飞行器飞行力学

题号:839

《飞行器飞行力学》

考试大纲

一、考试内容

根据我校教学及该试题涵盖专业的特点,对考试范围作以下要求:

1.基本概念:压力中心;焦点;静稳定性;失速;瞬时平衡假设;纵向运动;攻击禁区;相对弹道;绝对弹道;理想弹道;理论弹道;基准运动;扰动运动;附加运动;强迫扰动运动;自由扰动运动;动态稳定性;操纵性;超调量;调节规律;特征方程及特征根。

2.坐标系及其转换:惯性坐标系;弹道坐标系;速度坐标系;弹体坐标系;坐标转换方程;迎角、侧滑角、弹道倾角、弹道偏角、姿态角、速度滚转角;作用在导弹上的力和力矩。

3.导弹运动方程的建立:导弹作为刚体的六自由度运动方程的建立方法;导弹作为可操纵质点的运动方程的建立;纵向运动方程的建立;平面运动方程的建立;轴对称和面对称导弹的操纵方法;理想操纵关系式。

4.过载:过载的概念;过载的投影;过载与运动参数之间的关系;过载与机动性的关系;过载与导弹结构强度设计之间的关系;过载与弹道形状的关系;需用过载;可用过载;极限过载;最大过载;过载与轨道半径的关系。

5.导引规律与弹道:导引弹道的研究方法、特点;相对运动方程的建立;追踪法;平行接近法;比例导引法;三点法;角度法;复合制导。

6.方案制导:方案制导的弹道方程;按要求给出方案弹道的具体方案。

7.干扰力和干扰力矩:风的干扰;发动机安装偏差;弹身对接偏差;弹翼安装偏差;控制系统误差。

8.扰动运动方程:扰动运动方程的建立;扰动运动方程与扰动源性质的关系;“系数”冻结法;扰动运动方程的拉氏解析求解方法;扰动运动方程特征根与扰动运动形态和稳定性的关系。

9.纵向扰动运动:纵向扰动运动动态特性的分析方法;纵向短周期扰动运动特性的分析;纵向短周期扰动运动的动态稳定条件的推导;纵向短周期扰动运动的动稳定性与静稳定性的关系;纵向短周期扰动运动的传递函数;舵面阶跃偏

转时导弹的纵向操纵性分析;

10.侧向扰动运动:侧向扰动运动的建模;面对称导弹侧向扰动运动的模态分析;面对称导弹侧向扰动运动稳定边界条件及稳定边界图的确定和讨论;轴对称导弹侧向扰动运动的分析方法;航向扰动运动模型的特点;倾斜扰动运动的建模;倾斜扰动运动反映偶然和经常干扰的稳态误差。

11.倾斜扰动运动:无静稳定性和自动稳定的倾斜扰动运动的特点;在引入自动驾驶仪的作用后倾斜扰动运动的动态特性分析方法。

12. 纵向扰动运动的自动稳定与控制:纵向自动驾驶仪的组成、功用;在自

动驾驶仪中引入Δ,Δθ,Δny信号的作用及其动态特性的分析;在自动驾驶仪中引入与和θ成正比的控制信号的作用及其动态特性分析;自动驾驶仪的惯性对纵向扰动运动特征的影响分析;引入积分调节规律的目的;提前偏舵的概念;飞行高度的自动稳定与控制。

二、参考书目

1.李新国,方群,《有翼导弹飞行动力学》,西北工业大学出版社。2005.1 2.曾颖超、吕学富等,《战术导弹轨迹与姿态动力学》,西北工业大学出版社

3.吕学富,《飞行器飞行力学》,西北工业大学出版社,1995.6

4.周彗钟、李忠应、王瑾,《有翼导弹飞行力学》,北京航空航天大学出版社,1993

航空基础知识

航空基础知识系列之一:飞机的分类 飞机的分类 由于飞机构造的复杂性,飞机的分类依据也是五花八门,我们可以按飞机的速度来划分,也可以按结构和外形来划分,还可以按照飞机的性能年代来划分,但最为常用的分类法为以下两种: 按飞机的用途分类: 飞机按用途可以分为军用机和民用机两大类。军用机是指用于各个军事领域的飞机,而民用机则是泛指一切非军事用途的飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机的传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方的轰炸机、强击机和巡航导弹。 强击机:又称攻击机,其主要用途是从低空和超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻

击,直接支援地面部队作战。 轰炸机:是指从空中对敌方前线阵地、海上目标以及敌后的战略目标进行轰炸的军用飞机。按其任务可分为战术轰炸机和战略轰炸机两种。 侦察机:是专门进行空中侦察,搜集敌方军事情报的军用飞机。按任务也可以分为战术侦察机和战略侦察机。 运输机:是指专门执行运输任务的军用飞机。 预警机:是指专门用于空中预警的飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术的不断发展和飞机性能的不断完善,军用飞机的用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上的军事任务,如美国的117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定的空中格斗能力。 按飞机的构造分类:

由于飞机构造复杂,因此按构造的分类就显得种类繁多。比如我们可以按机翼的数量可以将飞机分为单翼机、双翼机和多翼机;也可以按机翼的形状分为平直翼飞机、后掠翼飞机和三角翼飞机;我们还可以按飞机的发动机类别分为螺旋桨式和喷气式两种。 航空基础知识系列之二:飞机的结构 飞机的结构 飞机作为使用最广泛、最具有代表性的航空器,其主要组成部分有以下五部分: 推进系统:包括动力装置(发动机及其附属设备)以及燃料。其主要功能是产生推动飞机前进的推力(或拉力); 操纵系统:其主要功能是形成与传递操纵指令,控制飞机的方向舵及其它机构,使飞机按预定航线飞行;

航空基础知识

航空基础知识系列之一:飞机得分类 飞机得分类 由于飞机构造得复杂性,飞机得分类依据也就是五花八门,我们可以按飞机得速度来划分,也可以按结构与外形来划分,还可以按照飞机得性能年代来划分,但最为常用得分类法为以下两种: 按飞机得用途分类: 飞机按用途可以分为军用机与民用机两大类。军用机就是指用于各个军事领域得飞机,而民用机则就是泛指一切非军事用途得飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机得传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途就是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方得轰炸机、强击机与巡航导弹。 强击机:又称攻击机,其主要用途就是从低空与超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻击,直接支援地面部队作战。 轰炸机:就是指从空中对敌方前线阵地、海上目标以及敌后得战略目标进行轰炸得军用飞机。按其任务可分为战术轰炸机与战略轰炸机两种。 侦察机:就是专门进行空中侦察,搜集敌方军事情报得军用飞机。按任务也可以分为战术侦察机与战略侦察机。 运输机:就是指专门执行运输任务得军用飞机。 预警机:就是指专门用于空中预警得飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术得不断发展与飞机性能得不断完善,军用飞机得用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上得军事任务,如美国得F-117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定得空中格斗能力。 按飞机得构造分类: 由于飞机构造复杂,因此按构造得分类就显得种类繁多。比如我们可以按机翼得数量可以将飞机分为单翼机、双翼机与多翼机;也可以按机翼得形状分为平直翼飞机、后掠翼飞机与三角翼飞机;我们还可以按飞机得发动机类别分为螺旋桨式与喷气式两种。 航空基础知识系列之二:飞机得结构 飞机得结构 飞机作为使用最广泛、最具有代表性得航空器,其主要组成部分有以下五部分: 推进系统:包括动力装置(发动机及其附属设备)以及燃料。其主要功能就是产生推动飞机前进得推力(或拉力); 操纵系统:其主要功能就是形成与传递操纵指令,控制飞机得方向舵及其它机构,使飞机按预定航线飞行; 机体:我们所瞧见得飞机整个外部都属于机体部分,包括机翼、机身及尾翼等。机翼用来产生升力;同时机翼与机身中可以装载燃油以及各种机载设备,并将其它系统或装置连接成一个整体,形成一个飞行稳定、易于操纵得气动外形; 起落装置:包括飞机得起落架与相关得收放系统,其主要功能就是飞机在地面停放、滑行以及飞机得起飞降落时支撑整个飞机,同时还能吸收飞机着陆与滑行时得撞击能量并操纵滑行方向。 机载设备:就是指飞机所载有得各种附属设备,包括飞行仪表、导航通讯设备、环境控制、生命保障、能源供给等设备以及武器与火控系统(对军用飞机而言)或客舱生活服务设施(对民用飞机而言)。 从飞机得外面瞧,我们只能瞧见机体与起落装置这两部分。下面我们着重来瞧一瞧机体得结

飞行器自动控制导论_第二章飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

北航飞行力学大作业.(可编辑修改word版)

飞行力学大作业

= 0 CE E E E CB BE CE BE E E E BE E BE E E B B B B B B B B B Z ? 1 理论推导方程 在平面地球假设下,推导飞机质心在体轴系下的动力学方。 质心惯性加速度的基本方程是式(5.1.7),其中动点就是在转动参考系 F E 中的 O y 。这样 r ' 质心相对 于地球的速度,已用V E 来表示。这里假设地轴固定于惯性空间,且 = 0 。因此, F 的原点的加 速度a 0 就是与地球转动有关的向心加速度。数值比较表明,这一加速度和 g 相比通常可以略去。而 对于式(5.1.7)中的向心加速度项 r ' 的情况也是一样的,,也通常省略。在式(5.1.7)中剩下的 两项中 r ' = V E ,而哥氏加速度为2 E V E 。后者取决于飞行器速度的大小和方向,并且在轨道速度 时至多为 10%g 。当然在更高速度时可能更大。所以保留此项。最后质心的加速度可以简化为如下形 式: a = V E + 2 E V E 有坐标转换知: a = L a = L (V E + 2 E V E ) = L V E + 2L E V E = V E + ( B - E ) V E + 2 E V E = V E + ( + E ) V E (1) 体轴系中的力方程为:f=m a CB 而 f= A B +mg+T 设飞机的迎角为 ,侧滑角为 ,则体轴系的气动力表示为: ? A x ? ?-D ? ?cos cos -cos sin -sin ? ?-D ? ? A ? = L A = L ()L (-) ?-C ? = ? sin cos 0 ? ?-C ? ? y ? BW W y Z ? ? ? ? ? ? ?? A z ?? 重力在牵连垂直坐标系下为: ?? -L ?? ? 0 ? ?? sin a cos -sin a s in cos a ?? ?? -L ?? ? ? V ? ? ?? g ?? (3) 设发动机的安装角为,发动机的推力在机体坐标系的表示如下: ?T x ? ? T cos ? ?T ? = ? 0 ? (4) ? ??T y ? ? ? ? ? ?-T sin ? ? 由坐标转换可知 : E g

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.360docs.net/doc/5f18884539.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

北航飞行力学实验班飞机典型模态特性仿真实验报告(精)

航空科学与工程学院 《飞行力学实验班》课程实验飞机典型模态特性仿真 实验报告 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王维军 (2014年 6 月29日 一、实验目的 飞机运动模态是比较抽象的概念, 是课程教学中的重点和难点。本实验针对这一问题,采用计算机动态仿真和在人-机飞行仿真实验平台上的驾驶员在环仿真实验,让学生身临其境地体会飞机响应与模态特性的关系,加深对飞机运动模态特性的理解。 二、实验内容 1.纵向摸态特性实验 计算某机在某状态下的短周期运动、长周期运动的模态参数;进行时域的非实时或实时仿真实验,操纵升降舵激发长、短周期运动模态,并由结果曲线分析比较模态参数;放宽飞机静稳定性,观察典型操纵响应曲线,并通过驾驶员在环实时仿真体验飞机的模态特性变化。

2.横航向模态特性实验 计算某机在某状态下的滚转、荷兰滚、螺旋模态参数;进行时域仿真计算,操纵副翼或方向舵,激发滚转、荷兰滚等运动模态,并由结果曲线分析比较模态参数。 三、各典型模态理论计算方法及模态参数结果表 1 纵向模态纵向小扰动运动方程 0000 1 00 0e p e p e p u w e u w q p u w q X X u u X X g Z Z w w Z Z Z q q M M M M M δδδδδ δδδθθ????????-???? ????????? ? ???????????=+??????????????????? ?????????????????? A =[ X

u X ?w Z u Z w 0?g Z q 0M ?u M ?w0 M q 010] =[?0.01999980.0159027?0.0426897?0.04034850?32.2869.6279 0?0.00005547?0.001893500?0.54005010] A 的特征值方程 |λ+0.0199998?0.01590270.0426897 λ+0.0403485032.2 ?869.627900.000055470.001893500λ+0.540050 ?1λ |=0 特征根λ1,2=?0.290657205979137±1.25842158268078i λ3,4=?0.00954194402086311±0.0377636398212079i 半衰期t 1/2由公式t 1/2=? ln2λ 求得,分别为 t 1/2,1=2.38475828674173s t 1/2,3=72.6421344585972s 振荡频率ω分别为 ω1=1.25842158268078rad/s ω3=0.0377636398212079rad/s 周期T 由公式T =

弹道计算大作业doc资料

弹道计算大作业

目录 一、初始条件和要求 (2) 1.1 初始条件 (2) 1.2 仿真要求 (2) 二、模型的建立 (2) 2.1 升力和阻力模型 (2) 2.2 大气和重力加速度模型 (3) 2.3 无控飞行 (3) 2.4 平衡滑翔 (4) 2.5 最大升阻比滑翔飞行弹道 (4) 三、仿真结果 (5) 3.1 无控飞行弹道仿真 (5) 3.2 平衡滑翔弹道仿真 (7) 3.3 最大升阻比滑翔弹道仿真 (8) 附录 (9)

一、初始条件和要求 1.1 初始条件 已知给定的初始条件如下: 表1 初始条件 1.2 仿真要求 请使用Simulink或Buildfly完成以下仿真任务:(1)请完成该导弹的无控飞行弹道仿真; (2)请完成该导弹的平衡滑翔方案飞行弹道仿真;(3)请完成该导弹的最大升阻比滑翔飞行弹道仿真; 二、模型的建立 2.1 升力和阻力模型 已知展弦比为λ的飞行器的升力线斜率为:

y C α= (1) 根据飞行力学相关知识,飞行器的升力系数和阻力系数为: () 20y y x x y C C C C C ααε?=??=+?? (2) 其中,升力线斜率由(1)式可得;ε为效率系数:1 e επλ =。 由升力系数和阻力系数,得到导弹的升力和阻力为: 2212 12 x y X C v S Y C v S ρρ?=??? ?=?? (3) 2.2 大气和重力加速度模型 在计算过程中,大气密度采用如下模型: 4.25588 000.0065=1H T ρρ??- ? ?? (4) 其中,30 1.225/kg m ρ=为海平面的大气密度;0288.15T K =。 重力加速度采用如下模型: 2 0d d R g g R H ?? = ?+?? (5) 其中,09.8g =,6371000d R m =为地球半径;H 为飞行器距离地面的高度。 2.3 无控飞行 假设导弹的运动始终在铅垂平面,根据飞行力学知识,得到导弹无控飞行时的运动学和动力学方程为:

飞行动力学与控制大作业

《飞行力学与控制》 飞行动力学与控制大作业报告 院(系)航空科学与工程学院 专业名称飞行器设计 学号 学生姓名

目录 一.飞机本体动态特性计算分析 (2) 1.1飞机本体模型数据 (2) 1.2模态分析 (2) 1.3传递函数 (3) 1.4升降舵阶跃输入响应 (3) 1.5频率特性分析 (5) 1.6短周期飞行品质分析 (6) 二.改善飞行品质的控制器设计 (7) 2.1SAS控制率设计 (7) 2.1.1控制器参数选择 (8) 2.1.2数值仿真验证 (12) 2.2CAS控制率设计 (13) 三.基于现代控制理论的飞行控制设计方法 (16) 3.1特征结构配置问题描述 (16) 3.1.1特征结构的可配置性 (16) 3.1.2系统模型 (16) 3.2系统的特征结构配置设计 (17) 3.2.1设计过程 (17) 3.2.2具体的设计数据 (17) 3.2.3结果与分析 (18) 四.附录 (20)

一. 飞机本体动态特性计算分析 1.1 飞机本体模型数据 本文选取F16飞机进行动态特性分析及控制器设计,飞机的纵向状态方程形式如下: . x =Ax +Bu y =Cx (1.1) 状态变量为:[]T u q αθ=x 控制变量为:e δ=u 基准状态选择为120,2000V m s H m ==的定直平飞。选取状态向量 ()T u q αθ =x ,控制量为升降舵偏角,则在此基准状态下线化全量方程所得 到的矩阵数据如下: -0.0312 -1.1095 -9.8066 -0.5083-0.0013 -0.6543 0 0.9185 0 0 0 1.00000 -0.3828 0 -0.6901???? ? ?=???? ??Α (1.2) []-0.0167 -0.0014 -0.0956T =B (1.3) []1.000057.295857.295857.2958diag =C (1.4) 1.2 模态分析 矩阵A 的特征值算出为: 1,23,4-0.6778 + 0.5926i -0.0100 + 0.0769i λλ== 对应的特征向量如下: 0.9874 0.9874 -1.0000 -1.0000 0.1137 - 0.0053i 0.1137 + 0.0053i 0.0011 - 0.0000i 0.0011 + 0.0000i 0.0521 - 0.0629i 0.0521 + 0.0629i 0.002=V 1 + 0.0078i 0.0021 - 0.0078i 0.0019 + 0.0735i 0.0019 - 0.0735i -0.0006 + 0.0001i -0.0006 - 0.0001i ?? ?? ? ??????? 由系统特征值可知,系统具有两对共轭复根,也即具有两种运动模态:长周

飞机基本知识

1,中文名称:超临界翼型 英文名称:supercritical aerofoil profile 定义:一种上翼面中部比较平坦,下翼面后部向里凹的翼型,在超过临界M 数飞行时,虽有激波但很弱,接近无激波状态,故称超临界翼型。 超临界翼型(Supercritical airfoil)是一种高性能的超音速翼型。它是由美国国家航空航天局(NASA)兰利研究中心的理查德.惠特科姆(Richard T.Whitcomb 1921-)在1967年提出的。这种翼型属于双凸翼型的一种,但样子看起来像一个倒置的层流翼型,即下表面鼓起,而上表面较为平坦。超临界翼型的最大优势是可以将临界马赫数大大提高,一般可以提高0.06-0.1,因此可以获得较好的跨音速和超音速飞行性能。 20世纪70年代以来,超临界翼型开始在大型运输机上进行试验。 现在主要用于大型客机和超音速轰炸机上。关于在战斗机上使用超临界 翼型的研究也早已展开。 2,中文名称:展弦比 英文名称:aspect ratio 定义:机翼或其他升力面的翼展平方与翼面积的比值。

展弦比即机翼翼展和平 均几何弦之比,常用以下 公式表示: λ=l/b=l^2/S 这里l为机翼展长, b为几何弦长,S为机翼 面积。因此它也可以表述 成 翼展(机翼的长度) 的平方除以机翼面积,如 圆形机翼就是直径的平 方除以圆面积,用以表现机翼相对的展张程度。 展弦比的大小对飞机飞行性能有明显的影响。展弦比增大时,机翼的诱导阻力会降低,从而可以提高飞机的机动性和增加亚音速航程,但波阻就会增加,以致会影响飞机的超音速飞行性能,所以亚音速飞机一般选用大展弦比机翼;而超音速战斗机展弦比一般选择2.0~4.0。 如大航程、低机动性飞机——B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比25;小航程、高机动性飞机——J-8展弦比2,Su-27展弦比3.5,F-117展弦比1.65。 展弦比还影响机翼产生的升力,如果机翼面积相同,那么只要飞机 没有接近失速状态,在相同条件下展弦比大的机翼产生的升力也大,因 而能减小飞机的起飞和降落滑跑距离和提高机动性。 3,中文名称:压力中心 英文名称:pressure center 定义:作用在物体上的空气动力合力的作用点。 4中文名称:临界马赫数 英文名称:critical Mach number 定义:物体表面上最大流速达到当地声速时所对应的自由流的马赫数。 当来流以亚声速度v∞(相应的流动马赫数Ma∞,比如小于0.6)流过翼型时, 上翼面的最大速度点c的vc>v∞,因为有可压缩性的影响,点c处的温度最低, 该点处的声速也最小,故点c的局部马赫数Mac是流场中最大的,比如说现在 Mac<1.0。这时全流场都是亚声速流动。随着来流速度v∞或来流马赫数Ma∞的 增加,Mac也会跟着增加。当Mac=1.0相应此时的来流马赫数Ma∞就称为该翼 型的临界马赫数,用符号Macr表示

飞机维护基本知识总结

第一章 第一节 基本技能:是指机务人员对飞机进行维护的基本技术能力。包括:擦洗涂油、充添加挂、拆装分解、焊接测量、加固保险和校验调整等,通常被称为机务人员的“六项技能”。 一、常工量具: 1、解刀:主要用来紧固或拆卸螺钉。按刀口形状分为一字解刀和十字解刀;按外形分为直解刀、弯解刀、丁字解刀;按构造分为木柄解刀、夹柄解刀、串心解刀和塑柄解刀。 2、钳子:是用来夹持或切断金属丝的工具。飞机上使用的有:尖嘴钳、克丝钳、平口钳、鱼嘴钳、铅钳和剥线钳。 3、扳手:是用来紧固或拆卸螺栓、螺帽的工具。常用的有:开口扳手、梅花扳手、套筒扳手、内六角扳手、钩形扳手、测力矩扳手、活动扳手和棘轮扳手。 三、工具的保管和使用要求: 1、立清单、做标记、专人保管; 2、勤清点、不乱放、防止丢失; 3、不乱用、不抛掷、以防损坏; 4常擦洗、防锈蚀、保证良好。 四、常用量具: 1、塞尺:又称千分垫,由薄厚不同、数量不等的港片组成。主要用来测量机件平面之间的间隙。 2、游标卡尺:又称钢卡尺。可用来测量零件的长度、内径和外径,带深度尺的还能测量零件的深度,待划线脚的还可以用来划线。(0.1;0.05;0.02) 3、钢索张力计:又称钢索张力表,是用来测量钢索张力的专用工具。 4、气压表:又称压力表,是用来测量某些机件内部空气压力的专用量具。 五、量具的保管及使用要求: 1、各种量具应立清单,做标记,妥善保管。 2、在使用前应查明量具是否准确,并明确其用途及使用方法,按照不同的用途及使用要求雅格执行规定。使用中轻拿轻放,严禁抛掷。 3、使用后应擦洗干净,及时存放,不随意放置。 4、对压力表与飞机上各种仪表一样,要定期检验,保证指示的准确性。 六、地面设备:是飞机进行维护工作的重要保障。 1、工作梯:是专供机务人员进行飞机检修和飞行准备时使用的攀登设备。 2、千斤顶:是飞机的起重设备,有机械式和液压式两种。 3、轮挡:飞机停放时挡住机轮,以防飞机滑动。 第二节 一、机件的连接:(不可拆卸连接和可拆卸连接) 1、不可拆卸的连接:焊接、铆接、胶接。 2、可拆卸的连接:螺钉连接、螺栓连接、罗桩连接、销子连接、卡箍连接、螺纹接头连接、铰链连接、夹布胶管连接、锁扣连接、插销接头连接、导线连接。 3、螺钉连接:主要用来连接和固定蒙皮、盖板等较薄的机件。连接方法:将螺钉穿过机件的安装孔,然后噢再拧入另一机件的螺纹孔内,这样机件就被连接起来。 4、螺栓连接:飞机上采用较多的一种受力较大的连接方法。通常与垫片、螺帽、开口销配合使用。

实验二 飞机小扰动飞行仿真演示实验

实验二飞机小扰动飞行仿真演示实验 实验类型:(演示性) 1.实验目的 该实验将飞行力学知识与飞行仿真、模拟相结合,分析、研究飞机横航向小扰动运动特性。通过该实验,可以使学生更好地学习和理解飞行力学稳定性与操作性的有关内容,增强对飞机飞行品质的感性认识。 2.实验仪器与设备 实验在PC个人计算机、WINDOWS 98以上操作系统、Matlab环境中进行。 3.实验原理 飞行器在定直平飞平衡运动状态下,受到小扰动或操纵作用,响应具有典型的模态特性。纵向小扰动运动包括短周期运动模态、长周期运动模态特点。 其中迎角为短周期运动参数,短周期小扰动运动方程为: 速度、航迹倾角为长周期运动参数,长周期小扰动运动方程为: 横航向小扰动运动包括滚转模态、荷兰滚模态、螺旋模态特点,横航向特征方程为:

滚转模态特征为初始阶段快速滚转,荷兰滚模态特征为既左右偏航又来回滚转,螺旋模态不稳定时,表现为扰动后期飞机沿螺旋线缓慢滚转下降。 本实验建立典型飞机的仿真模型,计算飞机在纵向、横航向小扰动作用下的响应特性,演示飞机的模态特性。 4.实验步骤 1)软件启动 在Matlab环境中执行模型程序“lab.mdl”,界面如下。 2)飞机原始数据调用 鼠标双击,读入“../fdc13/lab/aircraft-lab.dat”文件。 3)配平数据调用

鼠标双击,弹出窗口: 选择, 读入“../fdc13/lab/cr45_3000_lab.tri”文件。 4)扰动输入 鼠标双击,将初始迎角改为5度,相当于加入纵向扰动。 鼠标双击,将初始侧滑角改为5度,相当于加入横航向扰动。5)仿真计算 在Matlab环境对“lab.mdl”进行仿真,仿真时间40秒。 6)结果保存 鼠标双击,保存仿真计算结果。 7)结果输出 鼠标双击,查看纵向运动参数变化情况。 鼠标双击,查看横航向运动参数变化情况。

飞行器飞行力学

题号:839 《飞行器飞行力学》 考试大纲 一、考试内容 根据我校教学及该试题涵盖专业的特点,对考试范围作以下要求: 1.基本概念:压力中心;焦点;静稳定性;失速;瞬时平衡假设;纵向运动;攻击禁区;相对弹道;绝对弹道;理想弹道;理论弹道;基准运动;扰动运动;附加运动;强迫扰动运动;自由扰动运动;动态稳定性;操纵性;超调量;调节规律;特征方程及特征根。 2.坐标系及其转换:惯性坐标系;弹道坐标系;速度坐标系;弹体坐标系;坐标转换方程;迎角、侧滑角、弹道倾角、弹道偏角、姿态角、速度滚转角;作用在导弹上的力和力矩。 3.导弹运动方程的建立:导弹作为刚体的六自由度运动方程的建立方法;导弹作为可操纵质点的运动方程的建立;纵向运动方程的建立;平面运动方程的建立;轴对称和面对称导弹的操纵方法;理想操纵关系式。 4.过载:过载的概念;过载的投影;过载与运动参数之间的关系;过载与机动性的关系;过载与导弹结构强度设计之间的关系;过载与弹道形状的关系;需用过载;可用过载;极限过载;最大过载;过载与轨道半径的关系。 5.导引规律与弹道:导引弹道的研究方法、特点;相对运动方程的建立;追踪法;平行接近法;比例导引法;三点法;角度法;复合制导。 6.方案制导:方案制导的弹道方程;按要求给出方案弹道的具体方案。 7.干扰力和干扰力矩:风的干扰;发动机安装偏差;弹身对接偏差;弹翼安装偏差;控制系统误差。 8.扰动运动方程:扰动运动方程的建立;扰动运动方程与扰动源性质的关系;“系数”冻结法;扰动运动方程的拉氏解析求解方法;扰动运动方程特征根与扰动运动形态和稳定性的关系。 9.纵向扰动运动:纵向扰动运动动态特性的分析方法;纵向短周期扰动运动特性的分析;纵向短周期扰动运动的动态稳定条件的推导;纵向短周期扰动运动的动稳定性与静稳定性的关系;纵向短周期扰动运动的传递函数;舵面阶跃偏

飞行基础知识

迎角(Angle of attack) 对于固定翼飞机,机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 对于直升机和旋翼机,迎角的表示方法与固定翼飞机略有不同,它是指与前进方向垂直的轴和旋翼的控制轴之间的夹角。 侧滑角(side slip angle) 是指飞机的轴线与飞机的飞行速度方向在水平面内的夹角。侧滑角是确定飞机飞行姿态的重要参数。

过载(overload) 作用在飞机上的气动力和发动机推力的合力与飞机重力之比称为飞机的过载。飞机所能承受过载的大小是衡量飞机机动性的重要参数。过载越大,飞机的受力越大,为保证飞机的安全,飞机的过载不能过大。飞行员在机动飞行中也会因为过载大于一或者小于一而承受超重和失重。飞行员所能承受的最大过载一般不能超过8G(8倍重力加速度)。 边条(Strake) 边条是指附加于机身或机翼机身结合处的小翼面,包括机身边条和机翼边条两种。机身边条位于机身左右两侧,宽度相等;而机翼边条则是位于机翼机身结合处近似三角形的小翼面。采用边条翼结构可以减少阻力,改善飞机的操作性。 上反角(Dihedral angle) 上反角是指机翼基准面和水平面的夹角,当机翼有扭转时,则是指扭转轴和水平面的夹角。当上反角为负时,就变成了下反角(Cathedral angle)

三角翼(Delta wing) 指平面形状呈三角形的机翼。三角翼的特点是后掠角大,结构简单,展弦比小,适合于超音速飞行。 副油箱(Droppable fuel tank) 是指挂在机身或机翼下面的中间粗、两头尖呈流线型的燃油箱。挂副油箱可以增加飞机的航程和续航时间,而飞机在空战时又可以扔掉副油箱,以较好的机动性投入战斗。 马赫数(Mach number) 常写作M数,它是高速流的一个相似参数。我们平时所说的飞机的M数是指飞机的飞行速度与当地大气(即一定的高度、温度和大气密度)中的音速之比。比如M1.6表示飞机的速度为当地音速的1.6倍。 推力重量比(Thrust-weight ratio) 表示发动机单位重量所产生的推力,简称为推重比,是衡量发动机性能优劣的一个重要指标,推重比越大,发动机的性能越优良。当前先进战斗机的发动机推重比一般都在10以上。 翼载(Wing loading) 翼载是指飞机的满载重量W和飞机的机翼面积S的比值W/S。翼载的大小直接影响到飞机的机动性能、爬升性能以及起飞着陆性能等。 襟翼(Flap) 襟翼是安装在机翼后缘附近的翼面,是后缘的一部分。襟翼可以绕轴向后下方偏转,从而增大机翼的弯度,提高机翼的升力。襟翼的类型有很多,如简单襟翼、开缝襟翼、多缝襟翼、吹气襟翼等等。 配平片(Trim)

北航 飞力实验课实验报告

课程代码:051709 研究生课程试卷 2017-2018学年第一学期期末 《飞行力学实验I》 飞行原理实验报告 考试时间2018年 11月 1日 姓名:苏雨 学号:ZY1805316 专业:飞行器设计 指导教师:王维军 北京航空航天大学 航空科学与工程学院 2018年11月

飞机失速尾旋现象研究 第一章:失速尾旋现象介绍 在我从事航模生涯这些年以来,有一种十分危险的飞行现象,导致了我多架模型飞机坠毁。这就是在飞行中有时会出现飞机突然失去控制,一边下坠,一边偏侧翻转,操纵无效直到坠地。经查阅资料,了解到这种飞行现象称为失速尾旋。 失速:失速是当机翼攻角(迎角)增大到一定的程度(临界迎角)后,机翼上表面气流分离,导致升力减小所发生的现象。飞机将低头下沉,直至获得足够升力飞行。在高度低时发生失速是危险的,高度足够高时,可以练习失速的改出,改出失速的基本操作是迅速推杆到底采用俯冲姿态,等速度大于等于1.3倍失速速度时,缓慢向后拉杆改出至平飞。 尾旋(螺旋):当一侧机翼先于另一侧机翼失速时,飞机会朝先失速的一侧机翼方向沿飞机的纵轴旋转,称为螺旋或尾旋。发生螺旋式非常危险的事情,有些飞机在设计制造时是禁止飞机进入螺旋的,这样的飞机进入螺旋姿态后,很难改出。可以改出的飞机改出尾旋的基本方法是推杆到底,并向相反方向拉杆,如果发动机以高速运转,必须立即收油门到慢车,向螺旋相反方向蹬满舵,螺旋停止后,使用失速改平的方法。成功的关键是飞行员的技术和飞机的性能。 全世界每年飞机事故中因失速发生的占事故总数约30%~40%,如果飞行员认知不清、处置不及时准确,飞机很可能在极短时间内进入失速尾旋,若在低空小高度时飞机进入失速尾旋处置不当,很可能会造成机毁人亡的等级事故,研究失速与尾旋的预防措施与改出方法,对考核飞机边界飞行的操控性、安全性,挖掘飞机的机动性能以及保证战斗生存率与飞行安全意义重大。 第二章:失速尾旋现象原理分析 2.1失速现象原理分析 飞机在飞行时,机翼翼型中心与气流来流方向的夹角为迎角,当迎角增加到抖振迎角时,机翼上气流开始分离,机翼开始出现了抖振,此时机翼升力系数还在上升,当迎角增加到临界迎角时,机翼表面气流分离出现了严重分离,飞机升力系数急剧下降,可见失速根源是由于机翼表面气流分离造成,失速也包括平尾、鸭翼等控制翼面的气流分离,导致机翼和飞机其它控制翼面失去部分或全部效能,在失速过程中如果飞机升力支撑不了飞机重量,飞机就会掉高度(图1、图2),临界迎角表征着飞机抗失速能力,飞机临界迎角越大,飞机抗失速能力越大,其中一代、二代战机临界迎角约为10°~25°、三代战机约为25°~50°、四代战机约为50°~70°,飞行中仰角,其中θ为俯仰角、φ为偏航角、γ为滚转

航空安全基础知识(三篇)

航空安全基础知识(三篇) 方案计划参考范本 目录: 航空安全基础知识一 设备安全基础知识二 道路运输安全基础知识三 - 1 -

航空安全基础知识一 飞机是在空中飞行的。它比空气重,因此它必须在空气中以相当大的速度运动,才能获得托举它在空气中飞行的能力。这种由于飞机与空气之间的相对运动而产生的力称为空气动力。围绕空气动力而展开的飞行原理研究,决定了飞机在各种环境条件下的安全运行和飞机的设计与制造标准。然而,实际飞行情况要复杂得多,飞机构形和外界条件是千变万化的,其组合有可能形成多种困难的临界情况,而安全飞行原理阐明的正是在各种安全临界情况下,在尽可能考虑人机系统实际特性的条件下,如何按照基本飞行原理正确的使用和操纵飞机;分析各种特殊情况下可能发生的问题及应采取的措施。 2.航空安全的基本理论和保障安全的主要方法 航空安全的基础是优秀的飞行人员、适航的航空器、安全的交通运行和无暴力干扰的运行环境。人为因素失事仍然是到目前为止一个尚未解决的安全问题,但使人们能够理解的是国际民航组织的积极倡导并发布了一系列研究成果,民航界各个层次都重视并采取了积极反映。人为因素方面的任何进步均可望对促进飞行安全发挥重大作用。 航空安全管理同样沿用了泰罗的科学管理,即通过收集数据分析研究,明确责任分工,制定工作标准,有效地利用人力、物力、财力的一整套管理理论和方法。充分利用其科学管理的成果,又要利用现代数学手段和信息论、控制论、系统工程等学科的分析方法,发展了以系统观点为核心的现代管理科学。按照科学所揭示的客观规律来对航空生产的安全进行计划、决策、组织、控制和协调,把生产者、生产工具和生产对象构成的生产力三要素有机、协调的组织在一起,来 3 / 3

飞行力学实验2

实验报告 2013届飞行器设计与工程专业 1315071班级 题目模拟飞行实验 姓名______________ 学号___________ __2016___年___5__月__21___日

1.根据模拟飞行,结合课本第八章,简述飞机滑行,平飞、上升、下降的操纵原理。 (1)滑行:飞机不超过规定的速度,在地面上所做的直线或者曲线运动叫滑行。 飞机要平稳的滑行。这时,飞机从静止开始移动,推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,因滑动摩擦力小于静摩擦力,摩擦力减小则应酌量减小油门,以防加速太快不能保持平稳滑行。滑行中,如果要增大滑行速度,应柔和增大油门,使推力大于摩擦力,产生加速度,使速度增大;如果要减小滑行速度,则应收小油门,必要时,可使用刹车。 滑行时要注意保持好速度和接近预定位置前,需提前柔和地减小油门和使用刹车减速,并使飞机能停止在预定的位置。 转弯时,禁止使用刹车进行大速度小半径转弯。转弯前,要减小速度,然后向转弯方向蹬舵,使飞机进入转弯;转弯中,用蹬舵量的多少控制转弯角速度,蹬舵量不宜过大,必要时可适当使用刹车;改出转弯时,要逐渐减少蹬舵量,直至脚蹬放平,使飞机对准预定中心线,退出转弯。 (2)平飞:从理论上讲飞机可以在飞行包线的范围内以任意速度平飞。飞机的飞行速度的改变可通过飞行员操纵油门大小和升降舵偏角来实现,但具体的操纵方法与飞机所处的平飞速度范围有关。 通常把平飞的速度范围分为两个:第一速度范围和第二速度范围,分界点为最大剩余推力所对应的速度。从有利速度到平飞第一速度范围,又称正操纵区;从平飞最小速度到有利速度称为平飞第二速度范围,又称反操纵区。 (a.)平飞第一速度范围的操纵

飞行动力学与控制大作业

飞行动力学与控制大作业报告 院(系)航空科学与工程学院 专业名称飞行器设计 学号 学生姓名

目录 一.飞机本体动态特性计算分析 (2) 1.1飞机本体模型数据 (2) 1.2模态分析 (2) 1.3传递函数 (3) 1.4升降舵阶跃输入响应 (3) 1.5频率特性分析 (5) 1.6短周期飞行品质分析 (6) 二.改善飞行品质的控制器设计 (7) 2.1SAS控制率设计 (7) 2.1.1控制器参数选择 (8) 2.1.2数值仿真验证 (12) 2.2CAS控制率设计 (13) 三.基于现代控制理论的飞行控制设计方法 (16) 3.1特征结构配置问题描述 (16) 3.1.1特征结构的可配置性 (16) 3.1.2系统模型 (16) 3.2系统的特征结构配置设计 (17) 3.2.1设计过程 (17) 3.2.2具体的设计数据 (17) 3.2.3结果与分析 (18) 四.附录 (20)

一. 飞机本体动态特性计算分析 1.1 飞机本体模型数据 本文选取F16飞机进行动态特性分析及控制器设计,飞机的纵向状态方程形式如下: . x =Ax +Bu y =Cx (1.1) 状态变量为:[]T u q αθ=x 控制变量为:e δ=u 基准状态选择为120,2000V m s H m ==的定直平飞。选取状态向量 ()T u q αθ =x ,控制量为升降舵偏角,则在此基准状态下线化全量方程所得 到的矩阵数据如下: -0.0312 -1.1095 -9.8066 -0.5083-0.0013 -0.6543 0 0.9185 0 0 0 1.00000 -0.3828 0 -0.6901?? ?? ? ?=?????? Α (1.2) []-0.0167 -0.0014 -0.0956T =B (1.3) []1.000057.295857.295857.2958diag =C (1.4) 1.2 模态分析 矩阵A 的特征值算出为: 1,23,4-0.6778 + 0.5926i -0.0100 + 0.0769i λλ== 对应的特征向量如下: 0.9874 0.9874 -1.0000 -1.0000 0.1137 - 0.0053i 0.1137 + 0.0053i 0.0011 - 0.0000i 0.0011 + 0.0000i 0.0521 - 0.0629i 0.0521 + 0.0629i 0.002=V 1 + 0.0078i 0.0021 - 0.0078i 0.0019 + 0.0735i 0.0019 - 0.0735i -0.0006 + 0.0001i -0.0006 - 0.0001i ?? ?? ? ??????? 由系统特征值可知,系统具有两对共轭复根,也即具有两种运动模态:长周期模态与短周期模态,其对应的模态频率及阻尼比如下:

飞机基础知识

主题:飞机基础知识 飞机概况 排row(如:第5排译作row 5) 飞机A/C(是aircraft 的英文缩写形式)机头nose 机腹belly 蒙皮skin 机身airframe 翼肋rib 翼梁spar 机翼wing 翼尖wing tip 前缘leading edge 后缘trailing edge 客舱cabin 或passenger compartment 货舱cargo compartment 轮舱wheel well 缩写W/W 驾驶舱cockpit/ flight deck 设备舱equipment bay 窗window 滑窗sliding window 门窗door mounted window 旅客窗passenger cabin window 座位seat 过道aisle 地板floor 天花板ceilin 行李架stowage bin 杆lever or stick or column 操纵面control surface 操纵杆control column 控制面板control panel 手柄handle 开关/电门switch 正常位NORM 备用位ALTN 人工manual 自动auto 选择select (注:通常也用缩写形式SEL)按钮button 旋钮knob

方位描述 左left 缩写L 或LH 右right 缩写R 或RH 前部forward 缩写fwd 后部afterward 缩写aft 上面upper 下面lower 左上upper left 右下lower right 左前left forward 右后right afterward 内侧inboard 缩写I/B 外侧outboard 缩写O/B 左内侧left inboard 在…之间between…and… 航材 胶adhesive 销子pin 例如安全销safety pin 插头plug 插座socket 插针pin 电阻resistor 线路wire 引线lead 螺帽nut 螺栓bolt 螺钉screw 跳开关circuit breaker 继电器relay 隔离垫spacer 遮光板glare shield 消耗航材consumable material 故障描述 航前检查preflight (PF)check 航后检查after flight (AF)check 过站检查transit(TR) check 定检scheduled maintenance 发现find或reveal 故障trouble 或failure 或fault 失效fail 或malfunction

相关文档
最新文档