122172131 (21)21,2,3,5,11 n n n n n n n n a a n a A n b b b B n n n a z n N n b ----+?--+ ====+ +-++?- ∈ ∈ ∴=Q 解 ()619512006195200 21 1 200200200100 222 A C a a a a a a s ,B,∴+=++=?=?=?=Q 三点共线

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法 证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。 一、 定义法 01.证明数列是等差数列的充要条件的方法: {}1()n n n a a d a +-=?常数是等差数列 {}2222()n n n a a d a +-=?常数是等差数列 {}3333()n n n a a d a +-=?常数是等差数列 02.证明数列是等差数列的充分条件的方法: {}1(2)n n n a a a d n --=≥?是等差数列 {}11(2)n n n n n a n a a a a +--=-≥?是等差数列 03.证明数列是等比数列的充要条件的方法: {}1 (00)n n n a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法: 1 n n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有 1 n n a q a -== (常数0≠);②

n *∈N 时,有 1 n n a q a +== (常数0≠) . 例1. 设数列12,,,,n a a a 中的每一项都不为0。 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有 1223111 111n n n n a a a a a a a a +++++= 。 证明:先证必要性 设{}n a 为等差数列,公差为d ,则 当d =0时,显然命题成立 当d ≠0时, ∵ 111111n n n n a a d a a ++?? =- ??? 再证充分性: ∵ 122334 111 a a a a a a ++???1111n n n n a a a a ++++= ?? ………① ∴ 122334 111 a a a a a a ++???11212111n n n n n n a a a a a a ++++++++= ??? ………② ②﹣①得: 121211 11n n n n n n a a a a a a +++++=- ??? 两边同以11n n a a a +得:112(1)n n a n a na ++=+- ………③ 同理:11(1)n n a na n a +=-- ………④ ③—④得:122()n n n na n a a ++=+ 即:211n n n n a a a a +++-=- {}n a 为等差数列 例2. 设数列}{n a 的前n 项和为n S ,试证}{n a 为等差数列的充要条件是

(完整word版)等差等比数列综合练习题

等差数列等比数列综合练习题 一.选择题 1. 已知031=--+n n a a ,则数列{}n a 是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比2 1 =q ,那么它的前5项的和5S 的值是( ) A . 231 B .233 C .235 D .2 37 3. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7 C.6 D.5 4. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24 B .22 C .20 D .-8 5. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项 6.已知a ,b ,c ,d 是公比为2的等比数列,则 d c b a ++22等于( ) A .1 B .21 C .4 1 D .81 7.在等比数列{}n a 中,7114146,5,a a a a ?=+=则 20 10 a a =( ) A.2 3 B.32 C.23或 32 D.23-或 32 - 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .20 9.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且

7768,b a b b ==则( ) A.2 B. 4 C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10 D. 9 11.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( ) A. d<0 B. 110s > C.120s < D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则 1 4 a a 的值是( ) A .1 B .2 C .3 D .4 二.填空题 13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=?a a ,则5a =__________ 15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=L ,则 ()101102200lg x x x +++=L ________ 17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

相关文档
最新文档