泛函分析第七章 习题解答1-25

泛函分析第七章 习题解答1-25
泛函分析第七章 习题解答1-25

第七章 习题解答

1.设(X ,d )为一度量空间,令

}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U

问),(0εx U 的闭包是否等于),(0εx S ?

解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。

2. 设 ],[b a C ∞

是区间],[b a 上无限次可微函数的全体,定义

)()(1)()(ma x 21

),()()()()(0

t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞

=∑

证明],[b a C ∞

按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则)

()(1)()(max

)

()

()()(t g t f

t g t f r r r r b

t a -+-≤≤=0,即f=g

(2))()(1)()(max 2

1

),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞

=∑ )()(1)()()()(1)()(ma x 21

)()()()()()()()(0

t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞

=∑ )()(1)()(max 21

)()(1)()(max 21)()()()(0

)()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞

=∑∑ =d (f ,g )+d (g ,h )

因此],[b a C ∞

按),(g f d 成度量空间。

3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞

=1。

证明 令n n n o n n

B x d Bo o .2,1},1

),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使

n x x d 1),(10<

。设,0),(1

10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1。若n n o x ∞=?∈1则对每一个n ,有B x n ∈使n x x d 1

),(1<,因此

)(∞?→??→?n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞

=1。

4. 设d (x ,y )为空间X 上的距离,证明)

,(1)

,(),(___

y x d y x d y x d +=

是X 上的距离。

证明 (1)若0),(___

=y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而

t

t

+1在),[∞o 上是单增函数,于是)

,(),(1)

,(),(),(),(1),(),(___

___

z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

=

)

,(),(1)

,(),(),(1),(z y d z x d z y d z y d z x d z x d +++++

)

,(1),(),(1),(z y d z y d z x d z x d +++≤=),(),(___

__z y d z x d +。 5. 证明点列{n f }按习题2中距离收敛与],[b a C f ∞

∈的充要条件为n f 的各阶导数在 [a ,b]上一致收敛于f 的各阶导数。

证明 若{n f }按习题2中距离收敛与],[b a C f ∞

∈,即 )()(1)

()(m a x 2

1

),()

()()()

(0t f t f t f t f f f d r r n r r n b t a r r n -+-≤

≤≤∞

=∑——>0 )(∞?→?n 因此对每个r ,)()(1)()(max 2

1

)()()()

(0t f t f t f t f r r n r r n b

t a r r -+-≤≤∞

=∑——>0 )(∞?→?n ,这样 b

t a ≤≤max )()()()

(t f t f r r n -——>0 )(∞?→?n ,即)()(t f r n 在 [a ,b] 上一致收敛于)()

(t f r 。 反之,若的n f (t )各阶导数在[a ,b]上一致收敛于f (t ),则任意o >ε,存在0r ,使

2211ε<∑∞

+=o r r r

;存在r N ,使当r N n >时,max )()()

()(t f t f r r n - 00

,2,1,0,2r r r =<ε,取N=max{ N N N 1},当n>N 时,)()(1)

()(max 21

),()

()()()

(0

t f t f t f t f f f d r r n r r n b t a r r n -+-≤

≤≤∞

=∑ )()(1)()(max 2

1)()()()

(0t f t f t f t f r r n r r n b t a r r -+-≤≤≤∞

=∑∑∞+=+121o r r r εεε=+<22.00r r 即),(n f f d ——>0 )(∞?→?

n 。 6. 设],[b a B ?,证明度量空间],[b a C 中的集{f|当t ∈B 时f (t )=0}为],[b a C 中的闭集,而集A={f|当t ∈B 时,|f (t )|〈a }(a >0)为开集的充要条件是B 为闭集。

证明 记E={f|当t ∈B 时f (t )=0}。设E f n ∈}{,}{n f 按],[b a C 中度量收敛于f ,即在[a ,b]上)(t f n 一致收敛于f (t )。设B t ∈,则0)(lim )(==∞

>-t f t f n n ,所以f ∈E ,这就证明了

E 为闭集

充分性。当B 是闭集时,设f ∈A 。因f 在B 上连续而B 是有界闭集,必有B t ∈0,使)(max )(0t f t f B

t ∈=。设 0)(0>=-δt f a 。我们证明必有A f U ?),(δ。设

),(δf U g ∈,则若B t ∈,必有δ<-)()(t g t f ,于是

a t f t f t g t f t g =+<+-≤)(||)(|)()(|)(|0δ,所以A g ∈,这样就证明了A 是开集

必要性。设A 是开集,要证明B 是闭集,只要证明对任意.....2,1,=∈n B t n 若

0t t n >-)(∞?→?

n ,必有B t ∈0。 倘若B t ___

0∈,则定义||)(0t t a t f o --=。于是对任意B t ∈,a t t a t f o <--=||)(0因此

A t f o ∈)(由于A 是开集,必有0>δ,当∈f C[a ,b]且δ<),(0f f d 时,A f ∈。定义,

n=1,2。。。。。则)(0||),(00∞>->--=n t t f f d n n

因此当δ<-||0t t n 时,A f n ∈。但是a t t t t a t f n n n =-+--=||||)(00,此与A f n ∈的必要条件:对 任意B t ∈,有a t f n <)(矛盾 因此必有B t ∈0。

7. 设E 及F 是度量空间中的两个集,如果o F E d >),(,证明必有不相交开集O 及G 分别包含E 及F 。

证明 设o F E d >=δ),(。令 }2

),(|{},2),(|{δ

δ

===

=F x d x G E x d x o

则,,G F O E ??且Φ≠?G O ,事实上,若Φ≠?G O ,则有

Φ

≠?∈G O z ,所以存

在E 中的点x 使2

),(δ

〈z

x d ,F 中点y 使2

),(δ〈z

y d ,于是δ〈),(),(),(z

y d z x d y x d +≤,此与≥),(y x d ),(F E d δ=矛盾。

8. 设 B[a ,b]表示[a ,b]上实有界函数全体,对B[a ,b]中任意两元素f ,g ∈ B[a ,b],规定距离为|)()(|sup ),(t g t f g f d b

t a -=≤≤。证明B[a ,b]不是可分空间。

证明 对任意∈0t [a ,b],定义{

)},[,2),[,1)(00b t t t a t t f o t ∈∈=

则)(0t f t ∈B[a ,b],且若21t t ≠,1),(21=t t f f d 。 倘若B[a ,b]是不可分的,则有可数

稠密子集

{}

n g n ∞

=1,对任意∈0t [a ,b],)2

1,(0

t f U 必有某

n g ,即2

1

),(0<

t n f

g d 。由于[a ,b]上的点的全体是不可数集。这样必有某n g ,21,t t ,使n g ∈)21,(1t f U ,n g ∈)2

1

,(2t f U ,于是12

1

21),(),(),(2121=+<+≤t n n t t t f g d g f d f f d 此与1),(21=t t f f d 矛盾,因此B[a ,b]

不是可分空间。

9. 设X 是可分距离空间,?为X 的一个开覆盖,即?是一族开集,使得对每个X x ∈,有?中的开集O ,使得O x ∈,证明必可从?中选出可数个集组成X 的一个开覆盖。 证明 若X x ∈,必有?∈x O ,使x O x ∈,因x O 是开集,必有某自然数n ,使x O n

x U ?)1

,(。 设

{}

n x n ∞=1

是X 的可数稠密子集,于是在)21,

(n x U 中必有某)21

,(n

x U k ,且x k O n x U ?)21,

(。。事实上,若)21

,(n

x U y k ∈,则

n

n n x x d x y d x y d k k 12121),(),(),(=+<+≤所以)21

,(n x U y k ∈x O ?。

这样我们就证明了对任意X x ∈,存在k ,n 使)21,(n x U x k ∈且存在O n

x U k ?)21

,(

任取覆盖)21

,(n x U k 的O ,记为n k O ,是X 的可数覆盖。

10. X 为距离空间,A 为X 中子集,令,.),,(inf )(X x y x d x f A

y ∈=∈证明)(x f 是X 上连续

函数。

证明 若,.0X x ∈对任意0>ε,存在A y ∈0,使200)(2

),(inf ),(εε

+=+

<∈x f y x d y x d A

y o 。

取02>=

εδ。则当δ<),(0x x d 时,

ε+<+≤≤=)(),(),(),(),(inf )(0000x f y x d x x d y x d y x d x f o

因此ε<-)()(0x f x f 。由于x 与0x 对称性,还可得ε<-)()(0x f x f 。于是

ε<-|)()(|0x f x f 。这就证明了)(x f 是X 上连续函数。

11. 设 X 为距离空间,21,F F 是X 中不相交的闭集,证明存在开集21,G G 使得

221121,,F G F G G G ??Θ=?。

证明 若1F x ∈,则由于2F x ?,2F 为闭集,必有0>x ε,使Θ=?2),(F x U x ε,令

)2

,

(1

1x

F x x U

G ε∈= ,类似)2

,

(2

2y

F x y U

G ε∈= ,其中Θ=?1),(F y U y ε,显然21,G G 是开

集,且2211,F G F G ??。 倘若,21Θ≠?G G ,则必有,1F x ∈2F y ∈,使

Θ≠)2

,

()2

,

(x

y

x U y U εε 。设)2

,

()2

,

(x

y

x U y U z εε ∈。不妨设y x εε≥,则

x y

x

y x y z d z x d x y d εεεεε≤+

<

+≤≥2

2

),(),(),(因此),(x x U y ε∈,此与

Θ=2),(F x U x ε矛盾。这就证明 了Θ=?21G G 。

12 . 设 X ,Y ,Z 为三个度量空间,f 是X 到Y 中的连续映射,g 是Y 到Z 中的连续映射,证明复合映射))((())(.(x f g x f g =是X 到Z 中的连续映射。

证明 设 G 是Z 中开集,因g 是Y 到Z 中的连续映射,所以)(1

G g -是Y 中开集。又f 是X 到Y 中的连续映射,故))((11

G g f

--是X 中 的开集。这样))

(()().(1

11G g f G f g ---=是X 中 的开集,这就证明了g 。f 是X 到Z 的连续映射。

13. X 是度量空间,证明f 是连续映射的充要条件是对每个实数c ,集合

})(,|{c x F X x x ≤∈和集合})(,|{c x F X x x ≥∈都是闭集。

证明 设 f 是X 上连续的实函数,又对每一实数c ,G=(c ,∞)是开集,于是

})(,|{)(1

c x F X x x G f

>∈=- 是开集。这样})(,|{c x f X x x ≤∈=

})(,|{c x f X x x C >∈是闭集。同理})(,|{c x f X x x ≥∈是闭集。 反之,若对每个实数

c ,})(,|{c x f X x x ≥∈和})(,|{c x f X x x ≤∈都是闭集,则})(,|{c x f X x x <∈和})(,|{c x f X x x >∈都是开集。

设G 是直线上的开集,则 ∞==1

),(i i i b a G 或 n

i i i b a G 1

),(==,其中),(i i b a 是G 的构成区间。不妨设 ∞

==

1

),(i i

i

b a G 于是

})

)(,|({}))(,|({})(,|{)(1

1

1

i i i i i i b x f X x x a x f X x x b x f a X x x G f <∈>∈=<<∈=∞

=∞

=- 是开集。因此f 是连续的实函数。

14. 证明柯西点列是有界点列。

证明 设{ n x }是X 中的柯西点列。对1>0,存在N ,使当n ,m N ≥时,.1),(

i x x d M 则对任意n x 有M x x d N n ≤),(。因此{ n x }是有界点列。

15. 证明第一节中空间S ,B (A ),以及离散的度量空间都是完备的度量空间。

证明 (1)S 是完备的度量空间 设{ n x }是S 中的柯西点列,),,(.)()

(2

)

(1 n i n n n x ξξξ=对每一个固定的i ,由于

)0(0212>->--t t t i i ,因此对任意,0>ε存在0>δ,当δ≤≤t 0时ε<-t

t

i

i 212,对此0>δ

,存在n ,m N ≥时,δξξξξ<-+-=∑∞

=1)

()()()(||1||21),(i m i

n i m i n i i m n x x d ,因此δξξξξ<-+-∑∞

=1)()()()(||1||21i m i n i

m i n i i ,从而||)()(m i n i ξξ-〈εδ

δ

<-i i 212。这样对固定的i ,∞=1)(}{n n i ξ是柯西点列。设)()

(∞>->-n i n i ξξ。令),,(21 i x ξξξ=,故有S x ∈,且对任意给定

o >ε,存在0i ,使

∑∞

+=<10221i i i

ε。存在),1(,0i i N i ≤≤使i N n >时,0

)

(2||i i n i εξξ<-。于是当},max {01i N N N n =>时,

∑∞=-+-<1)()

(||1||2

1

i n i

i n i

i i

ξξξξ≤

∑=-+-0

1)()()(||1||21i i m i

n i m i i i ξξξξ+∑∞

+=10

21

i i i

〈εεε=+2.200i i 所以{n x }按S 的距离收敛于x (2)B (A )是完备的度量空间

设∞

=1}{n n x 是B (A )中的柯西点列,任意0>ε,存在N ,使当n ,m N ≥时ε<),(m n x x d 。这样对任意A t ∈,ε<-≤-∈|)()(|sup |)()(|t x t x t x t x m n A

t m n 。因此对固定的t ,{ )(t x n }

是柯西点列。设))(()(∞>->-n t x t x n ,由于n ,m N ≥时ε<-|)()(|t x t x m n ,令∞>-m ,得ε≤-|)()(|t x t x n ,这样ε+≤|)(||)(|t x t x n ,于是+∞<+≤ε|)(|sup |)(|sup t x t x n 故x ∈(A ),

且n 〉N 时,ε≤-∈|)()(|sup t x t x m n A

t 。这就证明了按B (A )中距离收敛

于x 。

(3)离散的度量空间(X ,d )是完备的度量空间 设∞

=1}{n n x 是X 中柯西点列,则对21>0,存在N ,当n ,m N ≥是2

1

),(N, 2

1

),(N 是N n x x =。因此)(∞>->-n x x N n ,即(X ,d )是完备的度量空间。

16. 证明 ∞l 与C (0,1]的一个子空间等距同构。

证明 若 ),,(21 i x ξξξ=∞

∈l ,定义]1,0(],1,0(),(∈∈t C t x T , 2,1),1

,11(

;1,),(=+∈==i i

i t i t t x T i 或线性,ξ 若),,(21 i x ξξξ=∞

∈l ,),,(21 i y ηηη=∞∈l ,则

),(|),(),(|sup ||sup ),(]

1,0(Ty Tx d t y T t x T y x d t i i =-=-=∈ηξ因此T 到∞l 到(0,1]的子空间

的一个同构映射,即∞l 到(0,1]的一个子空间等距同构。

17. 设F 是n 维欧几里得空间n

R 的有界闭集,A 是F 到自身中的映射,并且适合下列条件:对任何F y x ∈,)(y x ≠,有),(),(y x d Ay Ax d <。 证明映射A 在F 中存在唯一的不动点。 证明 定义F 上的函数f (x )=d (Ax ,x )。由于

),(2),(),(|),(),(||)()(|y x d y x d Ay Ax d y Ay d x Ax d y f x f <+≤-=-因此f 是F 上的连

续映射,因F 是有界闭集,必有F x ∈0,使)(min )(00x f x Ff x F

x ∈=∈。

我们先证明0)(0=x f ,若0)(0≠x f ,则00x Ax ≠。记01Ax x =,则02

1x A Ax =,于是

)(),(),(),()(000002111x f x Ax d Ax x A d x Ax d x f =<==

此与)(0x f 是f 的最小值矛盾。故0),(00=x Ax d 即0Ax =0x

若1x 是A 的另一个不动点,则),(),(),(101010x x d Ax Ax d x x d <=,矛盾。

18. 设X 为完备度量空间,A 是X 到X 中的映射,记),()

,(sup 11x x d x A x A d a n n z

x n ≠=

∞<∑

=n n a 1

,则映射A 有唯一不动点。

证明 因

∞<∑

=n n a 1

,则必有N ,使1

),(),(11x x d a x A x A d N n

N ≤

这样由压缩映射原理N A 有不动点*x ,即*x =N A *x 。由于N A *x =A N A *x =A *x , A *

x 也是

N A 的不动点。N A 的不动点是唯一的,因此*x = A *x ,即*x 是A 的不动点。

若x ’是A 的任意一个不动点,即A x ’= x ’。于是N A x ’=1

-n A

x ’=…= A x’= x’。这样x’也是N

A

的不动点,由于N

A 的不动点是唯一的,因此*x = x’。即A 的不动点也是唯一的。

19. 设A 为从完备度量空间X 到X 中映射,若在开球),(0r x U )0(>r 内适合 .10),',()',(<<≤θθx x d Ax Ax d

又A 在闭球}),(|{),(00r x x d x r x S ≤=上连续,并且.)1(),(00r Ax x d θθ-≤ 证明:A 在),(0r x S 中有不动点。

证明 设n x =n

A 0x ,2,1=n …。则

r x Ax d x A x A d x A x A d x x d n n n n n n n n )1(),(),(),(),(00102010101θθθθ-≤<<=-----

任给ε>0,存在N ,使N

θr

ε

<

,这样若,n m >且N m n >,,有.)1()1()1(),(),(),(),(1211211εθθθθθθθθ<<<-++-+-≤+++≤+++-+++r r r r r x x d x x d x x d x x d N n m n n m m n n n n m n

因此

}

{1

n x n ∞=是柯西列。设n x →*

x )(∞→n ,因

r r r r r x x d x x d x x d x x d n

i i

n n n n n n n <-=-++-+-≤+++<∑=----)1()1()1()1(),(),(),(),(1

1012110θθθθθθθθ

因此),(),(00r x S r x U x n ?∈。这样),(lim 0*

r x S x x n ∈=∞

>-。因为A 在),(0r x S 上连续。

*1*lim lim x x Ax Ax n n n n ===+∞

>-∞

>-,即*x 是A 在),(0r x S 中的不动点。

A 的不动点不一定是唯一的。例如X 是离散的度量空间。A 是X 中的恒等映射。在开球

)1,(0x U 内只有0x 一点,自然满足条件.10),',()',(<<≤θθx x d Ax Ax d 。而0),(00=Ax x d ,也满足.)1(),(00r Ax x d θθ-≤。但X 中每一点皆为A 的不动点。

20. 设 n k j a jk ,2,1,, =为一组实数,适合条件1)(2

1

,<-∑=n

j i ij ij

a

δ,其中jk δ当j=k 时

为1 ,否则为0。证明:代数方程组

1111221121122222

1122n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=??

??????????

?+++=? 对任意一组固定的1b ,,2b ,n b ,必有唯一的解1x ,2x ,n x 。 证明 记定义n

R 到n

R 内的映射T :TX= --AX+X+b 。设X ∈'

X n

R 则

)

,())(()

))()

(())))((((),('2

11

,22

11

21

'1

2

2

11

21

''

X X d a x x a x x a TX TX d n

j i ij ij n i n

j j j

n

j ij ij n i n

j j j

ij ij ∑∑∑∑

∑∑======-≤--≤--=δδδ

由于

2

11

,2))(∑=-n

j i ij ij

a

δ<1,于是T 有唯一不动点*X ,即****X b X AX TX =++-=,因此

b AX =*有唯一解*

X 。

21. 设],[b a V 表示[b a ,]上右连续的有界变差函数全体,其线性运算为通常函数空间中的运算。在],[b a V 中定义范数x =)()(x V a x b

a +,证明],[

b a V 是Banach 空间。

证明 ],[b a V 显然是线性空间。下证],[b a V 是赋范线性空间。

1. 若∈x ],[b a V ,显然x ≥0。

若x =0,则)()(x V a x b

a

+=0,即)(a x =0,且)(x V b

a

=0。由)(x V b

a

=0可知x 在],[b a 上为常值

函数,于是0)()(=≡a x t x

2. 若∈x ],[b a V ,),,(+∞-∞∈λ

x x V a x x V a x x b

a

b a

λλλλλλ=+=+=)()()()(

3. 若],[,b a V y x ∈,

)())((y x V a y x y x b a

+++=+)()()()(y V x V a y a x b

a

b a

+++≤

其中)(y x V b a

+)()(y V x V b

a

b a

+≤的理由如下:对任意分划,:10b t t t a T n =<<<=

,)()()()())(())((1

11

11

1

∑∑∑=-=-=--+-≤+-+n

i i i n i i i n

i i i

t y t y t x t x t

y x t y x 因此

)

()(})()({sup })()({sup }))(())(({sup )(1

11

11

1y V x V t y t y t x t x t y x t y x y x V b

a

b

a

n

i i i T

n

i i i T

n

i i i T

b

a

+=-+-≤+-+=+∑∑∑=-=-=-再证],[b a V 是完备的。

设}{n x 为],[b a V 中柯西列,对任意0>ε,存在N ,当N m n ≥,时,

ε<-+-=-)()()(m n b

a

m n m n x x V b x a x x x 。于是,ε<-)()(b x a x m n 。而对任意

],(b a t ∈,ε<-≤---)())()(())()((m n b

a

m n m n x x V a x a x t x t x

从而εε2)()()()((<+-≤-a x a x t x t x m n m n

这就证明了{)(t x n }是],[b a 上一致收敛的函数列。设}{n x 一致收敛于x 。

由于n x 是],[b a 上右连续的函数,于是对任意),[0b a t ∈,.2,1),()(lim 00

==→n t x t x n n t x 因

为}{n x 在],[b a 上一致收敛于x 。因此

)()(lim )(lim lim )(lim lim )(lim 000

00

t x t x t x t x t x n n n t t n n n t x t x ====∞

→→∞→∞

→→→+

++即x 亦在],[b a 上右连续。 对任意0>ε,存在N ,当N m n ≥,时,m n x x -=ε<-+-)()()(m n b

a

m n x x V a x a x

对],[b a 上的任一分划b t t t a T l =<<<= 10:,有

ε

<-=-≤---∑=--)()()())()(())()((1

11m n b

a

m n l

i i m i n i m

i

n

x x V a x a x t x t x t x

t x 令∞→m ,

ε≤---∑=--l

i i i n

i

i

n

t x t

x t x t x 1

11

))()(())()(( (*)

因此,从而].,[)(b a V x x x x n n ∈--=由(*)式及分点的任意性知,.)(ε≤-x x V n b

a

从而

.2)()()(ε≤-+-=-x x V a x a x x x n b

a

n n

即}{n x 按],[b a V 中范数收敛于x 。这样我们就证明了],[b a V 是完备的赋范线性空间,即

B a n a c h

空间。 22.设 ,,21X X 是一列Banach 空间,},,{21 n x x x x = 是一列元素,其中n n X x ∈,,,2,1 =n 并且

,1

∞<∑∞

=p n n

x

这种元素列的全体记成X ,类

似通常数列的加法和数乘,在X 中引入线性运算。若令,)(1

1

p

p n n

x

x ∑∞

== 证明:当1

≥p 时,X 是Banach 空间。

证明 X 显然是线性空间。 先证X 是赋范线性空间。

1. 若,),,(21X x x x ∈= 显然0≥x 。

若0=x ,则,0)(

11

=∑∞

=p

p n n

x

即对任意n ,0=n x 。于是0=n x ,从而0=x 。

2. 若X x x x ∈=),,(21 ,),,(+∞-∞∈λ

x x x x p

p

p

n n p

n n λλλλ===∑∑∞

=∞

=11)()(1

1

3. 若,),,(21X x x x ∈= X y y y ∈=),,(21 ,则

n

n p

n n p

n n p

n n n p

n n n y x y x y x y x y x p

p

p

p

+=+≤+≤+=+∑∑∑∑∞

=∞

=∞

=∞

=1111))(())(())(()(1

1

1

1

再证X 是完备的。设}{~

i x 是X 中柯西列,其中

.,2,1),,,()

(2)(1~

==i x x x i i i

对任意,0>ε存在0i ,使当0i j >时,,~

~

ε<-j i x x 即ε<-∑∞

=p

p

n j n

i n

x

x

1))((

1

)()

(

于是对每一个固定的}{,)(i n x n 是n X 中的柯西列。设.)

()(∞→→i n

i n x x 令),,(21 x x x =,由于ε<-∑∞

=p

p

n j n

i n

x

x

1))((

1

)()

(,因此对任意K ,

ε<-∑=p

p

K

n j n i n x x 1

))((1

)

()(,令∞→j 得 .1,1

)()(≥≤-∑=p x x

p p

K

n j n

i n

ε

再令∞→K 得

.1,1

)(≥∞<≤-∑∞

=p x x

p p

n n

i n

ε

因此,~

X x x i ∈-从而X x x x x i i ∈--=)(~

~

,且由ε≤-∑∞

=p

p

n n i n

x x

1)(

1

)(

知~

i x 按X 的范数收敛于x 。由以上证明可知X 是Banach 空间。证毕。

23.设X 是赋范线性空间,X*X 为两个X 的笛卡儿乘积空间,对每个,*),(X X y x ∈定义

,),(2

2y x y x +=

则X*X 成为赋范线性空间。证明X*X 到X 的映射y x y x +→),(是连续映射。 证明 设),)(,(),(00∞→→n y x y x n n 则

),(02

2

∞→→-+-n y y x x n n

于是).(0,000∞→→-→-n y y x x n n 所以,

.0)()(0000→-+-≤--+y y x x y x y x n n n n

这就证明了y x y x +→),(是连续映射。

24. 设A 是实(复)数域,X 为赋范线性空间,对每个X X x *),(∈α,

定义,,2

2x x +=

αα

证明:x x αα→),(为X X *到X 中的连续映射。 证明 设),,(),(00x x n n αα→同第23题一样可证

),(,00∞→→→n x x n n αα 由于}{n α收敛,必有0>M ,使.M n ≤α则

).

(0000000000∞→→-+-≤-+-≤-n x x x M x x x x x x n n n n n n n n αααααααα因此映射x x αα→),(是连续的。

25. C 为一切收敛数列所成的空间,其中的线性运算与通常序列空间相同。在C 中令

,}{,sup C x x x x n i i

∈==证明:C 是可分的Banach 空间。

证明 由第七章§4例1知是Banach 空间。由定义易知C 是∞

l 中的线性子空间,且范数定义是一致的。因此要证C 是Banach 空间,由§4定理1,只要证C 是∞l 中的闭子空间即可。设,}{C x n ?).(0);,,(,);,,(21)(2)(1∞→→-=∈=∞

n x x x l x x n n n n ξξξξ 对于任意,0>ε存在,N 使N n ≥时,有3

ε

<-x x n 。特别地,3

ε

<

-x x N

即,3sup )

ξξ<

-i N i

i

由于,C x N ∈因此存在,K 对任意,,K j i >.3

)()(ε

ξξ<-N j N i 于是.3

3

3

)()()()(εε

ε

ε

ξξξξξξξξ=+

+

<

-+-+-≤-j N j N j N i N i i j i

于是}{i ξ是柯西列,即.),,(21C x ∈= ξξ 下面证明C 是可分的。

设.,2,1},,),,,,,,(|{1 =∈∈==n Q r Q r r r r r x x A i n n 则,

C A n ∈C A

n n

?∞

= 1

=1

n n

A

是可数的。若对任意,),,,(1C x x x n ∈= 设.lim a x n n =∞

→对于任给的,0>ε存在,

N 使当N n >时,必有2

ε

<

-a x n 。取有理数,r 使.2

ε

<

-r a 取有理数,,,,21N r r r 使

.,,2,1,N i r x i i =<-ε 令),,,,,,(1 r r r r y N =则,1

=∈n n A y 且

.},,,,,sup{12211ε<----=-+ r x r x r x r x y x N N N 故 ∞

=1

n n A 是C 的

可数稠密子集。这就证明了C 是可分的B a n a c h 空间。证毕。

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整word版)泛函分析习题标准答案

第二章 度量空间 作业题答案提示 1、 试问在R 上,()()2,x y x y ρ=- 能定义度量吗? 答:不能,因为三角不等式不成立。如取 则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、 试证明:(1)()1 2 ,x y x y ρ= -;(2)(),1x y x y x y ρ-= +-在R 上都定 义了度量。 证:(1)仅证明三角不等式。注意到 2 11 22x y x z z y x z z y ?? -≤-+-≤-+- ? ?? 故有1 112 22 x y x z z y -≤-+- (2)仅证明三角不等式 易证函数()1x x x ?=+在R +上是单调增加的, 所 以 有 ()() a b a b ??+≤+,从而有 1111a b a b a b a b a b a b ++≤≤+ ++++++ 令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y z y x z x y z ---≤+ +-+-+-

4.试证明在[]b a C ,1 上,)12.3.2()()(),(?-=b a dt t y t x y x ρ 定义了度量。 证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。 []) ,(),()()()()()()()()()()(),()2(y z z x dt t y t z dt t z t x dt t y t z dt t z t x dt t y t x y x b a b a b a b a ρρρ+≤-+-≤-+-≤-=???? 5.试由Cauchy-Schwarz 不等式证明 ∑∑==≤?? ? ??n i i n i i x n x 12 2 1 证:∑∑∑∑=====?≤?? ? ??n i i n i n i i n i i x n x x 12 12 122 11 8.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积 21R R R ?=上定义了度量 {}2 12/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。(1)略。 (2) 设12(,)x x x =,12(,)y y y =12R R ∈?,则

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析习题解答

第一章 练习题 1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下: (,)|()()|,,([,])b a f g f x g x dx f g C a b ρ=-?∈?, (1)([,])C a b 按ρ是否完备? (2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2, n =,定义 ,01, ():1,1 2. n n x x f x x ?≤<=? ≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为 1 11 (,)|()()|110,(,).11 n m n m n m f f f x f x dx x dx x dx m n n m ρ=-≤+= +→→∞++??? 另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有 0,[0,1) ()()1,[1,2].n x f x g x x ∈?→=? ∈? 因此, 根据Lebesgue 有界收敛定理, 可以得到 1 1 1 00(,)|()()|1 |0|0.1 n n n n f g f x g x dx x dx x dx n ρ=-=-==→+??? 但()([0,2])g x C ?. (2) ([,])C a b 的完备化空间是1 ([,])L a b . 因为 (i) 在距离ρ的意义下, ([,])C a b 是1 ([,])L a b 的稠密子集. 事实上, 任意取定一个 1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得 [,] (,)|()()|a b f g f x g x dx ρε=-, 使得当[,]E a b ?, 只要mE δ<, 就有

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

电子科技大学 泛函分析(江泽坚) 作业题答案

P46: 第一章习题: 1.验证(),()d m 满足距离定义。 解:设{}i x ξ=,{}i y η=属于X ,α是数,()1 ,sup .j j j d x y ξη≥=- (1)对j ?,有0j j ξη-≥,所以1 sup j j j ξη≥-,(),0d x y ≥, 且1 sup 00j j j j j j j ξηξηξη≥-=? -=?=,即(),0d x y =当且仅当.x y = (2) ()()1 1 ,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=; (3)设{}i z ζ= ()()1 1 1 1 ,sup sup ()()sup sup ,(,) j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满足距离定义。 3.试证明:在空间()s 中的收敛等价于坐标收敛。 证:设{}()(),1,2, n n j x s n ξ= ∈=,{}()(0)0j x s ξ= ∈, ()?若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞ ==, 否则,j N + ?∈,00ε>,与正整数列的子序列{}1k k n ∞ =,使()(0) 0,1,2, k n j j k ξξε-≥=, 因为()1t f t t = +是单调递增, 所以() ()(0)0 0()(0)011,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥?≥?=++-, 这与() 0,0k n d x x →矛盾, 故()s 中的收敛可推出坐标收敛。 ()?若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ?,0ε?>,0N N + ?∈,0n N ?>, ()(0)2 n j j ε ξξ-<, ()() (0) 0()(0) 1111,,1,2,22 11n j j n j j n j j j j d x x k ξξε εξξ∞ ∞==-=?

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

应用泛函分析复习资料小结

-` 第一章实分析概要 本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。 第一节集合及其运算第 二节实数的完备性第三 节可数集与不可数集 第四节直线上的点集与连续函数第 五节点集的勒贝格测度与可测函数

-` 1

-` 第六节勒贝格积分 第一节集合及其运算 1)A∪A=A,A∩A=A; 2)A∪ Φ=A,A∩ Φ=Φ; 3)若A?B,则A∪B=B,A∩B=A,A\B=Φ; 4) 设X为基本集,则 A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \ B = A ∩ B C 又若A?B,则A C?B C。 集合的运算法则: 2

-` 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ; 结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C; ( A∩B) ∩C=A∩ (B∩C) =A∩B∩C; 分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ; ( A∩B) ∪C= ( A∪C) ∩ (B∪C) ; ( A \ B) ∩C= ( A∩C) \ (B∩C) . 定理 1.1 设X为基本集,Aα为任意集组,则 1) ( U Aα )C=I ( Aα )C (1.6) α∈I α∈I 2) ( I Aα )C=U ( Aα )C (1.7) α∈I α∈I A \ ( A \ B)= A I B 3

第二节实数的完备性 2.1有理数的稠密性 2.2实数的完备性定理 定义 2.1(闭区间套) 设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

泛函分析答案2:

泛函分析期末复习题(2005-2006年度) (1)所有矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在维欧几里德空间上常用的距离定义 (6)距离空间上的收敛是如何定义的? (7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)空间是如何构成的?在怎样的内积定义下其可以成为一个希尔伯特空间?(12)什么是算子?为什么要求算子的定义域是一个子空间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设为一个线性赋范空间,而为一个Banach空间。那么从到的线性算子所构成的空间是否构成一个Banach空间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数? (20)什么是线性赋泛空间的共轭空间?线性赋泛空间的共轭空间是否总是完备的?(21)什么是弱收敛?弱收敛与强收敛之间是什么关系? (22)什么是的Gateaux微分? (23)什么是泛函的(一阶)变分?它是如何定义的? (24)形如的泛函,其对应的Euler-Lagrange方程是什么? (25)什么是结构的应变能密度?什么是余能密度?二者关系如何?试画图说明。(26)有限元方法的本质是什么?瑞兹+具有局部紧支集的分片插值函数 (27)什么是最小势能原理?最小势能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得势能泛函取最小值的位移函数对应结构真实的位移场。(28)什么是最小余能原理?最小余能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得余能泛函取最小值的位移函数对应结构真实的应力场。(29)什么是Hellinger-Reissner混合变分原理?推导并证明使得余能泛函取最小值的位移函数和应力函数对应结构真实的位移场和应力场。

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

应用泛函分析习题解答

1 泛函分析与应用-国防科技大学 第 一 章 第 一 节 3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞?ε,0N ?,当0,N n m >时,有εε<-?<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。取0N m =,则有 0 ,0N n x x N n >+<ε, 令},,,,max{0021ε+=N N x x x x c ,则 1 ,≥?ε,总0N ?,当0,N p n ≥时,有 ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必 存在E ∈x ,使得∑∑∞ ==∞ →==1 1 lim k k n k k n x x x 。 9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。通常用E dim 表示 E 的维数, 并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。证明酉空间n C 的维数为n ,并问当视n C 为实线性空间时,其维数是多少? 证明:设n y x C ∈,,C ∈βα,, 则有n y x C ∈+βα。令)0,0,1,0,0( 项 共项 第n k k =e ,则对任意的),,(21n x x x x =,必有∑==n k k k x x 1 e ,因此},,,{21n e e e 是空间n C 的基,则n n =C dim 。 当视n C 为实线性空间时,可令基为},,,,,{11n n i i e e e e ,则对任意的 ) ,,(21n x x x x =,有 ∑∑==+=n k k k n k k k i x g x x 1 1 ) )((Im )Re(e e ,所以 n n 2dim =C 。 10.证明∞=],[dim b a C ,这里b a <。 证明:取],[,0,)(b a t k t t x k k ∈≥=,只需证},,{10 x x 线性无关。为此对 0≥?n ,令01 =∑=n k k k x c 。则00!01 =?=?=∑=n n n n k k k c c n x c 次求导 。因此必有 01 1 =∑-=n k k k x c ,求该式求1-n 导后有00)!1(11=?=---n n c c n 。依次类推,有 001====-c c c n n ,所以对任意的0≥n ,都有},,{10n x x x 线性无关,即∞=],[dim b a C 。 第 二 节 2.(点到集合的距离)设A 是E 的非空子集,E ∈x 。定义x 到A 的距离为: }|inf{),(A A ∈-=y x y x d 证明: 1) x 是A 的内点?0),(>c x d A ; 2) x 是A 的孤立点?A ∈x ,且0}){\,(>x x d A ; 3) x 是A 的外点?0),(>A x d 。 解: 1)必要性: x 是 A 的内点 内点的定义 ?ε ?,使得

相关文档
最新文档