混凝土构件计算步骤

混凝土构件计算步骤
混凝土构件计算步骤

混凝土

一、受弯构件 1.受弯构件正截面

1)矩形单筋(非抗震,无RE γ;抗震,《混规》11.1.6,RE γ=0.75)

[a]已知M ,求As.(10,,,αh f f y c ) (对1α,混凝土≤C50时取1,为C80时取0.94) 《混规》6.2.10 012

002h b

f M

h h x b c RE ζαγ≤-

-= (若0h x b ζ>,截面过小,发生超筋破坏)

(518.0400550.033550b b ==≤ζζ,;对,时,对混凝土HRB HRB C )

)45%,2.0max(min y

t

f f =ρ ??

?=<=≥=min s min min s min min 1,A bh A A bh A f bx f A s s y c s ,取取ρρα (对板(不包括悬挑板),采用400,500钢筋时,)45%,15.0max(min y

t

f f =ρ) [b]已知s A ,求Mu.(10,,,αh f f y c ) 《混规》6.2.10 ??

?=>≤=

00

1x h h h b f A f x b b b c s y ζζζα,取 RE c x

h bx f Mu γα/)2

(01-=

2)矩形双筋(非抗震,无RE γ;抗震,《混规》11.1.6,RE γ=0.75)

[a]已知's A ,M ,求As.(10,,,αh f f y c ) (对1α,混凝土≤C50时取1,为C80时取0.94) 《混规》6.2.10 01'0''2

00)]

([2h b

f a h A f M h h x b c s s y RE ζαγ≤---

-=

(抗震计算时,梁端截面在一级时025.0h x ≤,在二、三级时035.0h x ≤)

???

????--=<+=

≥14.2.6)

(22'

''

'1',《混规》s s y RE s y

s y c s a a h f M

A a f A f bx f A a x γα

)45%,2.0max(min y t

f f =ρ ??

?>≤=min

s s min min s s s A A A A bh A ,取,取ρ

(对板(不包括悬挑板),采用400,500钢筋时,)45%,15.0max(min y

t

f f =ρ)

[b]已知s A 、's A ,求Mu.(10,,,αh f f y c )

《混规》6.2.10 ??

?=>≤-=0

00

1''x h h h b f A f A f x b b b c s y s y ζζζα,取 (抗震计算时,梁端截面在一级时025.0h x ≤,在二、三级时035.0h x ≤)

????

?--=<-+-=≥14

.2.6/)(2/)]()2

([2'

'

'0''01',《混规》RE s s s y RE

s s y c a a h A f Mu a

a h A f x

h bx f Mu a x γγα 3)T 形单筋(非抗震,无RE γ;抗震,《混规》11.1.6,RE γ=0.75)

[a]已知M ,求As.(10,,,αh f f y c ) (对1α,混凝土≤C50时取1,为C80时取0.94)

混规6.2.11 ???<≥-:

,b ,)2(f '0''1形截面计算,如下按矩形计算按宽度为’

T M M h h h b f RE RE f f

f

c γγα

)2

()('0''11f f f c h h h b b f M -

-=α

011200)

(2h b

f M M h h x b c RE ζαγ≤--

-=

y

f f c s f h b b bx f A ]

)([''1-+=

α

)45%,2.0max(min y t

f f =ρ ??

?>≤=min s

s min min s s s A A A A bh A ,取,取ρ [b]已知s A ,求Mu.(10,,,αh f f y c )

《混规》6.2.11?????<≥形截面计算,如下:,按矩形计算

,按宽度为T A f A f h b f s

y s y f

f

c '

f ''

1b α

??

?=>≤--=0

001''1x ,)(h h h b f h b b f f x b b b c f f c y ζζζαα取

RE f f f c c u h h h b b f x

h bx f M γαα/)]2

()()2(['

0''101--+-=

2.受弯构件斜截面

1)非抗震

已知V ,求箍筋.),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当 混规6.3.1

??

?≥≥≥≤满足要求,

满足要求,

V bh V bh b

h c c w 0c 0c f 20.06f 25.04ββ ??

???+==175.1),0.3~5.1(h a %757

.00λαλαcv cv ,)下独立梁集中荷载(一般受弯构件 ??

?<≥4.3.6,9.2.97.3.6,0《混规》

构造配筋;按《混规》《混规》

Vl V bh f t cv α

00h f bh f V s A yv t cv sv α-≥ 取s A s nA sv sv ≥1 且满足构造要求min 1sv sv bs

nA

ρ≥ 2)抗震(《混规》11.1.6,RE γ=0.85)

已知V ,求箍筋.),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当

??

?≥≤≥>满足要求

满足要求,《混规》,/f 15.05.2,/f 20.05.23.3.110c 0c V bh V bh h l RE c RE c n γβγβ 175.1),0.3~5.1(h a %757

.00+=???

??=λαλαcv cv )下独立梁集中荷载(一般受弯构件

6.04

.3.11h f bh f V s A yv t cv RE sv αγ-≥《混规》 取s A s nA sv sv ≥

1 且满足构造要求min 1sv sv bs

nA

ρ≥

3.梁筋构造1)纵筋构造

二、偏压、偏拉构件

1、偏压、偏拉构件正截面

1)偏压正截面对称配筋(非抗震,无RE γ;抗震,《混规》11.1.6,查RE γ) (75.015.0/=

N

M

e =

0(M 需按《混规》6.2.4考虑二阶效应) )30/,20m ax (h e a = a i e e e +=0 a h

e e i -+=2,

《混规》6.2.17,

???

????=++---=>≤=00

1'

012

0101b 001))((43.0f -,x ,h x bh f a h bh f Ne bh N h h b f N x b c s b c c b b c RE ξξαξβααξζξξαγ,小偏压,按计算

大偏压,取此 ???

????-==+-=<---=

=≥14

.2.6)

-h (22)

()

2/(2''''

''''001''

,《混规》,s s y RE s s s i s y c RE s s a a f Ne A A a h e e a a h f x h bx f Ne A A a x γαγ

min bh 全全

全ρρ≥=

A 且满足构造要求一侧一侧一侧min bh

ρρ≥=A 【b 】已知N ,As 求M.(10,,,αh f f y c ) 《混规》6.2.17,

???

????=++---=>≤=001'

012

101b 001))((43.0f -,x ,h x bh f a h bh f Ne bh N h h b f N x b c s b c c b b c RE ξξαξβααξζξξαγ,小偏压,按计算

大偏压,取此 ???

????-+=--=<+-=-+-=

≥'

''

'''0'01'

2

14.2.6)(22

e )

()2/(2s i RE s

s s y s

i RE s s y c a h e e N a a h A f e a a h

e N

a h A f x h bx f e a x ,《混规》γγα a i e e e -=0 0Ne M =(M 需按《混规》6.2.4考虑二阶效应)

2)偏压正截面对称配筋(非抗震,无RE γ;抗震,《混规》11.1.6,85.0=RE γ) 【a 】已知N ,M ,求As ('

0,h f y )

N M e =

0 s a h e e -+=2

0'

《混规》6.2.23,)

('0

'

'

s y RE s

s a h f Ne A A -=

)45

%,2.0max(min y t

f f =ρ ???>≤=min s min min ,,s s

s

s A A A A bh A 取取ρ 【a 】已知N ,As ,求M ('

0,h f y ) 《混规》6.2.23,N

a h A f e RE s s y γ)

('

0'

-=

s a h

e e +-

=2

'

0 0Ne M =(M 需按《混规》6.2.4考虑二阶效应)

2.偏压、偏拉构件斜截面 1)偏压斜截面 【a 】非抗震

已知V ,求箍筋.),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当

混规6.3.1 ?

?

?≥≥≥≤满足要求,满足要求,

V bh V bh b

h

c c w

0c 0c f 20.06f 25.04ββ ??

?====

)

0.3~5.1(/%755.1)0.3~0.1(2/)(00n 0h a h H Vh M λλλλ);集中荷载(载其他偏压构件,均布荷点在层高范围内框架结构框架柱,反弯

???=<≥A

N N N A f c c f 3.03.0取

??

?<≥+12.3.6,13.3.6,07.075

.10《混规》

构造配筋《混规》

V V N bh f t λ 且满足构造要求取s

s nA 07.0175

.1sv100SV yv t sv

A h f N

bh f V s

A ≥-+-

≥λ

【b 】抗震

已知V ,求箍),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当)85.06.1.11(=RE γ,《混规》

)0.3~0.1(2/)/(0n 0h H Vh M ==λλ点在层高范围内框架柱和框支柱,反弯

《混规》11.4.6 ??

?≥≤≥>满足要求框架柱和框支柱

满足要求

框架柱V bh V bh RE c RE c λβλβλ/f 15.02/f 20.020c 0c

?

?

?=<≥A f N N N

A f c c 3.03.0取 0

sv

056.0105

.1s

7

.4.11h f N bh f V A yv t RE -+-

≥λγ《混规》

且满足构造要求s

A s nA sv

sv ≥1 2)偏压斜截面 【a 】非抗震

已知V ,求箍筋.),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当 混规6.3.1

?

?

?≥≥≥≤满足要求,满足要求,

V bh V bh b

h c c w 0c 0c f 20.06f 25.04ββ ??

?====

)

0.3~5.1(/%755.1)0.3~0.1(2/)(00n 0h a h H Vh M λλλλ);集中荷载(载其他偏压构件,均布荷点在层高范围内框架结构框架柱,反弯?

??<≥-+0002.0175

.114.3.60取《混规》N bh f t λ 00036.02.01

75

.1bh f N bh f V h s A f t t sv yv

≥++-=λ

02.0175

.1h f N bh f V s

A yv t sv

++-

≥λ

且满足构造要求取

s

A s A sv

≥1sv n 【b 】抗震

已知V ,求箍),,f ,(0h f f yv t c )360f 360f (=≥yv yv 时,取当)85.06.1.11(=RE γ,《混规》

)0.3~0.1(2/)/(0n 0h H Vh M ==λλ点在层高范围内框架柱和框支柱,反弯

《混规》11.4.6 ?

?

?≥≤≥>满足要求框架柱和框支柱满足要求

框架柱V bh V bh RE c RE c λβλβλ/f 15.02/f 20.020c 0c

??

?<≥-+0

002.0105

.18.4.110取《混规》N bh f t λ 00036.02.01

05.1bh f N bh f V h s A f t t RE c sv yv

≥++-=λγ 0

02.0105

.1h f N bh f V s

A yv t RE c sv

++-

≥λγ 且满足构造要求取

s

A s A sv

≥1sv n 3.柱筋构造

2)箍筋构造

三、受扭、冲切、局压计算 1.受扭计算

1)弯、剪、扭形矩形截面箍筋计算

(箱型截面步骤相同,参数及计算公式均不同,详见《混规》6.4节)

)求箍筋(已知0,,,,,,h f f f M T V yv t c ξ )360f 360f (=≥yv yv 时,取当

《混规》6.4.3 )3(6

2

b h b W t -=(矩形) 《混规》6.4.1 ???

?

??

?≤+=≤+≤c

c t c c t w f

W T bh V f W T bh V b h ββ2.08.0625.08.0400 (混凝土≤C50时,1=c β,为C80时,0.8) 《混规》6.4.12

需考虑剪力影响计算《混规》忽略剪力影响,按纯扭

)(集中荷载均布荷载V V bh f bh f t t <≥?

?

?+1-4.4.61/875.0350.000λ ??

?<≥需考虑扭矩影响

构件斜截面计算忽略扭矩影响,按受弯T T w f t t 175.0

第四版混凝土结构设计原理试题库及其参考答案

第四版混凝土结构设计原理试题库及其参考答案 一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。每小题1分。) 第1章 钢筋和混凝土的力学性能 1.混凝土立方体试块的尺寸越大,强度越高。( ) 2.混凝土在三向压力作用下的强度可以提高。( ) 3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。( ) 4.钢筋经冷拉后,强度和塑性均可提高。( ) 5.冷拉钢筋不宜用作受压钢筋。( ) 6.C20表示f cu =20N/mm 。( ) 7.混凝土受压破坏是由于内部微裂缝扩展的结果。( ) 8.混凝土抗拉强度随着混凝土强度等级提高而增大。( ) 9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。( ) 10.混凝土受拉时的弹性模量与受压时相同。( ) 11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。( ) 12.混凝土强度等级愈高,胶结力也愈大( ) 13.混凝土收缩、徐变与时间有关,且互相影响。( ) 第1章 钢筋和混凝土的力学性能判断题答案 1. 错;对;对;错;对; 2. 错;对;对;错;对;对;对;对; 第3章 轴心受力构件承载力 1.轴心受压构件纵向受压钢筋配置越多越好。( ) 2.轴心受压构件中的箍筋应作成封闭式的。( ) 3.实际工程中没有真正的轴心受压构件。( ) 4.轴心受压构件的长细比越大,稳定系数值越高。( ) 5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。( ) 6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。( ) 第3章 轴心受力构件承载力判断题答案 1. 错;对;对;错;错;错; 第4章 受弯构件正截面承载力 1.混凝土保护层厚度越大越好。( ) 2.对于' f h x 的T 形截面梁,因为其正截面受弯承载力相当于宽度为' f b 的

蜗壳断面设计公式及说明

第三节:反击式水轮机的引水室 一、简介 一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量 水轮机引水室的作用: 1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周受水流的作用力均匀,以便提高运行的稳定性。 2.水流进入导水机构签应具有一定的旋转(环量),以保证在水轮机的主要工况下导叶处在不大的冲角下被绕流。 二、引水室 引水室的应用范围 1.开敞式引水室

2.罐式引水室 3.蜗壳式引水室 混凝土蜗壳一般用于水头在40M以下的机组。由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳 蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图 金属蜗壳的包角340度到350度

三、金属蜗壳和混凝土蜗壳的形状及参数 1.蜗壳的型式 水轮机蜗壳可分为金属蜗壳和混凝土蜗壳 当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳;一般用于大、中型低水头水电站。 当水头大于40M时,由于混凝土不能承受过大的内水压力,常采用钢板焊接或铸钢蜗壳,统称为金属蜗壳。 蜗壳应力分布图 椭圆断面应力分析图

金属蜗壳按制造方法有焊接铸焊和铸造三种。 ,

尺寸较大的中、低水头混流一般采用钢板焊接,其中铸造和铸焊适用于尺寸不大的高水头混流水轮机 2.蜗壳的断面形状 金属蜗壳的断面常作成圆形,以改善其受力条件,当蜗壳尾部用圆断面不能和座环蝶形边相接时,采用椭圆断面。 金属蜗壳与有蝶形边座环的连接图 金属蜗壳的断面形状图

型钢混凝土组合结构构件的计算

型钢混凝土组合结构构件的计算 【摘要】总结了承载能力极限状态下型钢混凝土组合梁、柱的正截面、斜截面的计算要点,再简要介绍了型钢混凝土梁柱节点、剪力墙的计算要点。 【关键词】型钢混凝土组合梁;型钢混凝土组合柱;型钢混凝土剪力墙;承载能力极限状态;正截面计算;斜截面计算;组合结构 0.概述钢筋混凝土结构容易出现开裂,普通重型钢结构民用建筑中含钢量高导致造价高和容易出现几何非线性的失稳和屈曲,将这两种结构从构件层次上通过剪力件进行组合,形成型钢混凝土组合结构可以很好的解决以上两种结构形式的缺点。我国从20世纪50年代开始应用型钢混凝土结构,但研究起步较晚。到了80年代初中国才有组织的进行对SRC结构的系统研究,全国许多单位对型钢混凝土结构构件(包括梁、柱、节点等)的承载力、刚度、裂缝以及延性进行了试验,依据试验结果进行了有关设计理论与计算方法的研究。1997年参照日本规程,原冶金部编制并颁发了《钢骨混凝土结构设计规程》(YB9082-97),2002年建设部又颁发了《型钢混凝土组合结构技术规程》(JGJ138-2001)。我国现采用的SRC结构计算方法是根据《型钢混凝土组合结构技术规程》(JGJ138-2001)基于钢筋混凝土结构的计算方法。型钢混凝土结构是由混凝土包裹型钢做成的,也是钢与混凝土组合的一种新型结构。过去,我国对这种结构的名称叫法不一致,有的称之为劲性钢筋混凝土结构,有的称之为钢骨混凝土结构。2002年建设部发布了《型钢混凝土组合结构技术规程》,将型钢混凝土组合结构(Steel Reinforced Concrete Composite Structure)定义为混凝土内配置轧制型钢或焊接型钢和钢筋的结构,简称SRC结构。型钢混凝土可以做成多种构件,更能组成各种结构,它可代替钢筋混凝土结构和钢结构应用于各类建筑和桥梁结构中。我国对型钢我国《规程》对型钢混凝土组合梁的计算方法是在钢筋混凝土的计算方法基础上进行考虑的,本文重点旨在对常见型钢混凝土组合构件的承载能力计算状态进行归纳总结。 1.型钢混凝土组合梁的计算1.1正截面受弯计算型钢混凝土框架梁,其正截面受弯承载力应按下列基本假定进行计算:(1)截面应变保持平面。(2)不考虑混凝土的抗拉强度。(3)受压边缘混凝土极限压应变?着■取0.003,相应的最大压应力取混凝土轴心抗压强度设计值f■,受压区应力图形简化为等效的矩形应力图,其高度取按平截面假定所确定的中和轴高度乘以系数0.8,矩形应力图的应力取为混凝土轴心抗压强度设计值。(4)型钢腹板的应力图形为拉、压梯形应力图形。设计计算时,简化为等效矩形应力图形;钢筋应力取等于钢筋应变与其弹性模量的乘积,但不大于其强度设计值。受拉钢筋和型钢受拉翼缘的极限拉应变?着■取0.01。根据中和轴的位置型钢截面可以分为三种情况,即第一种情况,中和轴在型钢腹板中通过;第二种情况,中和轴部通过型钢;第三种情况,中和轴恰好在型钢受压翼缘中通过。这三种情况在规范中通过M■,N■控制。型钢截面为充满型实腹型钢的型钢混凝土框架梁 3.小结I.对于型钢混凝土结构而言,目前我国规程计算理论趋于成熟,完全

【混凝土习题集】—7—受拉构件承载力计算

第七章 受拉构件承载力计算 一、填空题: 1、受拉构件可分为 和 两类。 2、小偏心受拉构件的受力特点类似于 ,破坏时拉力全部由 承受; 大偏心受拉的受力特点类似于 或 构件。破坏时截面混凝土有 存在。 3、偏心受拉构件 的存在,对构件抗剪承载力不利。 4、受拉构件除进行 计算外,尚应根据不同情况,进行 、 、 的计算。 5、偏心受拉构件的配筋方式有 、 两种。 二、判断题: 1、对于小偏心受拉构件,无论对称配还非对称配筋,纵筋的总用钢量和轴拉构件总用钢量相等。( ) 2、偏心受拉构件与双筋矩形截同梁的破坏形式一样。( ) 三、选择题: 1、偏心受拉构件破坏时,( )。 A 远边钢筋屈服 B 近边钢筋屈服 C 远边、近边都屈服 D 无法判定 2、在受拉构件中,由于纵向拉力的存在,构件的抗剪能力将( )。 A 提高 B 降低 C 不变 D 难以测定 3、下列关于钢筋混凝土受拉构件的叙述中,( )是错误的。 A 钢筋混凝土轴心受拉构件破坏时,混凝土已被拉裂,全部外力由钢筋来承担 B 当轴向拉力N 作用于s A 合力及s A 合力点以内时,发生小偏心受拉破坏 C 破坏时,钢筋混凝土偏心受拉构件截面存在受压区 D 小偏心受拉构件破坏时,只有当纵向拉力N 作用于钢筋截面面积的“塑性中心”时,两侧纵向钢筋才会同时达到屈服强度。 四、简答题: 1、简述钢筋混凝土大小偏心受拉构件的破坏特征。 2、轴向拉力对钢筋混凝土偏心受拉构件斜截面抗剪承载力有什么影响?计算公式中如何体现?对N 值有无限制条件? 参考答案 一、填空题: 1、小偏心受拉 大偏心受拉 2、轴拉 钢筋 受弯路 大偏压 受压区 3、轴向拉力N 4、正截面承载能力 抗剪 抗裂度 裂缝宽度

预应力混凝土结构构件计算(精)

第9章预应力混凝土结构构件计算 1.何谓预应力混凝土结构? 答:所谓预应力混凝土结构,就是在外荷载作用之前,先对混凝土施加压力,造成人为的应力状态,它所产生的预压应力能抵消外荷载所引起的部分或全部拉应力◆。这样,在外荷载作用下,裂缝就能延缓或不会产生,即使出现了裂缝,裂缝宽度也不致过大。 2.与非钢筋混凝土结构相比较,预应力混凝土结构主要有哪几方面的优点? 答:与非钢筋混凝土结构相比较,预应力混凝土结构主要有以下几方面的优点: (1)预应力混凝土结构在使用荷载作用下不出现裂缝或推迟裂缝的出现,在同样的荷载下,能减小裂缝宽度,因此也提高了构件的刚度,增加结构的耐久性。如用在处于腐蚀性介质和潮湿环境中的结构以及海洋工程结构中,可根本解决裂缝问题,对水工建筑物的意义尤为重大。 (2)预应力混凝土结构可以合理、有效地利用高强钢筋◆和高强混凝土,从而节省材料,减轻结构自重,可建造大跨度结构。 (3)施加纵向预应力可延缓斜裂缝的形成,使受剪承载力得到提高。 (4)预应力可以降低钢筋的疲劳应力比,因而提高了构件的抗疲劳性能。 3.根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成哪几类,各有何特点? 答:根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成:全预应力混凝土、有限预应力混凝土和部分预应力混凝土。 全预应力混凝土:在全部荷载即荷载效应的短期组合下,截面不出现拉应力的预应力混凝土,称为全预应力混凝土。全预应力混凝土的特点是: (1)抗裂性好。由于构件截面不出现拉应力,混凝土不开裂,因而其抗裂性能好、刚度大,常用于对抗裂或抗腐蚀性能要求较高的结构,如核电站安全壳、贮液罐、吊车梁等。 (2)抗疲劳性能好。预应力钢筋从张拉到使用阶段的全过程中,其应力值变化幅度小,所以在重复荷载下抗疲劳性能好。 (3)反拱值可能过大。当活荷载较大,在正常使用情况下,由于预加应力较高,引起结构的反拱过大,使混凝土在施工阶段产生裂缝,影响上 部结构构件的正常使用。 (4)延性较差。由于构件的开裂荷载与极限荷载较为接近,使构件延较差,对结构的抗震不利。 有限预应力混凝土:在全部荷载即荷载效应的短期组合下,截面拉应力不超过混凝土规定的抗拉强度;在长期荷载即荷载效应的长期组合下,截面不出现拉应力的预应力混凝土,称为有限预应力混凝土。 部分预应力混凝土:截面允许出现裂缝,但最大的裂缝宽度不得超过允许的限值,称为部分预应力混凝土。部分预应力混凝土的特点: (1)节约钢材。可根据结构构件的不同使用要求、荷载作用情况及环境条件等,对裂缝进行控制,降低了预应力值,从而节约预应力钢筋及锚具的用量,降低造价。 (2)反拱值不致于过大。由于施加预应力较小,可避免产生过大反拱。 (3)延性较好。由于配置了非预应力钢筋,可提高构件的延性,有利于结构抗震,并可改善裂缝分布,减小裂缝宽度。 (4)与全预应力混凝土相比,可简化张拉、锚固等工艺,其综合经济效果较好。对于抗裂要求不太高的结构构件,部分预应力混凝土已得到广泛应用。

座环与蜗壳分析

概述座环、蜗壳是混流式水轮机埋人部分的两大部件,它们既是机组的基础件,又是机组通流部件的组成部分,它们承受着随机组运行工况改变而变化的水压分布载荷以及从顶盖传导过来的作用力。座环一般为上、下环板和固定导叶等组成的焊接结构。蜗壳采用钢板焊接,其包角一般介于345一360范围以内。蜗壳通过与座环上、下环板的外缘上碟形边或过渡板焊接成一整体,其焊缝需要严格探伤检查,必要时还需要进行水压试验。近年来,随着水轮发电机组单机容量的不断提高,给机组的设计和制造带来一系列技术和工艺方面的问题,仅就水轮机的座环蜗壳来说,若按传… 反击式水轮机的基本结构 第三节:反击式水轮机的引水室 一、简介 一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量 水轮机引水室的作用: 1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周 受水流的作用力均匀,以便提高运行的稳定性。

2.水流进入导水机构签应具有一定的旋转(环量),以保证在水 轮机的主要工况下导叶处在不大的冲角下被绕流。 二、引水室 引水室的应用范围 1.开敞式引水室

2.罐式引水室

3.蜗壳式引水室 混凝土蜗壳一般用于水头在40M以下的机组。由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳 蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图

金属蜗壳的包角340度到350度 三、金属蜗壳和混凝土蜗壳的形状及参数 1.蜗壳的型式 水轮机蜗壳可分为金属蜗壳和混凝土蜗壳 当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳; 一般用于大、中型低水头水电站。

结构设计常用数据表格

建筑结构安全等级 2 纵向受力钢筋混凝土保护层最小厚度(mm) 不同根数钢筋计算截面面积(mm2)

板宽1000mm内各种钢筋间距时钢筋截面面积表(mm2) 每米箍筋实配面积 钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 框架柱全部纵向受力钢筋最小配筋百分率(%)

框架梁纵向受拉钢筋的最小配筋白分率(%) 柱箍筋加密区的箍筋最小配箍特征值λν(ρν=λνf/f)

受弯构件挠度限值 注:1 表中lo为构件的计算跨度; 2 表中括号内的数值适用于使用上对挠度有较高要求的构件; 3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值; 4 计算悬臂构件的挠度限值时,其计算跨度lo按实际悬臂长度的2倍取用。

注: 1 表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢绞线及热处理钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定; 2 对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值; 3 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.2mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.3mm; 4 在一类环境下,对预应力混凝土屋面梁、托梁、屋架、托架、屋面板和楼板,应按二级裂缝控制等级进行验算;在一类和二类环境下,对需作疲劳验算的须应力混凝土吊车梁,应按一级裂缝控制等级进行验算; 5 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第8章的要求; 6 对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 7 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 8 表中的最大裂缝宽度限值用于验算荷载作用引起的最大裂缝宽度。 梁内钢筋排成一排时的钢筋最多根数

混凝土结构设计原理试卷之计算题题库

1、某现浇多层钢筋混凝土框架结构,地层中柱按轴心受压构件计算,柱高H=6.4m ,承受轴向压力设计值N=2450kN,采用C30级混凝土,HRB335级钢筋,求柱截面尺寸(设配筋率 '0.01,1ρ?==),并试计算需配置的纵向受力钢筋。 (已知: 2 14.3N/mm c f =, 2 1.43/t f N mm =, '2 300/y y f f N mm ==) 附表:钢筋混凝土轴心受压构件的稳定系数? 设配筋率'0.01,1ρ?==,由公式知 32 ''2450101573540.9()0.9 1.0(14.30.01300) c y N A mm f f ?ρ?===+??+? 正方形截面边长396.7b mm ==,取b=400mm 。 (2)求稳定系数 柱计算长度0 1.0l H =,06400 16 400l b ==,查表得0.87?=。 (3)计算配筋 由公式知 32 '2'24501014.34000.90.90.872803.3300 c s y N f A mm f ??--??=== 2、某梁截面尺寸b×h=250mm×500mm ,M=2.0×108N·mm ,受压区预先已经配好HRB335级受压钢筋2φ20( ' s A =628mm 2 ),若受拉钢筋也采用HRB335级钢筋配筋,混凝土的强度等级 为C30,求截面所需配置的受拉钢筋截面面积 s A 。 (已知: 2 14.3N/mm c f =, 2 1.43/t f N mm =, '2 300/y y f f N mm ==, 1 1.0 α=, ,max 0.55,0.399 b s ξα==) 解:(1)求受压区高度x 假定受拉钢筋和受压钢筋按一排布置,则 '35mm s s a a ==

混凝土结构施工图绘制方法及平法标注 (1)

毕业设置绘图设置 1)一般轴线是0.10-0.12宽,其他所有颜色设0.2,梁线可以用0.25,柱子边线和钢筋线可以用0.45-0.5(指的是采用无宽度的线绘制时) 2)字体方面,正文字体一般250-300高(请用dist进行实际测量高度),说明字体450-500高,图名600- 800高,shx字体宽度系数0.75-0.8,不要太多种字体,建议shx字体设置为英文tssdeng,中文tssdchn即可满足绝大部分的需求 3)填充灰度30%-40% 混凝土结构施工图绘制方法 1.概述 结构施工图的基本要求是:图面清楚整洁、标注齐全、构造合理、符合国家制图标准及行业规范,能很好地表达设计意图,并与计算书一致。 通过结构施工图的绘制,应掌握各种结构构件工程图表的表达方法,会应用绘图工具手工绘图、修改(刮图)和校正,同时能运用常用软件通过计算机绘图和出图。 2.结构施工图的绘制方法 钢筋混凝土结构构件配筋图的表示方法有三种: (1)详图法。它通过平、立、剖面图将各构件(梁、柱、墙等)的结构尺寸、配筋规格等“逼真”地表示出来。用详图法绘图的工作量非常大。 (2)梁表、柱表法。它采用表格填写方法将结构构件的结构尺寸和配筋规格用数字符号表达。此法比“详图法”要简单方便得多,手工绘图时,

深受设计人员的欢迎。其不足之处是:同类构件的许多数据需多次填写,容易出现错漏,图纸数量多。 (3)结构施工图平面整体设计方法(以下简称“平法”)。它把结构构件的截面型式、尺寸及所配钢筋规格在构件的平面位置用数字和符号直接表示,再与相应的“结构设计总说明”和梁、柱、墙等构件的“构造通用图及说明”配合使用。平法的优点是图面简洁、清楚、直观性强,图纸数量少,设计和施工人员都很欢迎。 为了保证按平法设计的结构施工图实现全国统一,建设部已将平法的制图规则纳入国家建筑标准设计图集,详见《混凝土结构施工图平面整体表示方法制图规则和构造详图》(GJBT-51800G101)(以下简称《平法规则》)。 “详图法”能加强绘图基本功的训练;“梁表柱表法”目前柱表还在使用,梁表基本绝迹;而“平法”则非常普及且代表了一种发展方向。毕业设计要求梁平法,柱平法(列表注写或截面注写)。 3.结构施工图绘制的具体内容 设计院正规出图的图纸内容包括:图纸目录、结构总说明、基础统一说明及大样(分别有天然基础大样和桩基础大样)、基础及基础梁平面、各层结构平面图(含墙柱定位图、各类结构构件的平法施工图(模板图、板配筋图以及梁、柱、剪力墙、地下室侧壁配筋图等))、大样图等。 毕业设计要求: 柱定位及柱配筋图; 第N层的楼板配筋图(与模板图合二为一,要注明板厚、梁定位等); 第N层的梁配筋图(平法表示);

蜗壳施工方案

发电厂房蜗壳二期混凝土施工专项方案 一、 编制依据 1.《新疆吉勒布拉克水电站发电厂房建筑及金属结构安装工程》([招标/合同编号: XJXH-JLBLK-TJ03-ZB201009-01-040])。 2.业主提供的设计文件、图纸及工程量。 二、工程概况 主厂房长64.69m,宽27.85m,内布置4台机组,其中1#、2#(均为30MW )机组中 心间距19.45m ,3#、4#(均为50MW )机组中心间距21.684m 。机组采用金属蜗壳,外 包弹性垫层,蜗壳外布置了Φ25和Φ20的单层钢筋网,蜗壳混凝土浇筑仓面为 756.873m 2。 三、蜗壳二期混凝土施工工序 根据吉勒布拉克水电站地下厂房混凝土施工的相关技术要求,主厂房蜗壳混凝土 浇筑施工工艺流程为:仓面清理→测量放线→弹性垫层制安→钢筋绑扎→模板及预埋 件安装→冲仓→校模→仓位验收→浇筑混凝土→表面整平→养护→缝面处理。

四、蜗壳二期混凝土专项措施 4.1 施工难度分析 吉勒布拉克水电站机组蜗壳为金属蜗壳,外包弹性垫层,弹性垫层外布置单层钢筋网,根据现场施工环境存在以下问题: ①钢筋安装困难。由于蜗壳钢筋直径大,间距及层间距小,且为弧形异形钢筋,在分层处预留的钢筋头在浇筑时被撞击变形,导致下仓钢筋安装困难,进而影响钢筋的安装质量。 ②模板安装难度大。由于蜗壳二期混凝土浇筑处于检修交通廊道及检修排水交通廊道层,该部分的模板只能进行拼装,而且不易固定,为保证模板之间接缝严密,必须加大支撑材料。同时也直接导致模板拆除困难。 4.2 施工机械的投入 根据本工程的特点,在二期混凝土施工中配置两台混凝土输送泵、一辆臂架式泵车、6根50软轴插入式振捣器、6根70软轴插入式振捣器。 4.3 模板施工及支撑体系 蜗壳层两条1.8m*10.5m检修交通廊道、一条检修排水交通廊道模板均采用φ48钢管脚手架和拱架支撑,拱架间距为0.50m;蜗壳层两条1.8m*10.5m交通廊道排架间距为0.75m,排距为0.75m;检修排水交通廊道排架间距为0.50m,排距为0.50m;主厂房蜗壳层板梁采用φ48钢管搭设满堂脚手架进行浇筑,其中板下部脚手架间排步距分别为:0.75m、0.75m、1.2m;梁下部脚手架间排步距分别为:0.5m、0.5m、1.2m;在模板安装之前,需在模板外侧各布置一排Φ28@1.0m,L=70cm(外露20cm),以便拉筋固定,防止廊道模板在混凝土浇筑过程中发生偏移。蜗壳层外围混凝土模板支撑主要以拉筋为主,辅助φ48钢管斜向支撑,模板背楞采用5×8cm方木,背管采用φ48钢管。模板拉筋(φ16钢筋)间排距为0.6m×0.6m,拉筋固定于边墙锚杆或下层混凝土预埋插筋的根部。 4.4 预埋件施工 土建预埋件按照设计图纸中指定位置与结构钢筋一同进行安装,机电预埋件根据立模及钢筋安装进度及时通知机电安装单位埋设,各类埋件需固定牢固,严禁错埋和漏埋,并在混凝土浇筑工程中和浇筑完成后对预埋件进行保护。接地网由安装公司严格按照设计图纸要求进行安装,其材料采用设计图纸指定的镀锌扁钢进行敷设,安装位置和焊接长度须满足设计要求,并与结构钢筋焊接成网格。混凝土中的各种监测仪器在混凝土浇筑前按照设计图纸要求进行安装,仪器安装后应妥善保护,并及时量测记录,混凝土浇筑过程中,注意对各种埋件进行观察、保护,混凝土下料和振捣时,应避开仪器埋件,防止碰撞埋件变形。

蜗壳的水力计算

蜗壳的水力计算 蜗壳水力计算的目的是要确定在中间不同包角i ?时蜗壳断面的形状和尺寸。 计算是在给定的水轮机设计水头r H 、最大引流量max Q 、导叶高度0b 、座环尺寸(外径a D 、内径b D 等)和选择的蜗壳断面形式、包角0?、进口平均流速c V 的情祝下进行的. 水流在进入蜗壳后,其流速可分解为园周速度u V 和径向速度r V ,在进入导叶时,按照均匀轴对称的入流要求,则r V 应为—常数;其值为 r V = max a Q D b π 对于圆周速度u V 的变化规律,计算时有不同的假定,一般常用的有下列两种假定: (一)速度矩u V r=C(C 为一常数) 假定蜗壳中的水流是一种轴对称的有势流动,并忽略其内摩擦力,这样就可以近似的认为水流除了绕轴的旋转外,没有任何外力作用在水流上并使其能量发生变化,即 () u d mV r dt =0 则 u mV r = C u V r = C 上式说明蜗壳中距水轮机轴线半径r 相同的各点上,其水流的园周速度是相同的,u V 随着半径r 的增大而减小。 (二)圆周速度u V =C 此假定即认为蜗壳各断面的圆周速度u V 不变,且等于蜗壳进口断面的平均流速c V 。这样使得在蜗壳尾部的流速较以u V r=C 所得出的流速为小,得出的断面尺寸较大,从而减小了水力损失并便于加工制造.按照这种假定计算蜗壳的尺寸,方法简单,所得出的结果与前一种假定的结果也很近似。 以下仅介绍按照假定u V =c V =C 的计算方法,对于按照假定u V r=C 的计算可参考其他有关书籍。 1.金属蜗壳的水力计算

1)对于进口断面 断面的面积 0F = 0c Q V = max 0 360c Q V ?? 断面的半径 max ρ = 从轴中心线到蜗壳边缘的半径 max R =a r +2max ρ 2)对中间任一断面 i Q = max 360i Q ?? i ρ i R =a r +2i ρ 式中 a r ——座环外半径; i ?——从蜗壳鼻端起算至计算断面的角度; i Q 、i ρ、i R ——分别为计算断面i ?处的流量、断面半径及边缘半径。 由此便可绘制出蜗壳断面和平面的单线图。 2.混凝土蜗壳的水力计算 混凝土蜗壳的水力计算采用半图解法极为方便,如下图所示,现将其计算方法及步骤分述如下: 1)按下式计算蜗壳进口断面的面积 c F = max 0 360c Q V ?? 2)根据水电站的具体情况选择断面形式,并规划进口断面的尺寸使其包括的面积符合c F 的要求,然后将进口断面画在图的右上方; 3)选择顶角和底角的变化规律(图中选择的是直线变化规律),以虚线表示,并画出若干个中间断面(如图上1、2、3、……断面); 4)计算各断面的面积,并在断面图的下面对应地绘制出F=f(R)的关系曲线; 5)按下列关系式在左下方并列绘制出F=f(?)的直线,

混凝土结构设计原理 课件及试题10

第十章混凝土结构按《公路钢筋混凝土及预应力混凝土桥涵设计规 范》的设计计算 本章的意义和内容: 本章讲述了桥涵工程混凝土结构的材料、计算原理、基本构件(受弯构件、轴心受力构件、偏心受力构件、受扭构件、预应力混凝土构件)的承载能力计算和构件裂缝宽度、挠度验算以及构造要求。通过本章的学习,使学生了解混凝土按《公路钢筋混凝土及预应力混凝土桥涵设计规范》进行构件设计计算的方法、这种方法与房屋工程中混凝土构件的设计计算方法有何相同和不同之处,为进行桥涵工程混凝土结构设计计算奠定基础。并掌握以下重点、难点。 1.桥涵工程混凝土结构设计也采用以概率理论为基础的极限状态设计方法,但是由于涵桥结构所处环境、荷载性能以及结构的特点与房屋结构有较大的差异,因此《公路钢筋混凝土及预应力混凝土桥涵设计规范》规定的结构目标可靠指标比房屋结构的大;桥涵工程的材料强度设计值比房屋结构的小。 2.涵桥工程受弯构件不但要进行持久状态下的设计计算,而且还要进行短暂状态下的计算,受弯构件纵向受力钢筋的最小配筋率与房屋建筑有所不同。 3.土木工程中一般受弯构件斜截面抗剪承载力计算基于同一基本理论,但涵桥工程受弯构件斜截面抗剪承载力计算方法与房屋建筑工程不同。涵桥工程受弯构件斜截面抗剪承载力计算是采用单一公式(房屋建筑是两套公式),该公式适用矩形、T形、I字形截面构件,并且考虑了构件截面受压翼缘的抗剪作用,也考虑了受弯纵向受力钢筋的抗剪作用 4.由于桥梁结构受弯构件截面形式、剪力图的特点,桥涵工程受弯构件斜截面抗剪承载能力计算时,首先按斜截面始端的截面尺寸和规定的剪力值进行计算,然后确定斜截面末端的位置,再根据斜截面末端截面尺寸和规定的剪力取值对斜截面末端进行抗剪承载能力验算。 5.桥涵工程偏心受压构件正截面承载能力计算时,混凝土强度采用棱柱体抗压强度,而且不考虑附加偏心距的影响。 6.桥涵工程混凝土构件的裂缝宽度、受弯刚度计算公式的建立方法、计算方法与房屋建筑工程不同,为了减少受弯构件的挠度,经常需要设置预拱度,预拱度的大小为永久荷载与一半可变荷载频遇值引起的挠度。 在预应力混凝土构件的设计当中,桥涵工程中预应力混凝土构件的预应力损失的排序、预应力损失的组合与房屋建筑工程不同。 一、概念题 (一)填空题 1.《桥规》规定,钢筋混凝土构件的混凝土标号不应低于,当采用HRB400、KL400级钢筋时不应低于;预应力混凝土构件的混凝土标号不应低于; 2.《桥规》规定,钢筋混凝土构件中的普通钢筋应选用、、及。 3.桥涵工程结构设计采用以概率论为基础的方法,极限状态分为和。桥涵工程设计基准期为。 4.《桥规》规定,在进行承载能力极限状态和正常使用极限状态设计时,应考虑、和三种设计状态。 5.和房屋建筑工程相比,桥涵结构的目标可靠度指标值相对。

蜗壳计算讲解

第五章 蜗壳 45 蜗壳形式与其主要尺寸的选择 现代的中型及大型水轮机都是用蜗壳引导进水的。各种水力实验中所进行的试验指出,设计合理的蜗壳,它的引水能力及效率与小型水轮机所采用的明槽式装置及罐式机壳相比较并无明显的降低。蜗壳的优点是可以大大缩短机组之间的距离,这在选择电站厂房的大小时,有着很大的意义。 从蜗壳的研究当中,可以确定各种不同水头下蜗壳内的最佳水流速度,最合理的蜗壳形式,经及制造它的材料。 大部分的转桨式及螺桨式水轮机都采用梯形截面的混凝土蜗壳。目前设计混凝土蜗壳的最高水头是30~35公尺。然而,有很多大型水电站,在水头低于35公尺时还应用金属蜗壳。 轴向辐流式水轮机通常采用金属蜗壳,按照水头及功率的不同,金属蜗壳可由铸铁或铸钢浇铸(图62),焊接(图63)或铆接而成。图64所示是根据水轮机的水头及功率,对于各种不同型式蜗壳通常所建议采用的范围。 蜗壳的大小决定了它的进水截面,而进水截面是与所采取的进水速度有关的。最通用的进水速度与水头之间的关系,对于12~15公尺以下的水头来说如下式所示: H k v v c = (84) 式中 c v —蜗壳中的进水速度;H —有效水头;v k —速度系数,约为1.0。 中水头或高水头则常应用下列关系: 30v c H k v = (85) 如果把列宁格勒斯大林金属工厂和其它制造厂所出品的中水头及高水头水轮机的现有蜗壳进水速度画在圆上,那么对于水头超过12~15公尺时,我们可得符合下式的曲线: 30c H v 5.1= 然而,有许多由列宁格勒斯大林金属工厂及外国厂家制造的良好的蜗壳,进水速度大大超过了所示的数值。 图65所示为根据有效水头选择蜗壳进水速度用的诺模图,此图是根据上述的公式而做成的。 46 蜗壳的水力计算 当工质—水,流经水轮机的运动机构—转轮时,由于运动量的变化而产生流体能量的转变。这可用水轮机的基本方程式来表示: gh ηu v u v r u u 2211=-

混凝土结构设计原理思考题答案教学内容

混凝土结构设计原理 部分思考题答案 第一章钢筋混凝土的力学性能 思考题 1、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。 冷加工的方法有冷拉、冷拔、冷弯、冷轧等。 这几种方法对钢筋的强度都有一定的提高, 2、试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土粘结良好;(3)可焊性好;(4)有足够的塑性。 4、除凝土立方体抗压强度外,为什么还有轴心抗压强度? 答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。所以除立方体抗压强度外,还有轴心抗压强度。 5、混凝土的抗拉强度是如何测试的? 答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。 6、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别? 答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。 当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。当持续应力σC >0.5f C时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。 混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。 10、如何避免混凝土构件产生收缩裂缝? 答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。对于细长构件和薄壁构件,要尤其注意其收缩。 第二章混凝土结构基本计算原则 思考题 1.什么是结构可靠性?什么是结构可靠度? 答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维护),完成预定功能的能力,称为结构可靠性。 结构在规定时间内与规定条件下完成预定功能的概率,称为结构可靠度。 2.结构构件的极限状态是指什么? 答:整个结构或构件超过某一特定状态就不能满足设计规定的某一功能要求,这种特定状态就称为该功能的极限状态。 按功能要求,结构极限状态可分为:承载能力极限状态和正常使用极限状态。 3.承载能力极限状态与正常使用极限状态要求有何不同? 答:(1)承载能力极限状态标志结构已达到最大承载能力或达到不能继续承载的变形。若超过这一极限状态后,结构或构件就不能满足预定的安全功能要求。承载能力极限状态时每一个结构或构件必须进行设计和计算,必要时还应作倾覆和滑移验算。 (2)正常使用极限状态标志结构或构件已达到影响正常使用和耐久性的某项规定的限值,若超过这一限值,就认为不能满足适用性和耐久性的功能要求。构件的正常使用极限状态时在构件承载能力极限状态进行设计后,再来对有使用限值要求的构件进行验算的,以使所设计的结构和构件满足所预定功能的要求。

混凝土蜗壳强度计算

FJD 35170 FJD 水电站厂房钢筋混凝土蜗壳技术 技术设计大纲范本 水利水电勘测设计标准化信息网 1996 年 3 月 1

水电站技术设计阶段 厂房钢筋混凝土蜗壳设计大纲范本 主 编 单 位: 主编单位总工程师: 参 编 单 位: 主 要 编 写 人 员: 软 件 开 发 单 位: 软 件 编 写 人 员: 勘测设计研究院 年 月 2

目 次 1. 引 言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 内力计算及配筋 (7) 5. 构造要求 (9) 6. 观测设计 (9) 7. 专题研究(必要时) (9) 8. 工程量计算(必要时) (9) 9. 应提供的设计成果 (9) 3

1 引 言 工程位于 ,是以 为主,兼有 等综合利用的水利水电枢纽工 程。电站总装机容量 MW,年发电量 MW×h,电站为 厂房,共装 台机,单 机容量 MW。厂房长 m,宽 m,高 m。 本工程初步设计报告于 年 月 日审查通过。 2 设计依据文件和规范 2.1 有关本工程的文件 (1) 工程初步设计报告; (2) 工程初步设计报告审批文件; (3) 工程技术设计任务书。 2.2 主要设计规范 (1) SDJ 20-78 水工钢筋混凝土结构设计规范(试行): (2) SD 335-89 水电站厂房设计规范(试行); (3) SDJ 173-85 水力发电厂机电设计技术规范(试行)。 2.3 设计参考资料 (1) 建筑结构静力计算手册,1975 年,建筑出版社; (2) 水电站厂房设计,顾鹏飞、喻远光编,1987 年,水利电力出版社。 3 基本资料 3.1 工程等别与建筑物级别 (1) 工程等别为 等; (1) 建筑物级别为 级; (3) 电站厂房级别 级。 3.2 水 位 上游:正常蓄水位 m: 下游:正常尾水位 m; 死 水 位 m; 最低尾水位 m; 设计洪水位 m; 设计洪水尾水位 m; 4

第三节 蜗壳

第三节蜗壳 一、金属蜗壳 1.结构型式 根据金属蜗壳外围混凝土结构的受力情况,可分为三种结构型式。 (1)外围混凝土结构不分担蜗壳内水压力。这种金属蜗壳顶面钢板与外围结构之间用弹性垫层隔开,如图18-5所示。这种结构型式为我国所普遍采用。 外围混凝土结构不分担内水压力的金属蜗壳,在尾水管锥管段钢衬安装和周围混凝土浇筑完成后,安装座环及钢蜗壳,在蜗壳上半部表面铺上弹性垫层,然后浇筑蜗壳的外围混凝土。外围混凝土结构的体积大时应分层分块浇筑。金属蜗壳本身刚度不够时,浇筑外围混凝土期间,在蜗壳内应设撑架。外围混凝土浇筑完毕后,通过水轮机座环上的预留孔或管道浇筑座环下未填实的部分。 图18-5 有弹性垫层的金属蜗壳 在这种金属蜗壳中,弹性垫层的作用是保证蜗壳在内水压力的作用下可自由变形,不会将力传给外围结构。为了保证渗人垫层空隙的水能顺畅排出,在垫层最低处应留有排水设施。此外,还应注意在浇外围混凝土时,或对蜗壳底部压浆充填孔隙时,防止垫层空隙被水泥浆填实而失去弹性。弹性垫层通常用三毡四油构成,或者用软木沥青构成。垫层的厚度应满足金属蜗壳自由变形的需要。某水电站厂房金属蜗壳的垫层为用锯末、麻刀和沥青做成的5cm 厚、50cm×50cm软木板,板的曲面与蜗壳形状贴合。铺好软木板后,再铺二毡三油,这样最后完成的垫层厚度接近6cm。由此可见,弹性垫层对施工质量的要求很高,给施工带来不少麻烦。 采用金属蜗壳与外围结构用垫层分开的这种结构型式时,两者受力明确,外围结构只承受本身自重和从上部传来的荷载。 (2)外围混凝土结构承担少部分蜗壳内水压力。采用这种结构型式的金属蜗壳,在蜗壳安装好之后,采取措施临时封闭蜗壳的进出口,向蜗壳内充水并加压到预定值,然后浇外围混凝土,3-7天后卸除内压,再浇筑蜗壳座环下未填实的部分,施工结束时蜗壳与外围结构之间存在空隙,空隙的大小与预加压力有关。 这种结构型式的金属蜗壳,运行时,蜗壳内水压力未达上述预加压力前,蜗壳单独受力;当内水压力增大,蜗壳变形,钢板与外围结构接触后,蜗壳与外围结构共同承担增加的部分水压力。 这种结构型式的金属蜗壳,施工时所施加的预压力大小视外围结构承担的能力而定。有的电站以正常运一行时蜗壳承受的最大静水压力为预压值,这样蜗壳与外围结构共同承担水

施工手册第四版第二章常用结构计算2-3混凝土结构计算共10页

2-3 混凝土结构计算 2-3-1 混凝土结构基本计算规定 1.结构构件应根据承载能力极限状态及正常使用极限状态的要求。分别进行下列计算和验算: (1)承载力及稳定:所有结构构件均应进行承载力(包括失稳)计算,必要时应进行结构的倾覆、滑移及漂浮验算; 处于地震区的结构,尚应进行结构构件抗震的承载力验算; (2)疲劳:直接承受吊车的构件,应进行疲劳强度验算;但直接承受安装或检修用吊车的构件,根据使用情况和设计经验可不作疲劳验算; (3)变形:对使用上需控制变形值的结构构件,应进行变形验算; (4)抗裂及裂缝宽度:对使用上要求不出现裂缝的构件,应进行混凝土拉应力验算;对使用上允许出现裂缝的构件,应进行裂缝宽度验算;对叠合式受弯构件,尚应进行纵向钢筋拉应力验算。 2.结构构件的承载力(包括失稳)计算和倾覆、滑移及漂浮验算,均应采用荷载设计值;疲劳、变形、抗裂及裂缝宽度验算均应采用相应的荷载代表值;直接承受吊车的结构构件,在计算承载力及验算疲劳、抗裂时,应考虑吊车荷载的动力系数。 预制构件尚应按制作、运输及安装时的荷载设计值进行施工阶段的验算。预制构件吊装的验算,应将构件自重乘以动力系数,动力系数可取1.5,但根据构件吊装时受力情况,可适当增减。 对现浇结构,必要时应进行施工阶段的验算。 3.根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级(表2-37)。 建筑结构的安全等级表2-37 建筑物中各类结构构件的安全等级,宜与整个结构的安全等级相同,对其中

部分结构构件和安全等级,可根据其重要程度适当调整,但不得低于三级。 4.受弯构件的最大挠度应按荷载效应的标准组合并考虑荷载长期作用影响进行计算,其计算值不应超过表2-38的限值。 受弯构件的挠度限值表2-38 注:1.如果构件制作时预先起拱,而且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值。预应力混凝土构件尚可减去预加应力所产生的反拱值。 2.表中括号中的数值,适用于使用上对挠度有较高要求的构件。 3.计算悬臂构件的挠度限值时,其计算跨度l0按实际悬臂长度的2倍取用。 4.表中l0为构件的计算跨度。 5.结构构件正截面的裂缝控制等级分为三级。 结构构件的裂缝控制等级及最大裂缝宽度限制见表2-39。 结构构件的裂缝控制等级及最大裂缝宽度限值表2-39 注:1.表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢纹线及热处理钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定; 2.对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值; 3.在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.2mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.3mm; 4.在一类环境下,对预应力混凝土屋面梁、托梁、屋架、托架、屋面板和楼板,应按二级裂缝控制等级进行验算;在一类和二类环境下,对需作疲劳验算的预应力混凝土吊车梁,应按一级裂缝控制等级进行验算; 5.表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合《混凝土结构设计规范》(GB 50010-2019)第8章的要求; 6.对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的

混凝土结构设计原理习题之四五含复习资料钢筋混凝土受压受拉构件承载力计算试题

混凝土结构设计原理习题集之四 6 钢筋混凝土受压构件承载力计算 一、填空题: 1.偏心受压构件的受拉破坏特征是______________________________________ ,通常称之 为_____ ;偏心受压构件的受压破坏特征是_________________________________ , 通常称之为_______ 。 2.矩形截面受压构件截面,当l0/h__ 时,属于短柱范畴,可不考虑纵向弯曲的影响,即 取___ ;当l0/h___ 时为细长柱,纵向弯曲问题应专门研究。 3.矩形截面大偏心受压构件,若计算所得的ξ≤ξb,可保证构件破坏时____ ;x=ξb h0≥2a s′可保证构件破坏时_______ 。 4.对于偏心受压构件的某一特定截面(材料、截面尺寸及配筋率已定),当两种荷载组合同为大偏心受压时,若内力组合中弯矩M值相同,则轴向N越__ 就越危险;当两种荷载组合同为小偏心受压时,若内力组合中轴向力N 值相同,则弯矩M 越__ 就越危险。 5.由于轴向压力的作用,延缓了__ 得出现和开展,使混凝土的__ 高度增加,斜截面受剪承载力有所___ ,当压力超过一定数值后,反而会使斜截面受剪承载力__ 。 6.偏心受压构件可能由于柱子长细比较大,在与弯矩作用平面相垂直的平面内发生_____ 而破坏。在这个平面内没有弯矩作用,因此应按______ 受压构件进行承载力复核,计算时须考虑______ 的影响。 7.矩形截面柱的截面尺寸不宜小于mm,为了避免柱的长细比过大,承载力降低过多,常取l0/b≤,l0/d≤(b为矩形截面的短边,d为圆形截面直径,l0为柱的计算长度)。 8.《规范》规定,受压构件的全部纵向钢筋的配筋率不得小于___ _ ,且不应超过___ 。 9.钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:_______ 和 _________ ;对于短柱和长柱属于______ ;细长柱属于______ 。二、选择题: 1.在矩形截面大偏心受压构件正截面强度计算中,当x<2a s′时,受拉钢筋截面面积A s的求法是() A.对受压钢筋的形心取矩求得,即按x=2a s′求得。 B.要进行两种计算:一是按上述A的方法求出A s,另一是按A s′=0,x为未知,而求出A s,然后取这两个A s值中的较大值。 C.同上述B,但最后取这两个A s值中的较小值。 2.钢筋混凝土柱子的延性好坏主要取决于()。 A.纵向钢筋的数量B.混凝土强度等级 C.柱子的长细比D.箍筋的数量和形式 3.矩形截面大偏心受压构件截面设计时要令x=ξb h0,这是为了()。

相关文档
最新文档