氮掺杂二氧化钛纳米棒阵列的制备和光电转化性能表征

氮掺杂二氧化钛纳米棒阵列的制备和光电转化性能表征
氮掺杂二氧化钛纳米棒阵列的制备和光电转化性能表征

纳米二氧化钛的制备方法及形貌特征

纳米二氧化钛的制备方法及形貌特征 盛丽雯重庆交通大学应用化学08300221 摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。 关键词:纳米二氧化钛、制备方法、形貌特征。 1 纳米二氧化钛的制备方法 1.1 气相法 气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。 1.2 液相法 溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。该法制得的产品纯度高、粒径小、尺寸均匀、干燥后颗粒自身的烧结温度低;但原料价格昂贵、生产成本高,凝胶颗粒之间烧结性差,产物干燥时收缩大。化学沉淀法将沉淀剂加入TiOSO,H TiO,或TiC1 溶液中,沉淀后进行热处理。该法工艺过程简单,易工业化,但易引入杂质,粒度不易控制,产物损失多。水解法以四氯化钛或钛醇盐为原料,经水解、中和、洗涤、烘干和焙烧制得纳米TiO。该法制得的产品纯度高、粒径均匀;但水解速度快、反应难控制、成本大、能耗高、难以工业化生产。水热法以TiOSO,TiC14或Ti(OR)4为原料,高温高压下在水溶液中合成纳米TiO。该法制得的产品纯度高、粒径分布窄、晶型好;但对设备要求高、能耗较大、操作复杂、成本偏高。在综合对比研究了纳米二氧化钛的各种制备方法后,提出了利用偏钛酸原料廉价易得的特点,简化工艺过程,采用化学沉淀法来制备纳米TiO的工艺方案,并进行了长时间的中试,现就该工艺的特点及中试过程中所遇到的问题进行阐述。 1 气相法制备二氧化钛 气相法一般是通过一些特定的手段先将反应前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2颗粒。 1.1 化学气相沉积法

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价 实 验 报 告 组别:第七组 组员:曲红玲高晗 班级:应121-2 指导老师:翁永根老师

纳米二氧化钛的制备及其光催化活性评价 一、实验目的 1、掌握利用简单的原料制备纳米材料的基本方法和原理。 2、了解二氧化钛的应用和多种制备方法的优缺点。 3、了解纳米半导体材料的性质。 4、了解纳米半导体光催化的原理。 5、掌握光催化材料活性的评价方法。 二、实验原理 二氧化钛,化学式为2TiO ,俗称钛白粉。多用于光触媒、化妆品,能靠紫外线消毒及杀菌。以纳米级2TiO 为代表的具有光催化功能的光半导体材料,因其颗粒细小、比表面积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。 1、纳米二氧化钛的制备 纳米二氧化钛的制备方法有很多。主要分为两类:一类是液相法合成,包括液相沉淀法、液相凝胶法、醇盐水解法、微乳液法及水热法;另一类是气相法合成,包括四氯化钛氢氧焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化法、钛醇盐气相水解法、钛醇盐气相热解法。其中,溶胶凝胶法是近年来制备二氧化钛广泛使用的方法。本试验采用溶胶凝胶法制备二氧化钛。 溶胶凝胶法中,反应物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成()4OH Ti ,脱水后即可得到2TiO 。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。 在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。此过程中涉及的反应为: ()()OH H C OH Ti O H H OC Ti 944249444+=+ ()()OH H C TiO H OC Ti OH Ti 942494442+=+ ()O H TiO OH Ti 2242+? 2、光催化活性评价 光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应,通称为光反应。光催化一般是多种相态之间的催化反应。 本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反应前

【CN109930134A】一种引入掩膜板制备二氧化钛纳米棒阵列的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910319448.2 (22)申请日 2019.04.19 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 姜超 余延涛 王春齐 黄小忠  杜作娟  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C23C 18/06(2006.01) C23C 18/12(2006.01) C23C 28/00(2006.01) B82Y 40/00(2011.01) C23C 14/18(2006.01)C23C 14/24(2006.01) (54)发明名称一种引入掩膜板制备二氧化钛纳米棒阵列的方法(57)摘要本发明公开了一种引入掩膜板制备二氧化钛纳米棒阵列的方法,包括以下步骤:(1)将掩模板固定于基底材料表面,四周密封;(2)在基底上形成诱导层,然后去除掩模板;(3)将带图案诱导层的基底放入水热反应釜中,在水热反应中诱导生长与基底图案一致的二氧化钛纳米棒阵列;(4)对二氧化钛纳米棒阵列间隙进行选择性填充,采用真空蒸镀工艺,对二氧化钛纳米棒阵列制作上电极,得到用于传感器、能源存储单元或者电子电路的器件。本发明通过引入掩模板,生长导电诱导层,从而控制二氧化钛纳米棒阵列的垂直生长,防止二氧化钛纳米棒发生倾斜和搭接,得到多种图案规则排布的阵列结构,满足能源存储器件,特殊传感器和电子电路器件对二氧 化钛结构的质量要求。权利要求书1页 说明书3页 附图1页CN 109930134 A 2019.06.25 C N 109930134 A

二氧化钛的各种制备方法

取200mL浓度为1mol/L的TiOSO 4 溶液装入容量为500mL的烧杯中,将烧杯放入高 压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO 4 水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的偏钛酸备用。取200mL浓度为 1mol/L的TiOSO 4 溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的正钛酸备用。 1.载银二氧化钛的制备方法: 分别在46gH 2TiO 3 和195gH4TiO4中加入50mL浓度为L的AgNO3溶液,磁力搅拌并加热 直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和AT2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 2.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC 4H 9 ) 4 ]∶n[C 2 H 5 OH]∶n[NH( CH 2 CH 2 OH) 2 ]∶ n[H 2 O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙 醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以 约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO 2 薄膜。 3.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 4.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

硫氮掺杂碳纳米管

Sulfur e nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries Yinchuan Li a ,Rui Mi b ,Shaomin Li b ,Xichuan Liu b ,Wei Ren b ,Hao Liu b ,*,Jun Mei a ,**,Woon-Ming Lau b a School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,PR China b Chengdu Green Energy and Green Manufacturing Technology R&D Center,Chengdu Development Center of Science and Technology,China Academy of Engineering Physics,Southwest Airport Economic Development Zone,Shuangliu,Chengdu 610207,PR China a r t i c l e i n f o Article history: Received 31October 2013Received in revised form 26February 2014Accepted 6April 2014Available online 11May 2014Keywords:Nitrogen doped Carbon nanotubes Lithium e sulfur batteries Sulfur distribution a b s t r a c t The performance of lithium sulfur (Li/S)battery was greatly improved by the employment of nitrogen doped carbon nanotubes (N-CNTs)based cathode.By manipulating its structure thereby creating more defects,N-CNTs presents better dispersion of sulfur particles on N-CNTs and higher electrical conductivity compared with their non-doped counterpart,which explain the reason why N-CNTs/S composite shows improved performance.The speci?c discharge capacity was maintained at 625mAh g à1and 513mAh g à1after 100cycles at 0.2C and 0.5C,respectively,which was about 2times as that of CNTs.This method is proved to be a promising way to develop cathode materials for lithium sulfur batteries. Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved. Introduction The increasing capabilities of portable electronic devices as well as the desire for long driving distances between re-charges of electric vehicles require electrical energy storage systems with high energy density [1].The Lithium/sulfur (Li/S)battery is an attractive and promising candidate among emerging battery technology.It has attracted great interest as potential energy storage devices for electrical vehicles and other applications needing large-scale electricity storage [2].Conventional Li/S cells consist of a lithium metal anode,an organic liquid electrolyte,and a sulfur composite cathode [3].Sulfur is useful in the cathode because assuming complete reaction to Li 2S,it has a theoretical speci?c capacity of 1672mAh g à1,and energy density of 2600Wh Kg à1[4],which is signi?cantly higher than the conventional lithium-ion cathode materials [5]. *Corresponding author .Tel.:t862867076208;fax:t862867076210.**Corresponding author .Tel.:t862867076202. E-mail addresses:mliuhao@https://www.360docs.net/doc/5e6889753.html, (H.Liu),meijun12@https://www.360docs.net/doc/5e6889753.html, (J. Mei). Available online at https://www.360docs.net/doc/5e6889753.html, ScienceDirect journal homepage: https://www.360docs.net/doc/5e6889753.html,/locate/he i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 39(2014)16073e 16080 https://www.360docs.net/doc/5e6889753.html,/10.1016/j.ijhydene.2014.04.047 0360-3199/Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved.

二氧化钛的各种制备方法2

1.硫酸氧钛溶液热水解和中和水解法制备偏钛酸和正钛酸 取200mL浓度为1mol/L的TiOSO4溶液装入容量为500mL的烧杯中,将烧杯放入高压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO4水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为21.6%的偏钛酸备用。取200mL 浓度为1mol/L的TiOSO4溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为5.1%的正钛酸备用。 2.载银二氧化钛的制备方法: 分别在46gH2TiO3和195gH4TiO4中加入50mL浓度为9.3mmol/L的AgNO3溶液,磁力搅拌并加热直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和A T2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银0.5%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 3.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC4H9 ) 4]∶n[C2H5OH]∶n[NH( CH2CH2OH)2]∶n[H2O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌0.5 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO2薄膜。 4.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL 盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 5.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

选择性氮掺杂的碳纳米管的结构、组成和化学

选择性氮掺杂的碳纳米管的结构、组成和化学 摘要 掺杂有一系列氮含量为(0-10%)的碳纳米管(CNT)通过使用二茂铁,NH3和二甲苯或吡啶在一个浮动催化剂CVD上进行合成的方法。XPS和Raman显微镜用来定量评估掺氮碳纳米管的组成和结构特性(N-CNTs)。XPS分析表明C1s 光谱轨迹随着氮掺杂N1sXPS光谱发生的移位和扩大显示出三种主要类型的氮协调(吡啶,镍铬合金和季),伴随着吡啶型选择率从0增加到4.5%。一阶拉曼光谱出现的五峰由于氮含量不同在峰强度和宽度上有所不同。D和G带集合强度的比例随着氮含量线形变化。用碘滴定的方法来测量所制备的N-CNTs还原位点的数量。这是通过掺杂氮的方法对碳纳米管化学活性有决定性影响的第一份报告。针对规律性增长和CNTs的选择性掺杂氮已经报道的方法,提出了一种新的方法来系统地研究纳米碳组成和结构对化学和电化学活性在应用上的影响。 1 简介 石墨烯晶格中杂原子(硼、硫、磷和氮)掺杂兑SP2碳材料的物化特性有着不同的影响。其中氮的取代掺杂尤其受到重视,因为其对硬度、导电性和化学活性显著改变进行了理论预测和实验观察。掺氮碳材料合成的几种方法已经在应用中,包括溅射沉积、含氮聚合物石墨化和预先形成的碳爆漏在升温过程中已形成反应气体(HCN和NH3)。虽然前两条线路通常制得的材料可以分别用作惰性涂料和吸附剂。后一条线路特别有希望合成可以增强化学反应中电子转移过程的活性碳,可以应用在电池和燃料电池中。虽然许多研究已经评估了掺氮碳的结构组成特性之间的关系,但是掺氮对物理化学特性的影响没有得到充分界定。举个例子,碳表面积、表面功能和石墨化程度由于采用碳材料和前处理及加工过程的不同而有相当大的差异。进一步,掺杂氮的过程是一个采用活化条件的复杂过程(比如反应气体浓度、时间、温度),因此,关于掺氮碳会得到许多不同的甚至相互矛盾的结论。 一个引人注目的替代方案可以使其直接生长和纳米碳进行氮的取代掺杂,这个方法使用到气相前体而不是像传统方法那样使用液相或者固相前体。通过化学气相沉积技术合成的气相纳米碳对于物化性质有着很好的控制能力,比如杂原子掺杂、结晶度和边缘暴露程度。我们实验室之前的报告已经描述在碳纳米管电极上掺氮对于氧化还原和、过氧化氢分解和邻苯二酚氧化反应的影响。在此,我们提出对于采用吡啶和NH3,通过改进的流化催化剂合成碳纳米管进行控制增长

二氧化钛纳米阵列的制备及其气敏性能研究

Chinese Science Bulletin ? 2008 SCIENCE IN CHINA PRESS Springer https://www.360docs.net/doc/5e6889753.html, | https://www.360docs.net/doc/5e6889753.html, | https://www.360docs.net/doc/5e6889753.html, Chinese Science Bulletin | May 2008 | vol. 53 | no. 9 | 1352-1357 Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays JI HuiMing ?, LU HuiXiang, MA DongFang, YU JianJun & MA ShiCai Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials of Tianjin University, Tianjin 300072, China In this paper, we report the growth and characteristics of titania nanotube arrays prepared by anodic oxidation and then annealed in an oxygen atmosphere at 500℃. The titania nanotube arrays presented high sensitivity to hydrogen gas. The crystalline phase of the samples was checked by X-ray diffraction (XRD). The differences in the nanotubes morphology attributed to the etched samples due to anodiza-tion potential, reaction time and the electrolyte concentration were analyzed by scanning electron mi-croscopy (SEM). The gas sensitive parameters of the samples were obtained from resistance, the re-sponse time and the recovery time at different temperatures. titanium dioxide, ordered nanotube arrays, preparation, hydrogen gas sensor Titanium dioxide is a versatile material for different ap-plications. It is used as heterogeneous catalyst, photo-catalyst in solar cells, gas sensors and white pigments (in paints, cosmetics, etc.). Also it has electronic and electrical applications in MOSFET (as a gate insulator) and varistors [1]. Titanium dioxide is also a fascinating material from a surface science point of view. Properly made titania surfaces are very useful for different electronic applica-tions especially as gas sensors and solar cells [2]. The prime requirement for these important applications is high active surface area. Making nanosized material is a efficacious technique to increase the active surface area. The simplest approach to fabricate titania nanotubes is electrochemical anodic oxidation. Gong et al.[3] devel-oped uniformly oriented porous titania nanostructures by anodic oxidation of high purity titanium in hydrofluoric acid medium under potentiostatic bias. Titania has attracted much attention for its oxygen sensing capability [4― 6]. Furthermore, with proper ma- nipulation of the microstructure, crystalline phase and/or addition of proper impurities or surface functionalization titania can also be used as a reducing gas sensor [7,8]. Hydrogen has numerous applications in industry, such as petroleum distillation, chemical production, cryogenic cooling, semiconductor manufacturing proc-esses, fuel cell technology, and rocket engines [9]. Its wide range of applications motivates our work on the development of highly sensitive, specific, robust, and affordable hydrogen sensors, enabling its safe and accu-rate use. 1 Experimental 1.1 Fabrication of the highly ordered titania nano-tube arrays Industrial pure titanium foil was degreased by sonicating in acetone, ethanol and DI water, and dried in a nitrogen stream. The equipments of the electrochemical anodiza-tion are shown in Figure 1. Anodization experiments are commonly conducted with magnetic agitation of the electrolyte which reduces the thickness of the double layer at the metal/electrolyte interface, and ensures uni-form local current density and temperature over the Ti Received August 23, 2007; accepted December 18, 2007 doi: 10.1007/s11434-008-0120-0 ? Corresponding author (email: jihuiming@https://www.360docs.net/doc/5e6889753.html, )

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性的评价 实验报告 班级: 组别: 指导老师: 小组成员:

实验目的: 1.培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。 3.掌握溶胶-凝胶法合成TiO2 的方法。 4.研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5.通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实 验思维与实验技能。 一、溶胶凝胶法制备二氧化钛 1、实验原理:纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒 尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材 料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出 奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热 导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。 利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、 木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光 敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各 国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要 有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛, 而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大 的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝 胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4在 C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过 程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐

纳米TiO的制备方法综述

纳米TiO2的制备方法综述 1.引言 纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。其中纳米二氧化钛作为一类无机功能材料备受关注。氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。制备和开发纳米二氧化钛成为国内外科技界研究的热点。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。 2.气相法 气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。[3] 2.1 扩散火焰法 以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。典型的P25是德国的Deguss公司通过TiCl4氢氧火焰法制的,其反应方程式为: TiCl4(g)+2H2(g)+O2(g)→4Ti02(a)+4HC1(g) (1) 工艺流程见图1: 日本Aerosil公司和美国Cabot公司等也利用此方法制的了超细的纳米二氧化钛粉体。Jang等人分别用五路管径将空气与Ar,O2,Ar/TiCl4加入到经过改进的火焰反应器中,并且利用改变气体浓度来对二氧化钛的粒径和晶型进行控制。从前期文献可见,当反应器火焰的温度在1000℃一1700℃范围内时,可制得粒径在12nm-29nm范围的二氧化钛,所含锐钛矿所占的比例在28%-75%,产量最高可达到20g/h。 Katzer等人将N2 ,CH4 ,Ar/TiCl4与氧气混合使其反应,且通过对电极电场的控制来调整火焰的温度和结构,进而控制纳米二氧化钛的粒径和晶型。 此方法制备的纳米二氧化钛具有小粒径、高纯度、良好的分散性和大的表面活性、较小的团聚现象等优点,但是此过程要求温度较高,工艺参数的控制要比较精确,且对设备材质的要求比较严格,生产成本相对较高。[3] 2.2 TiCl4气相氧化法

氮掺杂TiO2可见光响应的机理研究

氮掺杂TiO2可见光响应的机理研究 於煌1 刘斌2 潘炜3 1重庆工商大学环境与生物工程学院(400067) 2中国天辰化学工程公司黑龙江分公司(150076) 3武汉凯迪水务有限公司(430223) E-mail:yuhuangmail@https://www.360docs.net/doc/5e6889753.html, 摘 要:综述了N掺杂TiO2具有可见光活性的几种机理,包括杂化能带减小理论、杂质能级理论和氧空缺理论,并指出了以后N掺杂TiO2机理研究的方向。 关键词:可见光;能带减小;杂质能级;氧空缺 1.引言 自1972年Fujishima和Honda[1]报道利用TiO2单晶电极光解水的实验结果以来,人们对半导体光催化剂TiO2在水处理中的应用进行了大量研究。在去除水中难降解污染物方面,半导体光催化剂具有强氧化性、污染物矿化完全,可直接利用太阳光等特点,有望成为一种新型的污水处理工艺。但是,TiO2光催化目前仍处于实验室阶段,在实际应用中仍存在很多困难,阻碍其应用的一个重要因素就是激发光波长的问题。由于TiO2半导体禁带宽度较宽为 3.2 eV,其对应的波长为387 nm属于紫外光区,而紫外光只占到达地球表面太阳光的3 %-4 %,在太阳光谱中占绝大多数的可见光部分(能量约占45%)未得到有效利用[2]。为此众多科研工作者对TiO2进行了大量的改性研究,使其能够响应波长较长的可见光部分[3-7]。在众多改性方法中,非金属元素N掺杂显然成为最近的研究热点。N掺杂TiO2具有明显可见光活性,但其机理目前仍很有争论,其主要观点有杂化带隙减小理论、杂质能级理论和氧空缺理论,下面将做一一介绍。 2.杂化能带减小理论 对N掺杂TiO2的可见光活性,Asahi[6]解释为N的2p轨道与O的2p轨道杂化而使TiO2的禁带减小。 Asahi认为,只有形成的掺杂态符合以下3个条件,才能产生真正可见光的光催化活性:(1)掺杂能够在TiO2带隙间产生一个能吸收可见光的状态;(2)掺杂后的导带能级最小值,包括次级的混合状态,应该和TiO2相等,或者比H2/H2O的电极电位更高,以保证催化剂的光还原活性。(3)新带隙的状态应该和TiO2的带隙状态充分重叠,以保证光生载流子在它们的周期内被传递到催化剂表面进行反应。而条件(2)、(3)要求用阴离子掺杂,原因是阳离子 基金项目:重庆市教委科学技术研究项目(KJ050702) 作者简介:於煌(1981-),男,湖北黄岗市人,硕士研究生,主要研究方向为水污染控制理论与技术。

纳米二氧化钛的制备及其光催化活性的测试

成绩西安交通大学化学实验报告 第页(共页)课程无机化学实验实验日期:年月日专业班号__ __组别____________ 交报告日期:年月日 姓名_ _学号报告退发:(订正、重做)同组者____________次仁塔吉______ __ 教师审批签字: 实验名称纳米二氧化钛粉的制备及其光催化活性的测试 一、实验目的 1.了解制备纳米材料的常用方法,测定晶体结构的方法。 2.了解XRD方法,了解X-射线衍射仪的使用,高温电炉的使用 3.了解光催化剂的(一种)评价方法 二、实验原理 1.纳米TiO2的制备 ①纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于100nm的材 料。 纳米材料由于其组成粒子尺寸小,有效表面积大,从而呈现出小尺寸效应,表面与界面效应 等。 ②纳米TiO2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。 本实验采取最基本的,利用金属醇盐水解的方法制备纳米TiO2,主要利用金属有机醇盐能 溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。 该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。

③制备原理:利用钛酸四丁酯的水解,反应方程如下 ()()4924944Ti OC H 4H O Ti OH 4C H OH +=+ ()()4924944Ti OH Ti OC H TiO 4C H OH +=+ ()()2244Ti OH Ti OH TiO 4H O +=+ 2. TiO 2的结构及表征 我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构: A :板钛矿 B :锐钛矿 C :金红石 无定形的TiO 2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。我们可以通过X-射线衍射仪测定其晶体结构。 纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO 2,晶化态较好,所以几乎没有光催化活性。 多晶相样品根据XRD 测试获得XRD 图谱。根据图谱的衍射角度对应的峰,我们可以测定各晶相的含量。【用晶相含量百分比表示】(其中20-25为金红石型的特征衍射峰,25-27为锐钛矿型的特征衍射峰) 100%= ?+A A A R A C A A

非金属元素掺杂二氧化钛纳米管的研究进展_肖羽堂

2010年第29卷第7期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1235· 化工进 展 非金属元素掺杂二氧化钛纳米管的研究进展 肖羽堂,李志花,许双双 (南开大学环境科学与工程学院,天津 300071) 摘 要:TiO2纳米管对大部分可见光不能进行有效地吸收利用,成为其实际应用的“瓶颈”。非金属元素掺杂TiO2纳米管可以有效地减小TiO2带隙,拓展光谱响应范围。本文介绍了非金属掺杂TiO2纳米管的原理和制备方法,对非金属单一元素掺杂、非金属与其它元素共掺杂TiO2纳米管的研究现状进行了详细的评述,指出了非金属掺杂TiO2纳米管过程中存在的问题和未来的研究方向。 关键词:二氧化钛;纳米管;非金属元素;掺杂;可见光 中国分类号:O 643文献标识码:A文章编号:1000–6613(2010)07–1235–06 Research advances of nonmetal doped titania nanotubes XIAO Yutang,LI Zhihua,XU Shuangshuang (Environmental School of Science and Engineering,Nankai University,Tianjin 300071,China )Abstract:TiO2 nanotubes can not effectively absorb most of the visible light,which becomes the “bottleneck”for its practical application. Nonmetal element-doped TiO2 nanotubes can effectively reduce the TiO2 band gap and expand the scope of spectral response. This paper briefly describes the principles of and preparation methods for nonmetal-doped TiO2 nanotubes. The research advances of nonmetal single-element doping and nonmetal co-doping with other elements are discussed in detail. Current existing problems and future developing trends in this area are also discussed. Key words:titania;nanotubes;nonmetal element;dope;visible light 纳米TiO2材料具有湿敏、气敏、介电效应、光致变色及优越的光催化等性能,在光催化剂、光解产氢、太阳能电池等领域具有巨大的应用价值[1-3]。纳米TiO2材料有多种存在形式,如TiO2纳米粉体、负载型TiO2纳米薄膜、TiO2纳米管等。其中TiO2纳米管是纳米TiO2的一种新型存在形式,它具有独特的空心管状结构、更大的比表面积、特殊的表面区域和孔体积,使其表现出独特的物理化学性质。与常见的TiO2纳米颗粒和负载型TiO2纳米薄膜相比[4-6],TiO2纳米管的吸附能力更强,表面活化能更高,有望表现出更高的光催化活性和光电转换效率。不仅如此,纳米管可能会表现出更强烈的纳米效应。此外TiO2纳米管良好的离子交换能力、较高的质子传导能力和光致发光能力也引起研究者的兴趣,成为纳米材料光催化领域研究的热门课题。 然而与传统TiO2一样,TiO2纳米管阵列也存在固有缺陷,成为其实际应用的“瓶颈”。由于TiO2带隙较宽,对大部分可见光不能进行有效地吸收利用,同时又因光生电子与空穴容易复合而表现出较低的光量子效率。通过对其掺杂改性,可在一定程度上解决这些问题。特别是若能在纳米管中掺杂部分金属、非金属元素等制成复合纳米材料,则TiO2纳米管的光电转化效率和光催化性能将得到大大的改善[7-8]。早在1986年Sato等[9]就发现,氮的引入 收稿日期:2009-11-20;修改稿日期:2009-01-02。 基金项目:天津市应用基础及前沿技术研究计划(08JCYBJC 02600)及国家水体污染控制与治理科技重大专项(2008ZX07314-005-011)资助项目。 第一作者简介:肖羽堂(1966—),男,教授,博士生导师,主要从事水处理技术、污水处理与回用技术、废水零排放技术与工程开发研究。E-mail xiaoyt@https://www.360docs.net/doc/5e6889753.html,。

相关文档
最新文档