浅谈空间距离的几种计算方法

浅谈空间距离的几种计算方法
浅谈空间距离的几种计算方法

浅谈空间距离的几种计算方法

【摘要】

空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。

【关键词】

空间距离:点线距离点面距离异面直线距离公垂线段等体积法【正文】

空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。

这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。对学生来说是较难掌握的一种方法,难就难在“一作”上。所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。

一、两点之间的距离

两点间的距离的计算通常有两种方法:

1、可以计算线段的长度。把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。

2、可以用空间两点间距离公式。如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。

二、点到直线的距离

在求解点到直线的距离时,通常是寻找或构造一个三角形。其中点是三角形的一个顶点,直线是此顶点所对的一条边,利用等面积法计算点线距离。所寻找或构造的三角形有等腰三角形(或等边三角形)、直角三角形、一般三角形三类,最关键的步骤是算出三角形的面积,然后用等面积法计算即可。其中最难计算的是一般三角形的面积,这类面积的计算通常是已知三边,先求出一个角的余弦值,再求出次角的正弦值,然后用正弦面积公式算出面积。

例1、在△ABC 中,AB=2,BC=3,AC=4,求点A 到BC 的距离。 解:作BC AD ⊥,垂足为D ,又 AB=2,BC=3,AC=4,

8

74322432c o s 222222=??-+=?-+=∴BC AC AB BC AC C 815)87(1sin 2=-=∴C 4

1538154321sin 4321=???=??=∴?C S ABC AD BC S ABC ?=?2

1 又 2153415

322=?==∴?BC

S AD ABC ∴点A 到BC 的距离为215 三、点到平面的距离

求解点到平面的距离常用的方法有以下几种:

1、由已知的或可以证明垂直的关系,则垂线段的长度就是点到平面的距离。

2、过点作已知平面的垂线,可以找到垂足的位置,从而得到点到平面的距离。例如在正三棱锥中,求顶点到底面的距离,可以过正三棱锥的顶点作底面的垂线,垂足为底面正三角形的中心,然后通过计算求得距离。又例如若已知所在的平面与已知平面垂直,可以过点作两平面交线的垂线,此点与垂足间的距离即为点到平面的距离。

3、用等体积法求解点面距离。

B

4、向量法:求点A 到平面α的距离:在平面α内任取一点B ,求向量在平面α上的法向量

上的射影长,即d =

例2、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。

解:(1)连接FC,EC, 由已知FC=22,

41=∴FC ,3482511=++=EC ,

1091=+=EF

101041023416102cos 12

12121-=??-+=?-+=∠FC EF EC FC EF EFC 10

1031011sin 1=-=∠∴EFC 610

10341021sin 21111=??=∠?=∴?EFC FC EF S EFC 设1C 到EF 的距离为d ,则510610

1212,621===∴=?EF d d EF (2)设C 到平面EF C 1的距离为h

EFC C EF C C V V --=11

13

1311CC S h S EFC EF C ?=?∴?? 又4512

12221132125=??-??-??-?=?EFC S 3

246224111

=?=?=∴??EF C EF C S CC S h 四、两条异面直线的距离

1、对于特殊的图形,可以作出异面直线的公垂线段并证明,然后算出公垂线段的长度。

2、转化为两个平行平面的距离,再转化为点面的距离进行计算。

例3、三角形ABC 是边长为2的正三角形, ?P 平面ABC ,

P 点在平面ABC

内的射影为O ,并且P A = PB = PC =3

。求异面直线PO 与BC 间的距离。 分析:过点P 作平面ABC 的垂线段PO ,但是必须了解垂足O 的性质,否则计算无法进行。为此连结OA ,OB ,OC (如图).

则由PA =PB =PC 可得OA =OB =OC ,即O 是正三角

形ABC 的中心.于是可以在直角三角形PAO 中由

PA =2 6 3 ,OA = 2 3 3 ,得PO =2 3 3

。有了以上基础,只要延长AO ,交BC 于D ,则可证明OD 即为异面直线PO 与BC 间的距离,为 3 3

。五、直线到平面的距离

直线到平面的距离是过直线上任意一点向平面作垂线所得垂线段的长度,一般求解都是转化为求点到平面的距离。

例4、已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点。求11C B 到平面ADE 的距离。

解:AD C B AD BC BC C B ||,||,||1111∴

A D E

C B A

D

E AD 平面平面??11, A D E C B 平面||11∴

11C B 到平面ADE 的距离即为点1C 到平面

ADE 的距离

设点1C 到平面ADE 的距离为d ,可以用等体积法求出d 的值。

ADE

DEC DEC ADE DEC A ADE C S AD S d AD S d S V V ????--?=∴?=?∴=11113

131 以下解略。

六、两个平行平面的距离

通常是把两个平行平面的距离转化为求解点面距离。

空间两点之间的距离公式

空间两点间的距离公式 教学目标: 1、通过特殊到一般的情况推导出空间两点间的距离公式 2、感受空间两点间距离公式与平面两点间距离公式的联系与区别 教学重点 两点间距离公式的应用 教学难点 利用公式解决空间几何问题 教学过程 一、复习 1、空间点的坐标的特点 2、平面两点间的距离公式P 1(x 1,y 1),P 2(x 2,y 2) ________________ 线段P 1P 2中点坐标公式______________ 二、新课 1、设P 的坐标是(x,y,z),求|OP| |OP|=___________________________ 2、空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),求 |P 1P 2| |P 1P 2|=___________________________ 线段P 1P 2中点坐标公式_________________ 例:()()间的距离求空间两点1,0,6523 21--,P ,,P 练习:()()()513432251,,,C ,,,B ,,A ABC 的三个顶点已知? (1)求。ABC 中最短边的边长 ? (2)求边上中线的长度AC

例:试解释()()()365312222=-+++-z y x 的几何意义。 练习:1、已知()1,,222=++z y x z y x M 满足则M 点的轨迹为_________________ 2、求P ??? ? ??66,33,22到原点的距离。 3、()()。a AB a ,B ,,A 的值求设,4,,3,0210= 4、在长方体1111D C B A ABCD -,AD=2,AB=3,AA 1=2,E 为AC 中点,求D 1E 的长。 三、小结

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

计算空间任意两个坐标点之间距离的PYTHON程序脚本

#coding:UTF-8 """ Python implementation of Haversine formula Copyright(C)<2009>Bartek Górny This program is free software:you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation,either version3of the License,or (at your option)any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program.If not,see. """ import math def recalculate_coordinate(val,_as=None): """ Accepts a coordinate as a tuple(degree,minutes,seconds) You can give only one of them(e.g.only minutes as a floating point number) and it will be duly recalculated into degrees,minutes and seconds. Return value can be specified as'deg','min'or'sec';default return value is a proper coordinate tuple. """ deg,min,sec=val #pass outstanding values from right to left min=(min or0)+int(sec)/60 sec=sec%60 deg=(deg or0)+int(min)/60 min=min%60 #pass decimal part from left to right dfrac,dint=math.modf(deg) min=min+dfrac*60 deg=dint mfrac,mint=math.modf(min) sec=sec+mfrac*60 min=mint if_as: sec=sec+min*60+deg*3600

空间坐标计算距离

空间坐标计算距离及计算器算角度 在空间中坐标计算距离: 设A(x1,y1,z1),B(x2,y2,z2) |AB|=√[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2] (工程中Z项为0,开根号时忽略Z的值---数值过小可忽略) |AB|=√[(x1-x2)^2 + (y1-y2)^2 ] 角度计算方法: Rab(锐角) Rab=acrtan[(Yb-Ya)/(Xb-Xa)] (计算出来为十进制度表示法,转换为度分秒见下) α=360°-Rab 例:后视点D41(3137842.164,537144.921)前视点D41-1 (3137826.46,537253.133)求S,α。 ①S= √[(Yb-Ya)^2+(Xb-Xa)^2] =109.346m Rab=acrtan[(Yb-Ya)/(Xb-Xa)] =acrtan(108.212/15.704) =acrtan6.890728(最好保留6位) ②计算器算acrtan6.890728 输入6.890728 点计算器上Inv +tan显示atand(6.890728)=81.742736(此时为十进制度数)再点dms(转换度分 秒)=81.4433即为81°44′33″ ③最后α=360°- 81°44′33″=278°15′26″ 计算器算角度转换度分秒 点开始----程序----附件----计算器

这个计算器有两种模式,点《查看》有一个下拉菜单,有标准型和科学型。选择科学型。在输入区下方有一排选项十六进制;十进制;八进制;二进制;角度;弧度;梯度。一般默认就是十进制和角度,如不是则应点上十进制和角度。 例:把18.69和15.5度转换成度分秒(电脑配置的科学计算器可能没有Hyp可少这一步) 先输入18.69---再钩上Hyp---再点dms。这时就显示18.4124, 这就是18度41分24秒。 输入15.5---钩上Hyp---点dms。显示15.3,就是15度30分。 如把度分秒转换为度(接上例) 先输入18.4124---钩上Ⅰnv---再点dms,就转换成度了18.69度。 要求函数值就必须输入度数,输入度数后正弦点sin;余弦点cos ;正切点tan,函数值直接就显示出来了。

空间点到直线的距离公式

空间点到直线的距离公式 y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)空间点到直线距离点(x0, y0, z0),直线L(点向式参数方程):(x-xl)/m=(y-yl)/n=(z- zl)/p=t。 (1)式(1)的注释:点(xl, yl, zl)是直线上已知的一点,向 量(m, n, p)为直线的方向向量,t为参数方程的参数。空间直线 的一般式方程(两个平面方程联立)转换为点向式方程的方法, 请参考《高等数学》空间几何部分。设点(x0, y0, z0)到直线L 的垂点坐标为(xc, yc, zc)。因为垂点在直线上,所以有:(xc-xl)/m=(yc-yl)/n=(zc-zl)/p=t (2)式(2)可变形为:xc=m*t+xl, yc=n*t+yl, zc=p*t+zl、 (3)且有垂线方向向量(x0-xc, y0-yc, z0-zc)和直线方向向量(m, n, p)的数量积等于0,即:m*(x0- xc)+n*(y0-yc)+p*(z0-zc)=0 (4)把式(3)代入式(4),可消去未知 数“xc, yc, zc”,得到t的表达式:t=[m*(x0-xl)+n*(y0- yl)+p*(z0-zl)]/(m*m+n*n+p*p) (5)点(x0, y0, z0)到直线的距离d就是该点和垂点(xc, yc, zc)的距离:d=√[(x0-xc)^2+(y0-yc)^2+(z0-zc)^2] (6)其中xc, yc, zc可以用式(3)和式(5)代入消去。 第 1 页共 1 页

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

2.4空间直角坐标系与空间两点的距离公式

2.4. 空间直角坐标系与空间两点的距离公式 课程学习目标 [课程目标] 目标重点:空间直角坐标系和点在空间直角坐标系中的坐标及空间两点距离公式.目标难点:确定点在空间直角坐标系中的坐标,以及空间距离公式的推导. [学法关键] 1.在平面直角坐标系中,过一点作一条轴的平行线交另一条轴于一点,交点在这个轴上的坐标,就是已知点相应的一个坐标,类似地,在空间直角坐标系中,过一点作两条轴确定的平面的平行平面交另一条轴于一点,交点在这条轴上的坐标就是已知点的一个相应的坐标. 2.通过类比平面内两点间的距离公式来理解空间两点的距离公式 研习点1.空间直角坐标系 为了确定空间点的位置,我们在空间中取一点O作为原点,过O点作三条两两垂直的数轴,通常用x、y、z表示. 轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合. 这时,我们在空间建立了一个直角坐标系O-xyz,O叫做坐标原点. 如何理解空间直角坐标系? 1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2.在空间直角坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3.如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4.在平面上画空间直角坐标系O-xyz时,一般情况下使∠xOy=135°,∠yOz=90°. 研习点2.空间点的坐标 1.点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴,这个平面与x轴的交点记为P x,它在x轴上的坐标为x,这个数x就叫做点P的x坐标;2.点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴,这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标;3.点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴,这个平面与z轴的交点记为P z,它在z轴上的坐标为z,这个数z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P(x,y,z),其中x,y,z也可称为点P的坐标分量.

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

向量法求空间距离

向量法求空间距离(教师用) 淄博五中 孙爱梅 一.重点:掌握空间各种距离概念,并能进行他们之间的转化,能通过向量计算求出这些距离. 二.难点:异面直线及点面距离求法. 三.知识点及例题 【知识点一】 两点的距离公式应用 空间中两点的距离公式:A (x 1,y 1,z 1),B (x 2,y 2,x 2), 则|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 〖例1〗如图,在正方体OABC -O ′A ′B ′C ′中,棱长为1,|AN |=2|CN |, |BM |=2|MC ′|,求MN 的长. 解:由题意得A (1,0,0),B (1,1,0),C (0,1,0),C ′(0,1,1) ∵|AN |=2|CN |,∴N (13,23,0),又∵|BM |=2|MC ′|,∴M (13,1,23 ) ∴|MN |=(13-13)2+(1-23)2+(23-0)2=53,即MN 的长为53. 注:此类题目直接套用公式,准确、迅速找到空间两点坐标是解题关键. 【知识点二】通过向量求空间线段的长. |a →|=a →2 〖例2〗如图,在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,求CD 的长度. 解:∵<AC →,BD →>=60°,∴<CA →,BD →>=120°,又∵CD →=CA →+AB →+BD →, 故有|CD →|2=CD →2=(CA →+AB →+BD →)·(CA →+AB →+BD →) =CA →2+AB →2+BD →2+2CA →·AB →+2AB →·BD →+2CA →·BD → ∵CA ⊥AB ,BD ⊥AB ,则CA →·AB →=0,AB →·BD →=0, ∴|CD →|2=62+42+82-2×6×8×12 =68,∴|CD →|=217.

浅谈空间距离的几种计算方法

空间距离 常见问题: (1)点到平面的距离;(2)两条异面直线的距离;(3)与平面平行的直线到平面的距离;(4)两平行平面间的距离。 一、点到平面的距离 求解点到平面的距离常用的方法有以下几种: 1、由已知的或可以证明垂直的关系,则垂线段的长度就是点到平面的距离。 2、过点作已知平面的垂线,可以找到垂足的位置,从而得到点到平面的距离。例如在正三棱锥中,求顶点到底面的距离,可以过正三棱锥的顶点作底面的垂线,垂足为底面正三角形的中心,然后通过计算求得距离。又例如若已知所在的平面与已知平面垂直,可以过点作两平面交线的垂线,此点与垂足间的距离即为点到平面的距离。 3、用等体积法求解点面距离。 例1、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。 解:(1)连接FC,EC, 由已知FC=22, 41=∴FC ,3482511=++=EC , 1091=+=EF 10 104 1023416102cos 1212121-=??-+=?-+=∠FC EF EC FC EF EFC 10 1031011sin 1=-=∠∴EFC 610 10341021sin 21111=??=∠?=∴?EFC FC EF S EFC 设1C 到EF 的距离为d ,则510610 1212,621===∴=?EF d d EF (2)设C 到平面EF C 1的距离为h

EFC C EF C C V V --=11 131311CC S h S EFC EF C ?= ?∴?? 又451212221132125=??-??-??-?=?EFC S 3 246224111 =?=?=∴??EF C EF C S CC S h 二、两条异面直线的距离 1、对于特殊的图形,可以作出异面直线的公垂线段并证明,然后算出公垂线段的长度。 2、转化为两个平行平面的距离,再转化为点面的距离进行计算。 例3、三角形ABC 是边长为2的正三角形, ?P 平面ABC ,P 点在平面ABC 内的射影为 O ,并且PA = PB = PC =3 。求异面直线PO 与BC 间的距离。 分析:过点P 作平面ABC 的垂线段PO ,但是必须了解垂足O 的性质,否则计算无法进行。为此连结OA ,OB ,OC (如图). 则由PA =PB =PC 可得OA =OB =OC ,即O 是正三角形ABC 的中心.于是可以在直角三角 形PAO 中由PA =2 6 3 ,OA = 2 3 3 ,得PO =2 3 3 。有了以上基础,只要延长AO ,交BC 于D ,则可证明OD 即为异面直线PO 与BC 间的距离,为 3 3 。 三、直线到平面的距离 直线到平面的距离是过直线上任意一点向平面作垂线所得垂线段的长度,一般求解都是转化为求点到平面的距离。 例4、已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点。求11C B 到平

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 教材分析 重点:点面距离的距离公式应用及解决问题的步骤 难点:找到所需的点坐标跟面的法向量 教学目的 1.能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2.能将求线面距离、面面距离问题转化为求点到面的距离问题。 3.加强坐标运算能力的培养,提高坐标运算的速度和准确性。 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、空间中如何求点到面距离 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a ? b = a b cos 0(0为a与b的夹角) 二、向量法求点到平面的距离

如果令平面的法向量为 n ,考虑到法向量的方向,可以得到点 B 到平面的距离为 _r BA?n BO=—:— n 因此要求一个点到平面的距离, 可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量 (2)求出该平面的一个法向量 (3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量 ? 例1、在空间直角坐标系中,已知A(3,0,0), B(0,4,0) , C(0,0,2),试求平面 ABC 的一个 法向量. 解:设平面ABC 的一个法向量为 r n (x, y, z) r uuu r uuur uuu unr 则 n AB , n AC . v AB (3,4,0), AC (3,0, 2) ? (x, y, z)( 3,4,0) 0即 3x 4y 0 3 y x (x, y, z)( 3,0,2) 0 3x 2z 0 . 4 取x 4,则n (4, 3,6) 3 z x 2 ??? n (4, 3,6)是平面 ABC 的一个法向量 例2、如图,已知正方形 ABCD 的边长为4, E 、F 分别是AB 、AD 的 中点,GC 丄平面 ABCD ,且GC = 2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). uuir uuur EF (2, 2,0), EG ( 2, 4,2), uuu BE (2,0,0) 设平面EFG 的一个法向量 若AB 是平面 的任一条斜线段,则在 Rt BOA 中,BO = BA?COS ABO BA?BO B A B O BO 剖析:如图,BO 平面 ,垂足为0,则点B 到平面 的距离是线段 BO 的长度。 =网? BA? BO

浅谈空间距离的几种计算方法

浅谈空间距离的几种计算方法 【摘要】 空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。 【关键词】 空间距离:点线距离点面距离异面直线距离公垂线段等体积法【正文】 空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。 这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。对学生来说是较难掌握的一种方法,难就难在“一作”上。所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。 一、两点之间的距离 两点间的距离的计算通常有两种方法: 1、可以计算线段的长度。把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。 2、可以用空间两点间距离公式。如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α 所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

相关文档
最新文档