三价铬钝化膜中六价铬成因及其影响因素

三价铬钝化膜中六价铬成因及其影响因素
三价铬钝化膜中六价铬成因及其影响因素

三价铬钝化膜中六价铬成因及其影响因素的研究

镀锌是提高钢铁抗大气腐蚀的有效方法。但在潮湿的环境中镀锌层容易发生腐蚀,表面形成白色疏松的腐蚀产物或变成灰暗的颜色影响外观。为进一步提高防蚀性和装饰性,镀层必须进行钝化处理。过去人们一直采用六价铬钝化处理,六价铬钝化工艺成熟稳定,钝化膜耐蚀性高,具有修复耐蚀性的自愈能力,原料来源广泛且价廉,但由于六价铬毒性大,严重污染环境和危害人体健康,欧盟RoHS规定禁止使用。

目前市场上已经出现了多种三价铬钝化液产品,替代六价铬钝化处理并得到了大规模的应用。其耐蚀性和装饰性已达到或超过六价铬钝化液的钝化效果。

我司于2011年在宝强、华裕螺丝中均有发现:三价铬彩锌在电镀过程并没有有意图添加六价铬,也没有过程污染的存在,在刚电镀出来的三价铬彩锌产品,用水煮法定性分析也未检测出有六价铬。但将产品放置15天以上时,一般会发现有微量的六价铬存在。随着时间的增加六价铬的含量会有所增加。放置到6个月时,转化趋于稳定。这时六价铬含量约为20ppm~50ppm左右。

经过我司众多的对比与考察,以上现象为电镀行业的普遍现象。目前常用的三价铬彩锌钝化用药水都存在这种转化现象,只是转化的时间或长或短,转化的程度或轻或重。

本文探讨了钝化液温度、pH值、钝化时间、钝化液成分等因素对钝化膜形成六价铬的影响,提出了减少或避免钝化膜中六价铬形成的方案。

下图是我司在做六价铬定性试验时所拍的图片。(试验方法为沸水萃取+比色法)

以下为三价铬镀锌与六价铬镀锌的一些对比图片

1.三价铬钝化膜出现六价铬的成因

从化学价态变化角度,经过三价铬钝化溶液处理,钝化膜表面形成了一层由

Cr(OH)

3、Zn(OH)

2

等胶状沉淀物转化而成的Cr

2

O

3

- ZnO- Zn钝化膜,钝化膜表面通常

呈弱碱性(PH7-8.5),钝化膜表面结构松散的微量三价铬在潮湿的空气中会被缓慢氧化成六价铬。

从热力学的角度,钝化膜表面形成的Cr(OH)

3 和CrO

2

-类化合物可以被空气中的

氧气氧化成六价铬,这可能是三价铬钝化膜转化为六价铬的最主要的原因。

在六价铬的形成过程中,钝化膜表面六价铬的形成速率、形成量,还与许多因素有关,如三价铬氧化成六价铬的动力学机制、钝化条件以及钝化膜表面的致密程度、其他组分的影响等。

2.工艺条件对钝化膜中六价铬形成的影响

2.1钝化液温度

图1 给出了钝化液温度对Cr6+形成的影响。由图1可知,钝化液温度越高,钝化膜出现六价铬速率越快;钝化液温度低,有利于降低六价铬的形成速率。因此,钝化液温度是六价铬形成的重要影响因素。当温度低至300℃时,出现六价铬的时间将超过30d。但温度过低将影响钝化膜的耐蚀性。

图1.

2.2钝化液PH值

图2给出了钝化液PH值对Cr6+形成的影响。由图2 可见,钝化液的PH值越高,六价铬出现的时间越早;PH值越低,出现的时间越晚,当PH=0.7时,出现六价铬的时间将超过40d.。但考虑到PH值过低将会增加钝化膜的溶解,而不利于钝化膜的耐蚀性,所以PH值不宜过低。

图2.

2.3钝化时间

图3给出了钝化时间对Cr6+形成的影响。由图3可见,钝化时间越长,六价铬出现的时间越早;钝化时间越短,出现时间越晚。钝化时间10S时,出现六价铬的时间将超过50d。但钝化时间太短形成的膜层太薄而影响钝化效果。

图3.

2.4浓缩钝化液的质量分数

图4给出了浓缩钝化液的质量分数对形成的影响。由图4可见,浓缩钝化液的质量分数越大,六价铬出现的时间越早,浓缩钝化液的质量分数低,六价铬出现的时间晚。其质量分数为5%时,出现六价铬的时间将超过60d。浓缩钝化液的质量分数太低,影响钝化膜的外观和耐蚀性。

图4.

2.5烘烤温度

图5给出了烘烤温度对Cr6+形成的影响。由图5可见,烘烤温度越高,六价铬出现的时间越早;烘烤温度越低,出现时间越晚。当烘烤温度为800℃,出现六价铬的时间将超过30d。

图5.

2.5烘烤时间

图6给出了烘烤时间对Cr6+形成的影响。由图6可见,烘烤时间越长,六价铬出现的时间越早;烘烤时间越短,出现时间越晚。当烘烤时间为2min时,出现六价铬的时间将超过30d.

图6.

2.6钝化液成分的影响

除上述因素外,三价铬彩色钝化液的配方也明显影响钝化膜中六价铬的形成速率与形成量,其中影响最大的是氧化剂和配位剂.

3.三价铬钝化膜出现六价铬的控制

钝化膜中出现微量六价铬主要是空气中的氧气对钝化膜中三价铬的氧化作用所

造成的.通过控制三价铬钝化工艺条件或使用后处理封闭剂或采用无铬钝化等方法可以控制钝化膜中六价铬的出现。

研究表明:通过控制钝化液温度、钝化液PH值、钝化时间、浓缩钝化液的质量分数,烘烤温度和时间及调整钝化液成分等,可以大幅度延长六价铬的出现时间,减少钝化膜中六价铬。但是改变钝化工艺条件尚不足以从根本上消除六价铬的开成,只有使用后处理封闭剂或采用无铬钝化才有可能从根本上消除钝化膜中六价铬的形成问题。

现有的无铬钝化技术尚难以满足镀锌层高耐蚀性的要求。通过在三价铬钝化后,进行封闭处理,隔绝空气与钝化膜中三价铬的接触,是目前解决三价铬钝化膜中微量六价铬产生的重要途径。市场上已经出现了一些基于聚丙稀酸树脂类的钝化后处理封闭剂。但是这类树脂往往会严重影响钝化膜的外观装饰性,影响其推广应用。

因此,为了得到适合工业化生产的三价铬钝化膜,今后还有必要继续探索研究。

传统六价铬与三价铬的利弊_1_

传统六价铬钝化工艺的优点与危害性 六价铬钝化工艺有很多优点,如很高的耐蚀性,自我修复耐蚀性的自愈能力,蓝白、五彩、军绿色、黑色等颜色,原料来源广泛而且价廉。 、三价铬钝化的紧迫性 欧盟于2003年在布鲁塞尔签署了一项法令,规定从2003年1月1日起禁止2g 1].2004年8月14日。欧盟《电子垃圾处理法》正式出台,2005年8月13 这一法规将正式开始实施。该法令是2002依据2002年欧盟的两个指令完成(WEEE)和《关于在电子 ROHS),要求成员国确保从2006年 月1日起,投放于市场的新电子和电器设备不包括含铅、汞、镉、六价铬、聚6种有害物质。法令还规定,所有在欧盟市场上生产和销 CPU、主板机、鼠标、键盘、手机 2005年8月13日以前,建立完整地分类、回收、复原、再生使用系 并负担产品回收责任。中国生产出口产品的必须在2004年8月13日后停止 、三价铬钝化机理与组成 传统六价铬的钝化膜是通过锌的溶解、铬酸根的还原以及三价铬凝胶的析出 而三价铬膜层是通过锌的溶解形成锌离子,同时锌离子的溶解造成锌表面溶PH值上升,三价铬直接与锌离子、氢氧根等反应,形成不溶性化合物沉淀 溶锌过程:Zn+Ox(氧化剂)Zn2++Ox(反应式1) Zn+2H+ Zn2++H2(反应式1a) 成膜过程:Zn2++xCr(Ⅲ)+y H2O ZnCrxOy+2YH+(反应式2) 溶膜过程:ZnCrxOy+2yH+ Zn2+ xCr(Ⅲ)+ y H2O(反应式3) 三价铬Cr(Ⅲ):钝化膜的主要成份来源,三价铬可取硫酸铬、硝酸铬、氯 醋酸铬等。氧化剂:产生锌离子,促使膜形成。氧化剂用双氧水、硝酸盐、PH的 会把三价铬氧化成六价铬,而夹杂于镀层中,从而使镀层含有六价铬, Mn、Sb、Mo、Ti、Fe、Co、Ni、 和其它镧系稀土元素。 NO3-、SO42-、-PO43-、F-、Cl-、SiO32-、SiF62-、 、RCOOH. 、三价铬钝化技术的进展 在锌上进行无六价铬钝化的研究工作已经进行了十几年,主要采用三价铬钝 2],目前这些无铬钝化体系虽然是无毒环保,但耐蚀性及外观没有六价铬 满足不了普通五金件电镀要求,更不用说满足汽车部件电镀的高耐蚀 所以无铬钝化的工艺未曾在工业上广泛应用过。因此,无六价铬钝化的技 该工艺已成熟应用于生产,正如现代的碱性无氰

如何配制电镀锌三价铬钝化液

怎样配制电镀锌三价铬钝化液 一:配方组成 1.1 三价铬离子(主成膜剂):硫酸铬、硝酸铬、氯化铬 1.2 络合剂(产品稳定剂):各大生产商所使用的络合剂不外乎两体系三种原料:有机酸体系-草酸、柠檬酸(通常所用的紫红色药水都是这个体系);氟体系-氟化钠,氟化铵,氟化氢铵(通常所用的绿色透明药水都是这个体系)。1.3 氧化剂:硝酸根离子。 1.4 其它金属离子 目的是为了提高耐蚀性并调整钝化膜的颜色。用的最多的有钴、镍及一些稀土元素。 1.5 其它阴离子 与金属离子的性质差不多,也是一种成膜促进剂。二:钝化原理 水溶液中Cr3+通常都以[Cr (H2O )6]3+存在,水的络合能力很弱,在发生钝化反应时,体系不稳定,因此需要一些相对较强的络合剂。这与电镀添加剂的本质基本相同。加入络合剂后,铬离子以以下结构式存在: [Cr(H2O)6-XFX](3-X)+ 0≤X ≤3或 [Cr(H2O)6-2X(C2O4)2X](3-2X)+ 0≤X ≤1.52.1 金属锌在氧化剂硝酸的作用下溶解为锌离子。 Zn+H+--àZn2++H2 2.2由于H+的消耗,使金属的表面pH 升高 2.3随着pH 升高,络合离子稳定降低,解离出的氢氧根离子进攻络合离子,使铬离子及溶液中的锌离子形成Cr(OH)3和Zn(OH)2,沉淀在锌表面上形成钝化膜;同时,作为络合剂的C2O42-也被解离出来与Co2+形成不溶性的C2O4Co 沉淀在钝化膜表面。C2O4Co 是非晶态的固体,其能极大的提高钝化膜的抗蚀性能。这样反复进行,真到钝化膜生长起来。当然,钝化膜的成份并不只是这么简单,到目前为止,还没有一个定论,但这只是科学家的事。 三.配方设计  3.1 一度市场上卖的很火的兰白钝化粉配方研究CrCl3 8~12g/L NaF 6g/L HNO36ml/L 这个配方主要特点:蓝度高,光亮好,发蓝速度快。但其盐雾效果极差,只适合低端市场。 这一配方还有一致命缺陷,在使用或放置一段时间后,就不能用。使用过的朋友应该能充分感受其中的痛苦。 这是因为:在些配方中氟离子起络合和发蓝作用。由于氟离子对铬的络合作用相对较强,在放置一段时间后,氟离子与铬完全络合,工作液中完全没有氟离子的存在,因此就达不到发蓝的效果。 这点可以从其工作液在工作或放置一段时间后,pH 值反而降低来证明。因为氢氟酸属弱酸,在水溶液中的解离度不高。但氟与铬形成络合离子后,氢离子被释放出来,从而降低了工作的PH 值。HF +Cr3+à[Cr(H2O)6-XFX](3-X)++H + 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

三价铬钝化工艺规范

三价铬钝化工艺的规范准则 ? ? 自从上个世纪七十年代以来,六价格钝化膜的替代选择就已存在。一些替代选择是基于毒性较小的三价铬化合物,而且主要局限于性能低的亮蓝型涂膜。由于这些替代镀液的配制价格相对低廉,因而维护/故障处理都不存在问题,而且这些镀液更换(倾倒)较频繁。 ? ? 在过去的几年里,业界对不含六价格工艺的兴趣日益增加。部分原因是由于新颁布的废旧汽车(ELV)指令和废旧电子电器设备指( WEEE)令,这些指令要求在欧洲销售的汽车和电子零件不能再含有六价铬。 ? ? 此外,人们正在寻找仅通过三价铬转镀膜就能达到的强化的性能特性。现在,要求钝化膜必须提供较高的腐蚀保护性、耐热冲击性、染料和面涂吸收特性(同时保持外面的美观)以及成本有效性。因此,正确的配制、维护和故障处理技术已经变得极为重要。 ? ?下面介绍影响三价铬转镀膜性能的一些常见因素和一些鲜为人知的因素以及故障处理方案。介绍内容包括:钝化时间、温度和浓度的影响;溶液搅拌;溶液的pH值;金属污染;镀层厚度;预浸镀溶液(出光液);水的质量;烘干温度。 ? ?常见的因素 ? ?三个[度“T”] ? ? 在金属精饰操作中最广为了解的三个因素被称为三个[度“T”]:时间长度、温度和浓度。正像大多数工艺方案一样,必须将这些因素(变量)紧密地控制在具体的参数范围内,才能获得理想质量的表面。 ? ?时间长度 ? ? 正确的沉浸时间是钝化工艺中最重要的一个变量。当镀锌工件沉浸在钝化溶液中,金属被溶解,并生成转镀膜。溶液与电镀工件接触时间越长,发生转镀的机会也越多,而且在大多数情况中会导致较厚的钝化膜。 ? ? 三价铬钝化液生成转镀膜的速度一般比六价铬钝化的慢。因此,对于一个厚膜转镀工艺需要60秒或以上的沉浸时间就一点也不奇怪了。这样,设备、过程周期等必须能够适应比过去更长的沉浸时间。 ? ? 沉浸时间太短,会导致钝化膜厚度不够,因而使腐蚀保护性差。沉浸时间太长将导致过度消耗镀层,同样也使腐蚀保护性差。与六价铬不同,你通常不能通过简单的视察来确定转镀膜厚度。所以,操作工必须在过程中一直监控沉浸时间。 ? ? 在工件一进入处理溶液时转镀膜就开始形成,而且直到工件进入第一个漂洗池时才停止形成转镀膜。只要钝化液与被镀金属保持着接触,锌就持续溶解且转镀膜持续生成。当这个过程发生在实际的工艺池外面时,那么过程的进行就没有利用到热、搅拌以及工件界面上的正确的溶液转移。因而生成质量差的转镀膜。为了尽可能减少这种情况,停留时间特别是钝化池和第一个漂洗池之间,应保持尽可能短的停留时间。 ? ?温度 ? ? 除了较长的沉浸时间外,高厚度/高性能的钝化膜通常在较高的温度下进行。在没有强矿物酸的情况下,这些类型的系统通常依赖热量来为转工艺的进行提供“热量”。因此,看到工作温度高达140-160℉也就很正常了。在把温度考虑为一个可能的故障点时,重要的是对工件界面上的溶液而不是远离工件的溶液进行温度测定。这种温度差异可能很大,特别是在大型工件刚入钝化溶液时。在某种情况中,在钝化前,工件要在一个漂洗池中预热。大多数情况下推荐使用聚四氟乙烯、特氟龙或石英浸入式电加热器。为了保证最佳的性能也建议使用自动温控器和溶液搅拌。 ? ?浓度 ? ? 钝化液浓度是与旧的工艺差别很大的另一个因素,而且在排除故障时必须一直考虑这个因素。尽管六价铬钝化通常在1-5%体积浓度在运行,但高性能的三价铬钝化一般在10%或以上体积浓度下进行。与温度的情况非常相似,需要这些较高的浓度来给镀液提供“能量”,生成理想的转镀膜。

三价铬钝化原理与基础配方

一、钝化机理 三价铬钝化膜的形成机理类似于六价铬钝化, 但是不包括六价铬还原成三价铬这一步骤。首先是在酸性介质中锌被氧化剂氧化并与三价铬形成锌铬氧 化物, 同时消耗酸使得接触界面的pH 升高, 然后在pH 增大的情况下三价铬化合物在表面析出, 形成一层由锌铬氧化物组成的胶状膜。可用以下步骤表示: 锌的溶解: Zn+ 2H+ = Zn2+ + H2 或4Zn+ NO3- + 9H+ =4Zn2+ + NH3 + 3H2O 膜的形成: Zn2+ + xCr(Ⅲ) + yH2O =ZnCr x O y+2yH+ 二、配方组成 三价铬离子(主成膜剂):硫酸铬、硝酸铬、氯化铬 络合剂(产品稳定剂):各大生产商所使用的络合剂不外乎两体系三种原料:有机酸体系-草酸、柠檬酸(通常所用的紫红色药水都是这个体系);氟体系-氟化钠,氟化铵,氟化氢铵(通常所用的绿色透明药水都是这个体系)。 氧化剂:现在主要用硝酸根离子。 其它金属离子目的是为了提高耐蚀性并调整钝化膜的颜色。用的最多的有钴、镍及一些稀土元素。当锌层中含有镍、铁等金属时, 则可能得到黑色的钝化膜, 如Bishop 等人使用三价铬- 磷酸体系在含有镍的锌合金中得到了黑色的钝化膜。 其它阴离子与金属离子的性质差不多,也是一种成膜促进剂。 三.配方设计 一度市场上卖的很火的兰白钝化粉配方研究 CrCl3 8~12g/L NaF 6g/L HNO3 6ml/L

这个配方主要特点:蓝度高,光亮好,发蓝速度快。但其盐雾效果极差,只适合低端市场。 这一配方还有一致命缺陷,在使用或放置一段时间后,就不能用。使用过的朋友应该能充分感受其中的痛苦。 这是因为:在些配方中氟离子起络合和发蓝作用。由于氟离子对铬的络合作用相对较强,在放置一段时间后,氟离子与铬完全络合,工作液中完全没有氟离子的存在,因此就达不到发蓝的效果。 这点可以从其工作液在工作或放置一段时间后,pH值反而降低来证明。因为氢氟酸属弱酸,在水溶液中的解离度不高。但氟与铬形成络合离子后,氢离子被释放出来,从而降低了工作的PH值。 HF+Cr3+à[Cr(H2O)6-X F X](3-X)++H+ 因此,产家配套了发蓝粉(氟化铵),提供氟离子,并适当提高工作液PH值。 现提供两个蓝白配方 配方一: Cr2(SO4)36H2O 7g/L CoSO47H2O 2.5g/l NaNO3 4g/L NH4Cl 1g/L 硝酸调PH值到,钝化时间20~40秒。 配方二: Cr(NO3)39H2O 120g/L 草酸40g/L 柠檬酸25g/L

三价铬与六价铬的区别

三价铬与六价铬的区别 在电子产品中的用途:六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。有报道,通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险。 过量的(超过10ppm)六价铬对水生物有致死作用。实验显示受污染饮用水中的六价铬可致癌六价铬化合物常用于电镀、制革等动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。 [编辑本段]禁用范围 在欧盟,会致癌或突变的六价铬都不允许公开贩售。但电化学工业中铬酸被还原成CrO态(零价),而磁带工业则还原成CrO2。所以不影响电化学工业或磁带工业。 RoHS:该指令所规范的电机电子设备自2008年起不得含有六价铬。 以下除外吸收式冷藏柜冷却系统使用六价铬防腐蚀剂TCO’01- Mobile Phones:目前对六价铬尚无管制规范。 铬是一种银白色的坚硬金属。有二价、三价和六价化合物。 所有铬的化合物都有毒性,其中六价铬毒性最大。 铬的工业用途很广,主要有金属加工、电镀、制革行业,这些行业排放的废水和废气是环境中的主要污染源。 欧盟ROHS指令中,明文规定,六价铬含量不能超过0.1%(1000PPM,1PPM的含义:百万分之一) 在电子行业及各种金属加工行业中,六价铬一般都存在于作为处理用的溶剂中。 所以,虽然目前我国已经开始推行和欧盟指令配套的“中国ROHS”计划,但在实际操作上,是属于治标不治本的做法。 因为经过六价铬处理过的污水和废弃,还是在国内排放的。 而经过处理的产品,在技术上,完全可以达到没有任何六价铬残余的效果。 而这些金属加工、电镀、制革行业,整个行业的自律性和自律意识是十分差的。 如果真的按照废水排放的处理流程,这种废水废气的处理是需要很大一笔经费的。 在目前以短期效益为先的经济环境下,要求行业自律,简直是痴人说梦。 有很多号称国际大公司的单位,虽然相应了世界上环保运动的号召,但是在实际的操作上,却采取一种避重就轻的手法,使用了符合国际标准的产品,但却指定使用污染严重的技术。这难道不应该感到羞愧么? 作为政府,放任污染严重的企业在居民区周围排放工业废水,却没有丝毫的监督。 这种政府,是为民服务的政府么? 我们的公务员们,都去哪里了?!

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

三价铬钝化原理

本人从事三价铬钝化研究多年,感于目前市面上对其配方的保密过严,严重阻碍国内对三价铬钝化的认识与研究,现介绍一些入门知识,并公布一些简单配方,希望能满足论坛各位仁兄的求知欲。 一:配方组成 1.1三价铬离子(主成膜剂):硫酸铬、硝酸铬、氯化铬 1.2络合剂(产品稳定剂):各大生产商所使用的络合剂不外乎两体系三种原料:有机酸体系-草酸、柠檬酸(通常所用的紫红色药水都是这个体系);氟体系-氟化钠,氟化铵,氟化氢铵(通常所用的绿色透明药水都是这个体系)。 1.3氧化剂:硝酸根离子。 1.4其它金属离子目的是为了提高耐蚀性并调整钝化膜的颜色。用的最多的有钴、镍及一些稀土元素。 1.5其它阴离子与金属离子的性质差不多,也是一种成膜促进剂。 二:钝化原理 水溶液中Cr3+通常都以[Cr(H2O)6]3+存在,水的络合能力很弱,在发生钝化反应时,体系不稳定,因此需要一些相对较强的络合剂。这与电镀添加剂的本质基本相同。加入络合剂后,铬离子以以下结构式存在: [Cr(H2O)6-XFX](3-X)+ 0≤X≤3或 [Cr(H2O)6-2X(C2O4)2X](3-2X)+ 0≤X≤1.5 2.1金属锌在氧化剂硝酸的作用下溶解为锌离子。

Zn+H+--àZn2++H2 2.2 由于H+的消耗,使金属的表面pH升高 2.3 随着pH升高,络合离子稳定降低,解离出的氢氧根离子进攻络合离子,使铬离子及溶液中的锌离子形成Cr(OH)3和Zn(OH)2 ,沉淀在锌表面上形成钝化膜;同时,作为络合剂的C2O42-也被解离出来与Co2+形成不溶性的C2O4Co沉淀在钝化膜表面。C2O4Co是非晶态的固体,其能极大的提高钝化膜的抗蚀性能。 这样反复进行,真到钝化膜生长起来。当然,钝化膜的成份并不只是这么简单,到目前为止,还没有一个定论,但这只是科学家的事。 三.配方设计 3.1一度市场上卖的很火的兰白钝化粉配方研究 CrCl3 8~12g/L NaF 6g/L HNO3 6ml/L 这个配方主要特点:蓝度高,光亮好,发蓝速度快。但其盐雾效果极差,只适合低端市场。

三价铬电镀讲议

三价铬电镀讲议 一三价铬电镀得以发展的原因: 铬具有优良的装饰性和功能性,但六价铬危害巨大,因此RoHs及WEEE是禁止使用六价铬的,但是金属铬和三价铬是可使用的.另外世界卫生组织,欧洲,美国等越来越关注六价铬的危害,不断降低六价铬废水的排放标准.从1997年起,欧洲和北美规定:六价铬在空气中的最大含量为:0.001mg/l,电镀废水中每月日平均含量小于1.71mg/l. RoHs关于电子产品和电器产品有害物质禁令于2006年7月1日实施.这个禁令要求:所有输往欧洲的电子电器产品不可含有镉,铅,汞,六价铬,PBB及PBDE.含以上有害物质的产品,则不可输往欧盟成员国及禁止在市场上出售,违者要负上法律责任. RoHs标准的有害物质含量范围如下: 以上是三价铬电镀得以发展的外部环境,下面谈谈三价铬发展的内在原因: 其实最早开发电镀铬时,就是以三价铬作原料来电镀铬的,后来为什么又是用六价铬来电镀铬呢?有以下原因: 1>铬是一种多价态金属,而三价铬镀液中的Cr3+是中间态,较不稳定. 2>电镀过程式中,阴极可能还原成Cr0, Cr2+,但阳极易使Cr3+氧气成Cr6+,难以 控制. 3>三价铬电镀同样不可用铬作阳极,其理由同六价铬电镀.而使用不溶性阳 极时,阳极附近会生成Cr6+,其对三价铬电镀极其有害. 4>三价铬电镀难得到较厚的镀层,因电镀时,阴极表面PH值升高,会形成

所以要发展三价铬电镀,必须要解决以下问题: 1>抑制电镀生产时六价铬的产生. 2>选用合适的阳极. 3>怎样维持三价铬镀液的稳定性? 4>怎样提高三价铬镀层的质量? 经过许多电镀研发者多年的努力,这些问题基本解决,但镀层质量:如致密性,硬度,等到方面还是没达到六价铬水平,也是目前许多功能要求较严的产品,如汽车配件,卫浴产品仍使用六价铬电镀的原因. 1> 抑制电镀生产时六价铬的产生及选用合适的阳极.目前有以下方法: <1> 采用离子树脂膜设立阳极区和阴极区:这种半透膜可阻止Cr3+进入 阳极区,避免Cr6+产生.但此法造价高,且操作麻烦.所以推广较困难, 目前几乎没人使用. <2> 使用催化阳极:如麦德美的钛铱合金阳极.可阻止六价铬产生.另其阳 极表面还涂有一层膜,也可阻止Cr3+进入阳极金属表面.但其造价较 高. <3> 采用高纯度紧密石墨作阳极,在三价镀液中加入抑制剂或还原剂,例 于溴化铵等,抑制溶液中Cr6+产生.反应式如下: Cr2O72-+6Br - +14H+→2Cr3++3Br+7H2O 3Br2+2NH4Br→N2↑8HBr 虽然Br - 对镀层外观没有直接影响,但仍是主要成份, Br - 主要是能够 抑抑制Cr6+产生.同时也能够抑制氯的产生. 2> 怎样维持镀液的稳定性及增加三价铬镀层质量: 三价铬电镀液是一种络合剂型电镀液,镀液中的三价铬离子与络合

三价铬钝化工艺规范

三价铬钝化工艺的规范准则 自从上个世纪七十年代以来,六价格钝化膜的替代选择就已存在。一些替代选择是基于毒性较小的三价铬化合物,而且主要局限于性能低的亮蓝型涂膜。由于这些替代镀液的配制价格相对低廉,因而维护/故障处理都不存在问题,而且这些镀液更换(倾倒)较频繁。 在过去的几年里,业界对不含六价格工艺的兴趣日益增加。部分原因是由于新颁布的废旧汽车(ELV)指令和废旧电子电器设备指( WEEE)令,这些指令要求在欧洲销售的汽车和电子零件不能再含有六价铬。 此外,人们正在寻找仅通过三价铬转镀膜就能达到的强化的性能特性。现在,要求钝化膜必须提供较高的腐蚀保护性、耐热冲击性、染料和面涂吸收特性(同时保持外面的美观)以及成本有效性。因此,正确的配制、维护和故障处理技术已经变得极为重要。 下面介绍影响三价铬转镀膜性能的一些常见因素和一些鲜为人知的因素以及故障处理方案。介绍内容包括:钝化时间、温度和浓度的影响;溶液搅拌;溶液的pH值;金属污染;镀层厚度;预浸镀溶液(出光液);水的质量;烘干温度。 常见的因素 三个[度“T”] 在金属精饰操作中最广为了解的三个因素被称为三个[度“T”]:时间长度、温度和浓度。正像大多数工艺方案一样,必须将这些因素(变量)紧密地控制在具体的参数范围内,才能获得理想质量的表面。 时间长度 正确的沉浸时间是钝化工艺中最重要的一个变量。当镀锌工件沉浸在钝化溶液中,金属被溶解,并生成转镀膜。溶液与电镀工件接触时间越长,发生转镀的机会也越多,而且在大多数情况中会导致较厚的钝化膜。 三价铬钝化液生成转镀膜的速度一般比六价铬钝化的慢。因此,对于一个厚膜转镀工艺需要60秒或以上的沉浸时间就一点也不奇怪了。这样,设备、过程周期等必须能够适应比过去更长的沉浸时间。 沉浸时间太短,会导致钝化膜厚度不够,因而使腐蚀保护性差。沉浸时间太长将导致过度消耗镀层,同样也使腐蚀保护性差。与六价铬不同,你通常不能通过简单的视察来确定转镀膜厚度。所以,操作工必须在过程中一直监控沉浸时间。 在工件一进入处理溶液时转镀膜就开始形成,而且直到工件进入第一个漂洗池时才停止形成转镀膜。只要钝化液与被镀金属保持著接触,锌就持续溶解且转镀膜持续生成。当这个过程发生在实际的工艺池外面时,那么过程的进行就没有利用到热、搅拌以及工件界面上的正确的溶液转移。因而生成质量差的转镀膜。为了尽可能减少这种情况,停留时间特别是钝化池和第一个漂洗池之间,应保持尽可能短的停留时间。 温度 除了较长的沉浸时间外,高厚度/高性能的钝化膜通常在较高的温度下进行。在没有强矿物酸的情况下,这些类型的系统通常依赖热量来为转工艺的进行提供“热量”。因此,看到工作温度高达140-160℉也就很正常了。在把温度考虑为一个可能的故障点时,重要的是对工件界面上的溶液而不是远离工件的溶液进行温度测定。这种温度差异可能很大,特别是在大型工件刚入钝化溶液时。在某种情况中,在钝化前,工件要在一个漂洗池中预热。大多数情况下推荐使用聚四氟乙烯、特氟龙或石英浸入式电加热器。为了保证最佳的性能也建议使用自动温控器和溶液搅拌。 浓度 钝化液浓度是与旧的工艺差别很大的另一个因素,而且在排除故障时必须一直考虑这个因素。

六价铬的危害

六价铬的危害 在电子产品中的用途:六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。有报道,通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险 过量的(超过10ppm)六价铬对水生物有致死作用。实验显示受污染饮用水中的六价铬可致癌六价铬化合物常用于电镀、制革等动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。 禁用范围 在欧盟,会致癌或突变的六价铬都不允许公开贩售。但电化学工业中铬酸被还原成CrO态(零价),而磁带工业则还原成CrO2。所以不影响电化学工业或磁带工业。RoHS:该指令所规范的电机电子设备自2008年起不得含有六价铬。以下除外吸收式冷藏柜冷却系统使用六价铬防腐蚀剂TCO’01- Mobile Phones:目前对六价铬尚无管制规范。 铬是一种银白色的坚硬金属。有二价、三价和六价化合物。所有铬的化合物都有毒性,其中六价铬毒性最大。 铬的工业用途很广,主要有金属加工、电镀、制革行业,这些行业排放的废水和废气是环境中的主要污染源。欧盟ROHS指令中,明文规定,六价铬含量不能超过0.1%(1000PPM,1PPM的含义:百万分之一)。在电子行业及各种金属加工行业中,六价铬一般都存在于作为处理用的溶剂中。 所以,虽然目前我国已经开始推行和欧盟指令配套的“中国ROHS”计划,但在实际操作上,是属于治标不治本的做法。因为经过六价铬处理过的污水和废弃,还是在国内排放的。而经过处理的产品,在技术上,完全可以达到没有任何六价铬残余的效果。而这些金属加工、电镀、制革行业,整个行业的自律性和自律意

金属钝化原理

金属钝化原理与应用 机械与汽车工程学院 材料成型及控制工程

金属钝化原理及应用 (材料成型及控制工程) 摘要:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能坚固地附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧和金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解形成钝态达到防止腐蚀的效果。 关键词:表面处理、钝化、铬酸盐、酸洗钝化 一、概述 钝化现象早在十八世纪30年代即被发现,自此得到了广泛的研究。 钝化现象——通常,电极电位愈正,金属溶解速度愈大。而实际中,常有电位超过一定数值后,电流突然减少,这种现象成为钝化现象。 金属在介质中具有极低的溶解速度的性质称为“钝性”。金属在介质中强烈溶解的性质叫做“活性”。活态向钝态的转变叫做钝化,能够使金属发生钝化的物质被称为钝化剂。钝化现象发生通常与氧化介质有关。有时在非氧化性介质中也可以发生钝化,如镁在氢氟酸中、钼和铌在盐酸中、汞和银在氯离子作用下等。 金属钝化的定义:在一定条件下,当金属的电位由于外加阳极电流或局部阳极电流而移向正方向时,原来活泼地溶解着的金属表面状态会发生某种突变,同时金属的溶解速度急速下降,这种表面状态的突变过程叫做钝化[1]。 金属钝化的两个必要标志:腐蚀速度大幅度下降、电位强烈正移。

金属钝化的特征[2]: ①金属的电极电位朝正值方向移动; ②腐蚀速度明显降低; ③钝化只发生在金属表面; ④金属钝化以后,即使外界条件改变了,也可能在相当程度上保持钝态。 钝化的分类 化学钝化:金属与钝化剂自然作用产生(如:Cr,Al,Ti等金属在含氧溶液中)又称自钝化。 电化学钝化(阳极钝化):外电流使金属阳极钝化,使其溶解速度大幅降低,并且能够保持高度的稳定性。 阳极钝化和化学钝化的实质是一样的。 机械钝化:在一定环境下金属表面沉积出一层较厚的,但不同程度稀松的盐层,实际上起了机械隔离反应物的作用。 研究金属钝化的意义 金属的钝化现象具有极大的重要性。提高金属材料的钝化性能,促使金属材料在使用环境中钝化,是腐蚀控制的最有效控制之一。 二、铬酸盐钝化[3] 1.概述 生产中最常用的钝化方法就是铬酸盐处理,这种方法能够使金属表面转化成以铬酸盐为主要组成的膜以实现钝化处理。金属进行铬酸盐处理的目的如下: ①提高金属或金属镀层的抗腐蚀性能。对于金属镀层来说,在其上的铬酸盐膜不但可以延缓镀层出现腐蚀的时间,而且是镀层对基底金属做到更有效的防护。 ②避免金属表面受到手触的污染。 ③提高金属同漆层或其他有机涂料的粘附能力。 ④获得带色的装饰外观。 2.基本原理 按照一般的见解,金属在含有能起活作用的添加物的铬酸盐溶液中形成铬酸盐转化膜[4]的过程,大致是: ①表面金属被氧化并以离子的形式转入溶液,与此同时氢在表面析出;

三价铬与六价铬的对比分析

三价与六价铬 .前言: 传统六价铬钝化工艺地优点与危害性 六价铬钝化工艺有很多优点,如很高地耐蚀性,自我修复耐蚀性地自愈能力,能容易钝化出银白、蓝白、五彩、军绿色、黑色等颜色,原料来源广泛而且价廉.但六价铬是致癌物,对环境与人体健康存在严重地危害性.个人收集整理勿做商业用途 三价铬钝化地紧迫性 欧盟于年在布鲁塞尔签署了一项法令,规定从年月日起禁止车辆材料和部件中使用六价铬,根据该法令,每辆汽车地六价铬含量不超过[] . 年月日,欧盟《电子垃圾处理法》正式出台,年月日,这一法规将正式开始实施.该法令是依据年欧盟地两个指令完成地. 这两个指令分别是《关于报废电子电器设备指令》()和《关于在电子电器设备中禁止使用某些有害物质指令》(),要求成员国确保从年月日起,投放于市场地新电子和电器设备不包含铅、汞、镉、六价铬、聚溴二苯醚和聚溴联苯等种有害物质.法令还规定,所有在欧盟市场上生产和销售笔记本型计算机、桌上型计算机、打印机、、主机板、鼠标、键盘、手机等,必须在年月日以前,建立完整地分类、回收、复原、再生使用系统,并负担产品回收责任.中国生产出口产品地企业必须在年月后停止使用六价铬钝化工艺.个人收集整理勿做商业用途 .三价铬钝化技术地进展 在锌上进行无六价铬钝化地研究工作已经进行了十几年,主要采用三价铬钝化和无铬钝化两个方向.无铬钝化体系有钛酸盐、钼酸盐、钨酸盐、稀土、硅酸盐[],目前这些无铬钝化体系虽然是无毒环保,但耐蚀性及外观没有六价铬钝化地好,满足不了普通五金件电镀要求,更不用说满足汽车部件电镀地高耐蚀要求,所以无铬钝化地工艺未曾在工业上广泛应用过.因此,无六价铬钝化地技术主要立足于三价铬钝化技术,该工艺已成熟应用于生产,正如现代地碱性无氰镀锌新工艺地综合性能已经超过氰化镀锌、酸性镀锌,最新第三代三价铬钝化性能已经达到甚至超过传统六价铬钝化工艺.个人收集整理勿做商业用途第一代三价铬钝化 络合剂主要为氟化物,而氟化物与(Ⅲ)络合比较稳定,膜层薄,所以形成地膜层颜色一般为银白色、蓝白色,耐蚀性差,中性盐雾试验不超过,若要达到好地耐蚀性只有通过封闭,而封闭后地颜色变为银白,色泽单调,这种体系地(Ⅲ)浓度较高,操作温度也较高.个人收集整理勿做商业用途 第二代三价铬钝化技术 早期地第二代三价铬钝化工艺含有氧化剂,耐蚀性与膜颜色接近六价铬,但由于膜层中含有六价铬,被淘汰.后期地第二代工艺不含氧化剂,五彩颜色较淡.第二代三价铬钝化剂地共同特点是采用有机络合剂,并加入其它金属,耐蚀性大大提高,并可以得到不同钝化膜地颜色,如蓝白、五彩、黑色. 操作条件要求相对较低.典型产品有公司地,公司地,公司地等,目前已成功应用于生产.文档收集自网络,仅用于个人学习 最新第三代三价铬钝化技术 是在第二代钝化液中直接加入封孔剂,克服了三价铬钝化无自愈能力地缺点,大大提高膜层地耐蚀性,膜层地耐蚀性已达到或超过六价铬钝化工艺,所以满足于汽车部件电镀地环保高耐蚀要求.采用此工艺地有公司、(宏正)公司,典型产品有宏正地、三价铬五彩钝化、三价铬蓝白钝化、三价铬黑色钝化,目前已成功应用于生产.文档收集自网络,仅用于个人学习 .三价铬钝化机理与组成 传统六价铬地钝化膜是通过锌地溶解、铬酸根地还原以及三价铬凝胶地析出而形成,

六价铬危害

六价铬的危害 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险。 六价铬化合物在体内具有致癌作用,还会引起诸多的其他健康问题,如吸入某些较高浓度的六价铬化合物会引起流鼻涕、打喷嚏、瘙痒、鼻出血、溃疡和鼻中隔穿孔。短期大剂量的接触,在接触部位会产生不良后果,包括溃疡、鼻黏膜刺激和鼻中隔穿孔。摄入超大剂量的铬会导致肾脏和肝脏的损伤、恶心、胃肠道刺激、胃溃疡、痉挛甚至死亡。皮肤接触会造成溃疡或过敏反应(六价铬是最易导致过敏的金属之一,仅次于镍)。六价铬离子对人体健康的毒害很大。它的化合物具有很强的氧化作用,对人体

的消化道、呼吸道、皮肤和粘膜都有危害。更甚者铬有致癌作用,铬致癌的部位主要是肺。 六价铬化合物常用于电镀、制革等,动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。皮革中残留的六价铬,可以通过皮肤、呼吸道吸收,引起胃道及肝、肾功能损害,还可能伤及眼部,出现视网膜出血、视神经萎缩等。 六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 化工生产会产生六价铬 每生产l吨重铬酸钠同时产生铬渣3—3.5吨。目前国内冶金和化学工业中每年大约排出20一30万吨铬渣。铬渣中的有害成分主要是可溶性铬酸钠、酸溶性铬酸钙等六价铬离子。由于这些六价铬以及它的流失扩散而构成对生态环境的污染危害。其次是铬渣的强碱性危害。当铬渣在露天堆存时,经长期雨水冲淋后大量的六价铬离子随雨水溶渗、流失、渗入地表,从而污染地下水,也污染了江河、湖泊,进而危害农田、水产和人体健康。

锌镀层的钝化处理

锌镀层的钝化处理 发布时间:2008-09-12 一、六价铬钝化处理 锌的化学性质活泼,在大气中容易氧化变暗,最后产生“白锈”腐蚀。镀锌后经过铬酸盐处理,以便在锌上覆盖一层化学转化膜,使活泼的金属处于钝态,这就叫锌层铬酸盐钝化处理。这层厚度只有0.5μm以下的铬酸盐薄膜,能使锌的耐蚀性能提高6倍~8倍,并赋予锌以美丽的装饰外观和抗污能力。目前钝化主要有六价铬钝化与三价铬钝化。 铬酸盐钝化不仅作为防护层,而且在一些低档产品上经白钝化,或者白钝化经有机料着色,可作为防护-装饰用途。铬酸盐钝化液由铬酸、活化剂和无机酸组成,锌与钝化液发生作用,导致锌溶解、六价铬还原成三价铬,并在反应中消耗氢离子,当锌和溶液界面上的pH值上升到3以上时,产生一系列的成膜反应,凝胶状钝化膜就在锌界面上形成。关于钝化膜形成的机理和膜层的化学组成仍有争论。一般认为锌层钝化膜是由碱式铬酸铬、碱式铬酸锌和水合三氧化铬等组成的水合物。经分析膜中三价铬含量占28.2%,六价铬占8.68%,水分占19.3%。其中三价铬是钝化膜的骨架,六价铬靠吸附、夹杂和化学键力填充于三价铬的骨架之中,故六价铬的含量直接影响钝化膜的耐蚀性。当钝化膜受到磕、划、碰伤时,在潮湿空气中六价铬可溶于水膜内,在破损处成膜给予自动修复,这是铬酸盐膜的重要优点之一。长期以来人们认为钝化膜的彩虹色是由于化学组成决定的。三价铬呈淡绿色和绿色;六价铬呈橙红至红色;不同价态和不同量的铬相混合就出现了五颜六色。这就是化学成色学说。但是它不能解释从不同角度看颜色各异;不同钝化手法可得到有层次的色阶;随钝化膜厚度增加颜色的变化规律同所见光光波所显示的颜色相同;以及干燥过程色彩变化等现象。如是我国研究者提出了物理成色即光波干涉成色的学说。 根据光波干涉原理,入射光到达钝化膜表面一部分被反射,一部分透过钝化膜由锌层表面再反射出来,于是从外表面和从内表面反射出来的光产生光程差。当光层差等于某颜色的光波之半或它的奇数倍时,就会发生光波干涉而抵消一部分,我们肉眼所见只是该色的辅色。例如钝化时间短,膜薄光波干涉发生在紫外区,这时的颜色取决于化合物的本色,如青灰色。随膜层增厚,蓝色发生光波干涉而减弱,人们看到黄色(蓝色的辅色),依此类推,当膜厚大于0.7μm时,钝化膜又呈现本色——棕褐色。由于工件运动,膜层厚度不均匀,各种颜色交迭一起就呈现五彩缤纷的外观。 尽管如此,上述两种成色学说都还不能互相替代,有待继续研究。 钝化膜从外观可分白钝化、淡蓝色、彩虹色钝化、金黄色、黑色钝化、军绿色钝化。这些钝化膜耐蚀强弱的顺序是军绿色>黑色>彩虹色>金黄色>淡蓝色>白色。所以凡用于耐蚀目的机械零件镀锌都必须进行彩虹色钝化。 钝化液依浓度可分为高浓度、中浓度、低浓度。因钝化中生产消耗铬酸不足5%,而95%被零件带出损失,造成严重的环境污染。采用低浓度钝化液可降低生产成本、减轻污染,钝化膜质量与高浓度铬酸钝化相当,故以介绍低铬钝化为主。 (一)铬酸盐彩色钝化 1.铬酸盐彩色钝化工艺规范(见表3—1—15) 表3—1—15 铬酸盐彩色钝化工艺规范

三价铬钝化膜中六价铬成因及其影响因素

三价铬钝化膜中六价铬成因及其影响因素的研究 镀锌是提高钢铁抗大气腐蚀的有效方法。但在潮湿的环境中镀锌层容易发生腐蚀,表面形成白色疏松的腐蚀产物或变成灰暗的颜色影响外观。为进一步提高防蚀性和装饰性,镀层必须进行钝化处理。过去人们一直采用六价铬钝化处理,六价铬钝化工艺成熟稳定,钝化膜耐蚀性高,具有修复耐蚀性的自愈能力,原料来源广泛且价廉,但由于六价铬毒性大,严重污染环境和危害人体健康,欧盟RoHS规定禁止使用。 目前市场上已经出现了多种三价铬钝化液产品,替代六价铬钝化处理并得到了大规模的应用。其耐蚀性和装饰性已达到或超过六价铬钝化液的钝化效果。 我司于2011年在宝强、华裕螺丝中均有发现:三价铬彩锌在电镀过程并没有有意图添加六价铬,也没有过程污染的存在,在刚电镀出来的三价铬彩锌产品,用水煮法定性分析也未检测出有六价铬。但将产品放置15天以上时,一般会发现有微量的六价铬存在。随着时间的增加六价铬的含量会有所增加。放置到6个月时,转化趋于稳定。这时六价铬含量约为20ppm~50ppm左右。 经过我司众多的对比与考察,以上现象为电镀行业的普遍现象。目前常用的三价铬彩锌钝化用药水都存在这种转化现象,只是转化的时间或长或短,转化的程度或轻或重。 本文探讨了钝化液温度、pH值、钝化时间、钝化液成分等因素对钝化膜形成六价铬的影响,提出了减少或避免钝化膜中六价铬形成的方案。 下图是我司在做六价铬定性试验时所拍的图片。(试验方法为沸水萃取+比色法)

以下为三价铬镀锌与六价铬镀锌的一些对比图片

1.三价铬钝化膜出现六价铬的成因 从化学价态变化角度,经过三价铬钝化溶液处理,钝化膜表面形成了一层由 Cr(OH) 3、Zn(OH) 2 等胶状沉淀物转化而成的Cr 2 O 3 - ZnO- Zn钝化膜,钝化膜表面通常 呈弱碱性(PH7-8.5),钝化膜表面结构松散的微量三价铬在潮湿的空气中会被缓慢氧化成六价铬。 从热力学的角度,钝化膜表面形成的Cr(OH) 3 和CrO 2 -类化合物可以被空气中的 氧气氧化成六价铬,这可能是三价铬钝化膜转化为六价铬的最主要的原因。 在六价铬的形成过程中,钝化膜表面六价铬的形成速率、形成量,还与许多因素有关,如三价铬氧化成六价铬的动力学机制、钝化条件以及钝化膜表面的致密程度、其他组分的影响等。 2.工艺条件对钝化膜中六价铬形成的影响 2.1钝化液温度 图1 给出了钝化液温度对Cr6+形成的影响。由图1可知,钝化液温度越高,钝化膜出现六价铬速率越快;钝化液温度低,有利于降低六价铬的形成速率。因此,钝化液温度是六价铬形成的重要影响因素。当温度低至300℃时,出现六价铬的时间将超过30d。但温度过低将影响钝化膜的耐蚀性。

三价铬镀铬-三价铬镀铬

三价铬与六价铬电镀的比较 核心提示:三价铬镀铬技术的简单介绍,三价铬与六价铬电镀的比较 由于六价铬对人体的影响比较严重,一直都被列为环境污染的重要监测对象,特别是近年各国提高了对铬污染的控制标准,人们开始重视开发用毒性相对较低的三价铬镀铬来替代六价铬镀铬。因此三价铬镀铬是目前替代六价铬镀铬的一种新工艺。三价铬镀铬的研究始于l933年,但是直到l974年才在英国开发出有工业价值的三价铬镀铬技术。三价铬镀铬与六价铬镀铬的比较见表。 三价铬镀铬与六价铬镀铬比有明显的优点,特别是分散能力、均镀能力好;镀速高,可以达到0.2μm/min的镀速,从而缩短电镀时间。电流效率也比六价铬镀铬高,可达到25%以上。同时,还有烧焦等电镀故障减少、不受电流中断或波型的影响、不需要特殊的阳极隔膜等优点。而最为重要的是不采用有害的六价铬而没有了环境污染问题,降低了污水处理的成本,对操作者的安全性也大大提高。 三价铬镀铬有单槽方式和双槽方式,单槽方式中的阳极材料是石墨棒,其他与普通电镀一样,双槽方式是使用了阳极内槽,将铅锡合金阳极置于内槽内,另外作为阳极基础液使用了稀硫酸。相对六价铬镀铬,有容易操作和安全的优点。 三价铬镀铬和六价铬镀铬的比较 项目三价铬镀铬六价铬镀铬 单槽法双槽法 铬浓度/(g/L) pH值 阴极电流/(A/dm2)温度/℃ 20~24 2.3~ 3.9 5~20 21~49 5~10 3.3~3.9 4~15 21~54 100~350 1以下 10~30 35~50 阳极铅锡合金铅锡合金 搅拌 镀速/(μm/min)最大厚度/μm 均镀能力 分散能力 镀层构造 空气搅拌 0.2 25以上 好 好 微孔隙 空气搅拌 0.1 0.25 好 好 微孔隙 无 0.1 100以上 差 差 非微孔隙

相关文档
最新文档