高炉冷却壁的制备技术及其进展

高炉冷却壁的制备技术及其进展
高炉冷却壁的制备技术及其进展

高炉冷却壁的制备技术及其进展

范晓明1,胡寿玉1,余光明2,金 凯2,钟 毅2,范宝柱2

(1.武汉理工大学材料科学与工程学院,湖北武汉430070;2.武汉钢铁(集团)公司机械制造有限责任

公司,湖北武汉430083;)

摘 要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术、应用及其发展概况,分析了铸铁冷却壁、钢冷却壁和铜冷却壁的特点,并探讨了高炉冷却壁的未来发展趋势。

关键词:高炉;冷却壁;铸铁;钢;铜

中图分类号:T G 321.4 文献标识码:A 文章编号:100121447(2007)0420051204

Manufacture technology and progress of cooling staves for blast f urnace

FAN Xiao 2ming 1,HU Shou 2yu 1,YU Guang 2ming 2,J IN Kai 2,ZHON G Y i 2,FAN Bao 2zhu 2

(1.School of Materials Science and Engineering of W HU T ,Wuhan 430070,China ;2.Machinery Manufact uring Co.Lt d.of WISCO ,Wuhan 430083,China ) Abstract :Cooling stave is an important equip ment of blast f urnace and has an effect on blast f urnace life directly.In t he paper ,t he manufact ure technology ,application and e 2volution of different cooling staves of blast f urnace are summarized home and abroad.The characteristics of cast iron stave ,steel stave and copper stave are analyzed and t he develop ment t rends of cooling stave in f ut ure are also discussed.K ey w ords :blast f urnace ;cooling stave ;cast iron ;steel ;copper

作者简介:范晓明(1957-),男,湖北洪湖人,教授,主要从事合金材料研究.

高炉冷却壁是高炉内衬的重要水冷件,安装在高炉的炉身、炉腰、炉腹、炉缸等部位,不但承受高温,还承受炉料的磨损、熔渣的侵蚀和煤气流的冲刷,必须具备良好的热强度、耐热冲击、抗急冷急热性等综合性能。冷却壁能有效地防止炉壳受热和烧红,高炉内衬砖被烧蚀后主要靠渣皮保护冷却壁本身,并维持高炉的安全生产。因此,冷却壁的材质及性能好坏决定其工作寿命乃至高炉炉身的寿命。国内外钢铁企业的生产情况证明,高炉长寿的关键之一是实现冷却壁的长寿[1,2]。因而提高冷却壁的质量和使用寿命是高炉长寿的1个重要研究课题。

从20世纪70年代开始,西方一些发达国家对高炉冷却壁进行了大量的研究及材质的更新。目前国外先进高炉的寿命可达15年以上,有的达20年以上,最近大修的部分高炉已将长寿目标定为30年[3]。我国对冷却壁的制造、应用技术研

究始于20世纪80年代中期,20多年来我国高炉冷却壁技术取得了长足的进展,但高炉冷却壁的设计研究和制作工艺与高炉长寿的目标还有一定的差距。目前我国很多高炉一代炉役无中修寿命低于10年,仅少数高炉可实现10~15年。高炉寿命的总体水平与国外先进水平相差较大[4]。

本文旨在总结国内外高炉冷却壁的制备技术和应用现状,分析各类冷却壁的特点,探讨未来高炉冷却壁今后的发展趋势。

1 高炉冷却壁的种类、特点及其制备技术

冷却壁是高炉的关键部件,在高温状态下工作,工作条件恶劣。其破坏形式是在高温交变热应力作用下引起开裂漏水,使高炉被迫停炉大中修。要延长冷却壁使用寿命,必须选择合理的材质。下面以高炉冷却壁的材质为主线,概述其种类、特点和制备技术。

?

15?2007年 8月第35卷第4期钢铁研究

Research on Iron &Steel Aug.2007

Vol.35 No.4

1.1 高炉冷却壁的种类及特点

根据制造材质,高炉冷却壁有铸铁冷却壁、钢冷却壁和铜冷却壁3大类。

1.1.1 铸铁冷却壁

20世纪50年代初,我国高炉采用的是原苏

联设计的冷却壁,冷却壁本体是一般铸铁,如H T 150,H T 200,内铸蛇形冷却水管,镶砖为粘土砖。20世纪70年代,我国的第二代冷却壁本体材质为低铬铸铁[5],冷却水管的进水管在下,水流垂直向上,排水管在上方,冷却壁镶砖为粘土砖。武钢、鞍钢、首钢的高炉在此期间均有应用。20世纪80年代,我国的第三代冷却壁本体采用铸态高韧性铁素体球墨铸铁,典型材质为Q T400218和Q T400220[6,7],冷却水管与第二代基本相同,镶砖采用嵌砌的方式。

欧洲、日本高炉的冷却壁技术均由原苏联引进。经过改进,日本研制了FCD -40高韧性铁素体球墨铸铁冷却壁。1992年,宝钢引进了新日铁的球铁冷却壁制备技术和设备。经过消化移植,生产的冷却壁质量达到新日铁产品的同等水平,至1994年,宝钢已向宝钢3号高炉、鞍钢10号高炉和日本君津2号高炉提供了高炉冷却壁[8],其一代寿命可达7~10年。

资料介绍了1种渗铝铸铁冷却壁[9]。也有资料中提到了V TiCr 半球半蠕铁素体型铸铁材质。但均未见其应用报道。

1.1.2 钢冷却壁

钢冷却壁材质为低合金钢,分为钻孔型钢冷却壁和铸造型钢冷却壁。钢冷却壁已在我国鞍钢、济钢、南钢、首钢等企业的高炉上应用,并取得了一定效果[10]。

铸造型钢冷却壁简称铸钢冷却壁。作为换代高炉冷却壁,它与球墨铸铁冷却壁相比有着本质上的性能提升。铸钢冷却壁研制的重点是设法改善铸件基体的导热性能,促进基体与冷却水管之间的熔合,消除基体与冷却水管间的气隙层,从而从根本上提高冷却壁的整体导热效果。铸钢冷却壁可取代球墨铸铁冷却壁,并有望使高炉一代炉龄由现在的7~10年提高到15年以上[11]。

铸钢熔点高,延伸率高,抗拉强度高,抗热冲击性能好,更适应高炉炉内的工况。铸钢冷却壁基体含碳量低,没有铸铁冷却壁因石墨氧化而生成的孔洞或裂缝。铸钢无铸铁的高温不可逆的相变生长现象,特别是低碳钢具有较好的屈服强

度,伸长率随着温度的升高而增加,它可使局部

的高应力重新分布,使应力集中得以释放[12],同时微合金化可进一步增强钢的抗热疲劳性、抗氧化性[13]。因而大大减缓各种应力的破坏作用。

1.1.3 铜冷却壁

铜冷却壁是更新的一种冷却设备,其导热性好,冷却能力强,不易破损,国外已较普遍推广。与以上冷却设备相比,铜冷却壁冷却强度大,能满足高炉最大热负荷的需要。其特点如下:

(1)铜冷却壁导热性好、冷却强度大。铜的导热系数几乎为铸铁的10倍。冷却壁工作时内外温差小,其最大温差不足100℃,不会产生很大的热应力,且是在90℃以下的低温状态工作,因此不会产生裂纹。铜冷却壁冷却强度大,生成的炉渣立即在冷却壁表面形成渣皮,起到保护铜冷却壁自身的作用。为了能让渣皮牢牢地镶嵌在冷却壁上,冷却壁的工作面设计成凹凸槽状[14]。

(2)铜冷却壁冷却均匀,在炉内易形成光滑的炉型,可减轻煤气流的冲刷和炉料的磨损。形成渣皮后,炉料、煤气流和熔融的渣铁不能直接接触铜冷却壁,有的铜冷却壁在一代炉龄(9年)后最大的磨损量仅为3mm ,完全可以多代炉役使用[15]。

(3)虽然用不同的方法制造的铜冷却壁的冷却效果不尽相同,但各种方法制作的铜冷却壁均可达到高炉长寿的要求。

1.2 高炉冷却壁制造技术

生产高炉冷却壁必须具有足够的设备条件,确保辅助材料的供应和掌握高炉冷却壁制造的关键技术。各种冷却壁的制造技术有一些相似之处,更有一些独特的要求和关键点。

铸铁冷却壁,材质无论是灰铁还是球铁,均以埋管铸造法进行制造[16]。为了解决铸铁冷却壁生产过程中出现的问题,必须从埋设的通冷却水钢管的预处理、铸型条件、铁液质量及铸造工艺等多方面采取相应措施。在球铁熔炼过程中必须控制好化学成分,残余镁和残余稀土量,并进行强化孕育处理。生产中应考虑本体中的钢管在浇注时有激冷作用,浇注温度不能太低,浇注速度不能过慢;引入的铁水要防止冲击管壁,避免钢管变形和表面增碳;因冷却壁最厚和最薄尺寸相差很大,要防止厚部过热;球铁弹性模数大,易造成过大的内应力,使铸件产生冷裂,因此从工艺上要采取相应措施。

?25? 钢铁研究第35卷

在冷却壁的铸造到出模期间,钢质冷却水管经历了从高温到低温的过程,与大气相通的内表面会发生氧化及脱碳,与铸铁接触的外表面会因为其含碳量低于铸铁而发生渗碳。对于冷却水管的氧化及脱碳,关键是截断冷却水管与氧的接触。可以在冷却壁的铸造过程中,用氮气对冷却水管内表面进行全程保护。这种方法造价低廉,可控性较好。对于冷却水管外表面渗碳问题,关键是钢与铸铁之间的碳势差和接触程度引起的。可以对钢管实施热喷涂、热喷涂铝后表面刷涂料和表面刷防渗碳涂料的处理方法。文献[17]探讨了一种既能防渗碳又能防变形的,无需采用粘结剂,且涂层全部进行热喷涂的钢管处理新工艺。

钢冷却壁的制造主要为钻孔和铸造两种方法。钻孔型钢冷却壁是冷却能力最强、导热性能最好的无热阻型冷却壁。利用轧制厚钢板或厚钢板坯作冷却壁的本体,用机械加工的办法钻出冷却水通道,消除了因铸入水管形成的热阻。加工要点是必须确保钻出的冷却水通道相互平行和较小的中心线偏差。钻孔型冷却壁可以大大减小冷却壁的厚度。1995年9月,鞍钢制出总厚度最薄为120mm,水流通道直径为50mm,镶砖槽深度为30mm的板坯钻孔型钢冷却壁并成功地用在高炉上。铸钢冷却壁的制造需要解决的是在比较高的铸造温度下,避免冷却水管熔化的问题。国内外早期是在铸入钢冷却壁的冷却水管外表涂加涂层,这极大的降低了冷却壁的冷却能力。有制备无热阻的铸钢冷却壁的尝试[18],即铸入钢冷却壁的冷却水管不需外表涂层,只是采取工艺措施防止水管在浇铸时不被高温钢液熔穿,同时又能和本体紧密地融合成一体。在钢管内埋入固体复合材料冷却介质有效激冷钢液,控制好浇注温度,可使钢管在基体钢液中达到“熔而不化”的临界状态[19]。改进后的铸钢冷却壁完全可以具有钻孔型钢冷却壁的无热阻特征。国内外大量使用的是铸钢冷却壁。

铜冷却壁通常使用纯铜制造,其制造工艺主要有以下3种:轧制铜板坯钻孔冷却壁、使用芯棒的连铸冷却壁和埋铜管、铜合金管和钢管的铸铜冷却壁。轧制铜冷却壁是在轧制铜板坯中用深冲钻钻孔成型冷却水通道,然后焊上钢管而成。其材质强度更高、更致密、导热性更好,但加工费用较高。此法使用最广,工艺也最成熟。连铸冷却壁是在连铸时直接铸造成型冷却水通道。因这种铜冷却壁未经轧制,致密性较差,所以其导热系数较钻孔铜冷却壁低。这种冷却壁表面易出现折皱,影响表面质量。铸铜冷却壁是将冷却水管铸入铸铜冷却壁本体中。这种方法可以降低制造成本,其导热性比前两种方法要差,但能满足生产要求。

目前我国在铜冷却壁制造方面有两种新的工艺正在研究开发阶段[20]。第一种方法是使用芯棒,在类似连铸机的设备上铸出带孔的铜冷却壁主体,芯棒断面设计成椭圆形,以利于提高铜冷却壁的传热性能,这种工艺若能开发成功,将大大降低铜冷却壁的制造难度,从而大大降低铜冷却壁的制造成本;第二种方法是采用压铸的方法在铸铜件内直接铸铜管或铸铜镍管。采用压铸工艺主要是想提高铸铜件的密度,缩小铸铜与轧制铜之间的材质差别。

国外对铜冷却壁的研究已经相对成熟,日本已研制出使用普通的铸造方法,按照铸铁冷却壁的基本工艺,制造出冷却水管为钢管的新型铸铜冷却壁[21]。其关键技术就是要保证铸铜本体和钢管的冶金结合,有效的消除二者之间的气隙层。

2 高炉冷却壁的应用现状

目前,传统的灰铸铁材质的高炉冷却壁正在逐步淘汰,现多为球墨铸铁材质。随着高炉强化熔炼水平的提高,球墨铸铁冷却壁越来越难以满足要求。铸钢冷却壁作为新一代高炉冷却壁,由于材质与冷却水管材质相近,与球墨铸铁冷却壁相比,具有伸长率高、抗拉强度大、熔点高、抗热冲击性强及整体导热性能好等优点,应用范围逐步扩大。高导热性的紫铜冷却壁的国产化及应用也得到很快的发展。

国外早在1982年就开始对铸钢冷却壁进行了研究和开发。国内武钢设计院,钢铁研究总院等单位在“八五”、“九五”期间对钢冷却壁进行了大量的研究开发工作。现在国内有部分钢铁企业使用钢冷却壁,如济钢、南钢和鞍钢等,效果较好。但由于钢液温度高,在浇注、凝固过程中,冷却水管很容易发生变形和熔化穿透,这一难题一直没有得到有效解决,使铸钢冷却壁工业规模化生产应用受到一定的影响[22]。

近年来尽管国内有不少单位在冷却壁的结构、材质、制造方法及提高冷却效果上作了不少有益的探索。但囿于原有的认识基础和制造条件,

?

3

5

?

第4期范晓明,等:高炉冷却壁的制备技术及其进展

还没有形成一整套有效的生产长寿型冷却壁的设计及制造技术。

国外高炉冷却壁的设计及制造技术发展较快,尤其以日本新日铁为代表在引进前苏联冷却壁制造技术的基础上,经过不断完善和开发,已把高炉一代炉役寿命提高到15年以上。

铜冷却壁自开发至今20余年,已经在多达40余座高炉上使用,这说明此项新技术在生产中已经得到了充分的考验,已经被大家所认同。在高炉上试用成功使人们对铜冷却壁有了新的认识,在高炉上的使用也从开始时的一段逐步扩大到3段、5段,甚至更多,从炉身下部扩大到炉腹、炉腰[23]。根据有关资料介绍:不莱梅钢铁厂2号高炉(3550m3),在大修时使用了8段铜冷却壁,除了炉腹、炉腰、炉身各两段外,炉缸还用了两段。其中部分铜冷却壁为上一代使用过的旧铜冷却壁,磨损仅为1mm,经清洗后重新使用。这些情况说明了铜冷却壁已进入普遍推广阶段,使用范围也在扩大,更令人们振奋的是它可以用到第2代炉役上,是一种长寿的冷却设备。2005年,武钢机制公司生产的铸铜冷却壁已经用于武钢7号高炉,并计划在4号、2号、5号高炉的新建或大修中使用。由于铜冷却壁的成本太高,与中小企业现有的承受能力不相适应,推广应用铸钢冷却壁,将会取得了较好的效果。

铜冷却壁不仅具有性能优势,而且在实际应用过程中,可以显著降低炼铁成本,呈现出极强的应用后劲。随着铜冷却壁的国产化进程的加快,成本的不断降低和技术的不断成熟,可以预见,铜冷却壁在我国的使用,特别是在大型高炉上的使用将会不断加快。

3 高炉冷却壁的发展趋势

铸铁是制造高炉冷却壁的传统材质。由于初期的制造成本的优势,及制造工艺技术的成熟,高强度高韧性球铁冷却壁目前依然有一定的市场。但铸铁和通水钢管的线膨胀系数相差较大,二者之间需要保持一定的间隙,这一气隙层将极大影响冷却壁的导热性能,而且实践证明,其使用寿命也较短。可以预测,铸铁冷却壁将会逐步为其他新型高炉冷却壁所取代。

铸钢冷却壁研制工作的重点是设法改善铸件基体的导热性能,促进基体与冷却水管之间的熔合,消除基体与冷却水管间的气隙层,从而从根本上提高冷却壁的整体导热效果。

铸铜冷却壁和轧制铜冷却壁效果相同。铸铜冷却壁,特别是内铸钢管的铸铜冷却壁,由于其制备工艺、成本的优势,将会获得较大的发展。但由于冷却壁本体紫铜的强度较低,在运输、安装的过程中易撞坏和变形,因此尚需研究导热性近于紫铜,而强度高于紫铜的新型本体材料。解决钢管2铜本体的界面冶金结合强度与铸造过程中导致的穿管之间的矛盾的关键技术亦是亟待研究的问题。

铜铁(钢)双金属冷却壁将会得到研制和使用。即冷却壁的热面用铜,而冷面用铁(钢),这样既满足了导热要求,又满足吊装的强度要求。但是设计、制造工艺需要深入研究。

冷却壁中水管的截面形状对冷却壁的导热效果及制造成本有重要影响,可以预见,不同于圆管截面的冷却壁将会得到一定的发展。

综合考虑各种冷却壁的使用寿命、制造工艺和成本等各方面的因素,预计在一般高炉上将可能联合使用钢冷却壁和球墨铸铁冷却壁.在大型高炉上将可能综合采用铜冷却壁、钢冷却壁和球墨铸铁冷却壁使高炉炉体冷却结构更加合理。

4 结 语

近年来,我国高炉冷却壁技术在铸造材质、制造技术、高炉应用等方面取得了相当的进展。但与国外相比还存在相当的差距。我国今后应加强冷却壁设计、制造关键技术的研究,高校、科研院所和制造工厂要协力攻关,研制出适应我国国情的新型的高炉冷却壁。

[参考文献]

[1] 张寿荣.延长高炉寿命是系统工程,高炉长寿技术是综合技

术[J].炼铁,2000,(1):124.

[2] C.M.Smit hyman,宋瑜译.炉体冷却是延长高炉寿命的关

键[J].钢铁译文集,1999,(2):15216.

[3] 王筱留.日本川崎公司千叶6号长寿高炉大修[J].钢铁科

技信息,1999,(2):111.

[4] 周渝生,曹传根,甘菲芳.高炉长寿技术的最新进展[J].钢

铁,2003,38(11):70274.

[5] 宋木森.武钢提高高炉寿命研究的进展[J].钢铁研究,

1991,(2):728.

[6] 张贵祥,王勇,郑东明,黎晓峰.铸态高韧性Q T400220高炉

冷却壁的生产[J].铸造技术,2002,(3):1592161.

(下转第62页)

通用型的,质量一般、品种单一,主要用于建筑领域,汽车、家电等高档产品依靠进口。进口量几乎占国内彩涂板市场的一半份额。这就要求我们将关注重点放在开辟新的应用领域,能够采用新技术生产具有不同使用特性和花色品种的有机涂层钢板。

(1)提高基板质量

彩涂基板一般采用冷轧钢板、热镀锌钢板、合金化板、电镀锌板、镀锌铝板等,某些高档产品以不锈钢做基板,无论采用哪种基板都要求其具有较高的表面质量、板形及尺寸精度。

(2)涂料的改良

由最初的醇酸树脂、塑溶胶、聚酯树脂、高性能的含氟树脂到水性涂料、粉末涂料等环保节能型涂料的应用,涂料的不断改进使产品具备高耐蚀性、抗紫外线、耐候性、耐褪色性、耐磨损性、耐指纹性、耐溶剂性等,以及最新研制成功的抗菌性、防静电、保洁性及耐黑变等彩板。

(3)PET复合贴膜彩色板技术

PET是指聚乙烯对苯二(甲)酸盐,1般使用透明的25um厚的膜,PET膜广泛用作磁性录音材料、照像、包装材料等的基膜。其力学性能好,膜的硬度为122H;具有良好的耐热性;除强碱外,具有良好的抗化学腐蚀性、抗温性、抗污染性、抗去污性和抗溶剂性。

PET复合贴膜彩色板1种采用PET膜与油漆复合的涂装技术,透明的PET膜层压到彩涂板的表面;另1种为层压PET膜底部印画彩涂技术,用直接照像印画法将图画印到PET膜上,再用厚约5um聚乙烯类树脂粘结剂将印好的PET 膜层压到涂好底漆的基板上,底漆多采用热固化的环氧树脂。

(4)粉末涂敷工艺

继几年前国外粉末枪技术的应用,美国MSC 研制出粉末云涂装技术:将粉末涂料在强大的静电场作用下,通过粉末旋转刷产生涂料粉末云,形成粉末云状、带有很高电荷的固体涂料颗粒,飞向高速运行的基板,产生足够大的边界穿透力,由此,粉末颗粒便均匀地沉积在带钢表面上,再经过固化、保温、淬水冷却处理。

此种工艺能适应高速高效涂装,产品抗腐蚀、抗划伤、抗褪色性能好、色泽均匀、环保好、成本低。

(收稿日期:2006206226)

(上接第54页)

[7] 胡君健,战庆文,张 毅,等.铸态Q T400-18冷却壁的生

产[J].铸造技术,2002,(2):1072109.

[8] 沈先厚,范钦宾.3号高炉新型冷却壁制造[A].高炉长寿技

术会议论文集[C],梅山:中国金属学会.1994:2102211. [9] 王焕梁魏天斌.关于高炉改用渗铝铸铁冷却壁的建议[J].

武钢技术,1998,(7):33234.

[10] 张士敏.高炉钢冷却壁的应用及分析[J].炼铁,2001,(1):

44.

[11] 朱童斌.高炉铸钢冷却壁的研制[J].铸造,2003,(7):505.

[12] 张士敏,王东升.新型无热阻钢冷却壁的理论与实践[A].//

2002年全国炼铁生产技术会议暨炼铁年会文集[C].北京:中国金属学会,2002:530.

[13] 马捷.低碳微合金化铸钢[J].铸造,1990,(2):13.

[14] 周治中.新型高炉冷却设备———铜冷却壁[J].宝钢技术,

2001,(1):57263.

[15] Heinrich,P.Hille,H.Bachhofen,H2J;K owalski,W.Cop2

per Blast Furnace Staves Developed for Multiple Campaigns

[J].Iron&Steel Engineer,1992,(2):49255.

[16] 超书绶.大型高炉球铁冷却壁的铸造[J].铸造,1996,

(6):19221.

[17] 王碧琴,张艳梅,王厉刚.高炉铸铁冷却壁钢管处理新工

艺[J].鞍钢技术,2003,(3):38240.

[18] 张士敏,王东升.无热阻新型钢冷却壁的研制和应用[J].

钢铁,2002,(1):14218.

[19] 朱童斌,石玮,王黎明,等.高炉铸钢冷却壁的研制[J].铸

造,2003,(7):5052509.

[20] 杨天钧,程素常,吴启常,等.高炉铜冷却壁的研制[J].炼

铁,2000,(5):19220.

[21] K.Morimit su,K.Nishicka.New Type Cast Copper Stave

[J].Nippon Steel.Oct.2003:11212.

[22] 高新运,高贤成,曹洪志,等.铸钢冷却壁在济钢高炉的应

用[J].炼铁,2001,(6):9211.

(收稿日期:2006209208)

高炉冷却壁

高炉冷却壁 发布: 2016-01-05 15:43 来源: 网络专业资料。高炉冷却壁高炉冷却壁摘要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术... 高炉冷却壁 摘要:冷却壁是高炉重要的冷却设备,直接影响高炉炉体的使用寿命。本文综述了国内外冷却壁的制备技术、应用及其发展概况,分析了铸铁冷却壁、钢冷却壁和铜冷却壁的特点,并探讨了高炉冷却壁的未来发展趋势。 1. 前言 高炉冷却壁是高炉内衬的重要水冷件,安装在高炉的炉身、炉腰、炉腹、炉缸等部位,不但承受高温,还承受炉料的磨损、熔渣的侵蚀和煤气流的冲刷,必须具备良好的热强度、耐热冲击、抗急冷急热性等综合性能。冷却壁能有效地防止炉壳受热和烧红,高炉内衬砖被烧蚀后主要靠渣皮保护冷却壁本身,并维持高炉的安全生产。因此,冷却壁的材质及性能好

坏决定其工作寿命乃至高炉炉身的寿命。国内外钢铁企业的生产情况证明,高炉长寿的关键之一是实现冷却壁的长寿 [1,2]。因而提高冷却壁的质量和使用寿命是高炉长寿的1个重要研究课题。 从20世纪70年代开始,西方一些发达国家对高炉冷却壁进行了大量的研究及材质的更新。目前国外先进高炉的寿命可达15年以上,有的达20年以上,最近大修的部分高炉已将长寿目标定为30年[3]。我国对冷却壁的制造、应用技术研究始于20世纪80年代中期,20多年来我国高炉冷却壁技术取得了长足的进展,但高炉冷却壁的设计研究和制作工艺与高炉长寿的目标还有一定的差距。目前我国很多高炉一代炉役无中修寿命低于10年,仅少数高炉可实现10~15年。 高炉寿命的总体水平与国外先进水平相差较大[4]。 本文旨在总结国内外高炉冷却壁的制备技术和应用现状,分析各类冷却壁的特点,探讨未来高炉冷却壁今后的发展趋势。 2. 高炉冷却壁的种类、特点及其制备技术 冷却壁是高炉的关键部件,在高温状态下工作,工作条件恶劣。其破坏形式是在高温交变热应力作用下引起开裂漏水,使高炉被迫停炉大中修。要延长冷却壁使用寿命,必须选择合理的材质。下面以高炉冷却壁的材质为主线,概述其种类、特点和制备技术。 高炉冷却壁的种类及特点 根据制造材质,高炉冷却壁有铸铁冷却壁、钢冷却壁和铜冷却壁3大类。

高炉长寿技术的探讨 毕业论文

学科代码:080201 学号:082302010072 贵州师范大学(本科) 毕业论文 题目: 高炉长寿技术的探讨 学院:材料与建筑工程学院 专业:冶金工程 年级:2008级 姓名: 指导教师: 完成时间:2013年5月14日

目录 4 4 5 6 6 6 6 6 6 7 7 7 7 8 9 9 9 9 10 10 10 10 11 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14

14 14 15 15 15 15 16 16 16 16 17 18 18 18 19 19 19 20 20 20 20 21 21 21 22 23 24

高炉长寿技术的探讨 郑茂骁 中文摘要: 通过分析当今国内国外对延长高炉寿命的研究所取得的成果,得出提高高炉寿命是一个系统的工程,涉及高炉精料、煤气流分布的调节、提高耐火材料的性能、加强炉体的冷却、选择合理的操作制度及日常维护等,只有将许多延长高炉寿命的技术和设备有机地结合起来,才能实现高炉长寿。 关键词:高炉长寿;有害元素;煤气流分布;耐火材料;高炉冷却 Abstract: through the analysis of the current domestic to extend the service life of the foreign blast furnace, the results, improve the service life that blast furnace is a system project, which involves the blast furnace gas flow distribution of boars, adjusting and improving the performance of the refractory materials, strengthening the furnace cooling, selection of rational operation system and daily maintenance etc, only will extend the service life of the many blast furnace technology and equipment organically, to achieve the blast furnace longevity. Key words:the blast furnace long; The harmful elements; The gas flow distribution; Refractory materials; Furnace cooling

炼铁厂高炉冶炼知识讲解

炼铁厂高炉冶炼知识讲解 一、什么叫炉况判断?通过那些手 段判断炉况? 答案:高炉顺行是达到高产、优质、低耗、长寿的必要条件。为此不是选择好了操作制度就能一劳永逸的。在实际实际生产中原燃料的物理性能、化学成分经常会产生波动,气候条件的不断变化,入炉料的称量可能发生误差,操作失误与设备故障也不可完全杜绝,这些都会影响炉内热状态和顺行,判断炉况就是判断这种影响的程度及顺行的趋向。即炉况是向凉还是向热,是否会影响顺行,影响程度如何等等。判断炉况的手段基本是两

种,一是直接观察,如看入炉原料外貌,看出铁、出渣、料速、风口情况;二是利用计器仪表,如指示风压、风量、料尺、各部位温度及透气性指数等的仪表。必须两种手段结合,连续综合观察一段时间的各种反映,进行综合分析,才能正确判断炉况。 二、为什么力求稳定前四小时和后 四小时、班与班之间的下料批数?答案:稳定下料批数是高炉进程均匀稳定的重要因素之一,稳定下料批数的作用是稳定本班和班与班之间各次铁的炉温,如果料批相差悬殊则会带来炉温大幅度的波动和影响生铁的质量,即使在轻负荷条件下也是如

此。 三、工长的技术操作水平应该表现 在哪几个方面? 答案:⑴能及时掌握炉况波动的因素;⑵能尽早知道炉况不稳定的原因;⑶具有对待炉况波动的方法和手段;⑷能掌握炉况变化的规律。四、高炉炼铁工(高级)综合实作 题 8小时模拟高炉操作。 1、对上班进行分析(8分) 2、制定本班操作方针(包括采取必 要措施)预测本班料批总数及炉温会在什么范围([SI]及铁水温度平均值)。(12分)

3、每小时对路况分析、判断,采取 相应手段,写出依据或简易计算过程。(21分) 4、班中检测操作方针与炉况走向是 否一致,若偏离并进行修正。(6分) 5、对本班的操作进行总结。(6分) 6、预测下班;料批总数及炉温会在 什么水平([SI]及铁水温度平均值),对下班操作提出建议。(11分) 7、铁前、铁后对[SI]、[S]、R2及铁 水温度的判断。(36分) 平分标准 1、共8分

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

本标准代替YBT4073-1991高炉用铸铁冷却壁

ICS 77.180 YB H 99 中华人民共和国黑色冶金行业标准 YB/T4073—×××× 代替YB/T4073—1991 高炉用铸铁冷却壁 Cast iron staves for Blast Furnace (报批稿) ××××-××-××发布××××-××-××实施中华人民共和国国家发展和改革委员会发布

前言 本标准代替YB/T4073-1991《高炉用铸铁冷却壁》。 本标准与YB/T4073-1991标准有如下一些重要差别: ——本标准增加了铸铁冷却壁材质、品种及性能的主要技术参数。 ——侧重厚大断面、高韧性球墨铸铁冷却壁的特性,以附铸试块及实物性能为主,增加附录B《冷却壁解剖检验》的技术要求。 ——本标准强调了铸铁冷却壁铸入冷却水管的防渗碳处理、检验,增加了附录A《冷却水管防渗碳检验》的技术要求。 ——完善了冷却壁产品检验和验收规则。 本标准的附录A是规范性附录,附录B为资料性附录。 本标准由中国钢铁工业协会提出。 本标准由冶金机电标准化技术委员会归口。 本标准起草单位:鞍钢重型机械有限责任公司(原鞍钢集团机械制造公司) 本标准主要起草人:姜言埠、谢长发、宋恩余。 本标准所代替标准的历次版本发布情况为:YB/T4073-1991。

高炉用铸铁冷却壁 1 范围 本标准规定了高炉用铸铁冷却壁(灰铸铁、球墨铸铁冷却壁)的技术要求、试验方法、检验规则、质量证明书、标志、包装及运输。 本标准适用于各种容积的炼铁高炉用铸铁冷却壁。如有特殊要求,可在图样或专用技术文件中另行规定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 223.5 钢铁及合金化学分析方法还原型硅钼酸盐光度法测定酸溶硅含量 GB/T 223.46 钢铁及合金化学分析方法火焰原子吸收光谱法测定镁量 GB/T 223.49 钢铁及合金化学分析方法萃取分离- 偶氮氯膦mA分光光度法测定稀土总量 GB/T 223.58 钢铁及合金化学分析方法亚砷酸钠-亚硝酸钠滴定法测定锰量 GB/T 223.62 钢铁及合金化学分析方法乙酸丁脂萃取光度法测定磷量 GB/T 223.68 钢铁及合金化学分析方法管式炉内燃烧后碘酸钾滴定法测定硫含量 GB/T 223.69 钢铁及合金化学分析方法管式炉内燃烧气体容量法测定碳含量GB/T 228金属材料室温拉伸试验方法(eqv ISO 6892:1998) GB/T 229 金属夏比缺口冲击试验方法(eqv ISO 148:1983;ISO 83:1976) GB/T 231.1 金属布氏硬度试验第1部分:试验方法(eqv ISO 6506—1:1999) GB/T 699 优质碳素结构钢 GB/T 1348 球墨铸铁件 GB 3087 低中压锅炉用无缝钢管 GB/T 6060.1—1997 表面粗糙度比较样块铸造表面(eqv ISO 2632/Ⅲ:1979) GB/T 6414—1999 铸件尺寸公差与机械加工余量(eqv ISO 8062:1994) GB/T 7216 灰铸铁金相(neq ISO 945:1975) GB/T 8163 输送流体用无缝钢管(neq ISO 559:1991) GB/T 9439 灰铸铁件 GB/T 9441 球墨铸铁金相检验 JB/T 7945 灰铸铁力学性能试验方法 3 产品分类 3.1 按铸铁冷却壁结构形式分类:光面型冷却壁、镶砖型冷却壁、捣料型冷却壁。 3.2 按铸铁冷却壁冷却水管分类:单排管冷却壁、双排管冷却壁、多排管冷却壁。 3.3 按铸铁冷却壁本体材质分类:灰铸铁冷却壁、球墨铸铁冷却壁。 4 技术要求 4.1 高炉用铸铁冷却壁的本体材质可采用灰铸铁、球墨铸铁,如需方另有要求可协商确定。力学性能应符合表1、表2的规定,冲击值见表3。 4.2 高炉用铸铁冷却壁的金相组织应达到表4要求。

安徽工业大学科技成果——高炉长寿综合技术研究与应用

安徽工业大学科技成果——高炉长寿综合技术研究与应用成果简介 随着现代高炉向炉容大型化、生产高效化方向的不断发展,高炉长寿的重要性日益显现,高炉能否长寿对于钢铁企业的正常生产秩序和企业总体经济效益影响巨大。各国炼铁工作者为了尽量延长高炉寿命,从设计、施工、操作和维护等方面开发了许多新技术和新工艺,取得了显著的效果,高炉寿命不断提高。 安徽工业大学炼铁工艺研究所开发的高炉长寿综合技术特点是:(1)利用高炉烘炉过程来实现既烘炉又消除冷却壁铸造内应力的技术思路。 (2)抑制高炉冷却壁内水管结垢。 (3)利用数值模拟计算法计算高炉炉缸炉底1150℃等温线分布,对高炉炉缸炉底的工作状况进行在线监测;对炉缸炉底耐火材料侵蚀状况和侵蚀速度进行诊断,对异常侵蚀进行报警。 (4)开发炉顶综合煤气连续分析系统,及时分析煤气中CO、CO2、H2含量,掌握冷却器漏水与煤气中H2含量变化关系,实现在线快速判定冷却器漏水。只有早发现漏水,早控制漏水,才能避免对采取漏水冷却器100%断水闷死的处理方式。 (5)开发圆柱型小冷却器对中晚期高炉破损壁补充冷却的技术,开发新型冷却壁和改善冷却壁铸造质量。 成熟程度和所需建设条件 (1)利用高炉烘炉过程来实现既烘炉又消除冷却壁铸造内应力。

课题组研究开发的“利用高炉烘炉消除冷却壁铸造内应力的新工艺”在马钢350m3和2500m3高炉上已有过极其成功的工业应用。 (2)炉缸炉底耐火材料侵蚀在线监视模型。炉缸炉底耐火材料侵蚀在线监视模型不仅能定量描绘出炉缸炉底耐火材料侵蚀状况,而且能够定量描绘出炉缸堆积与结厚情况。该模型在马钢1#2500高炉、新余2#2500高炉、南钢2#2500高炉、济钢2#1750高炉等6座高炉成功应用。 (3)应用炉顶综合煤气分析仪在线分析煤气中H2含量,快速预报高炉冷却器破损漏水。该炉顶综合煤气成分在线分析系统已在马钢4座高炉成功应用。 (4)采用圆柱型小冷却器对中晚期高炉破损壁补充冷却。该冷却器在现场经过两年的生产考验,水温差2-4℃,器壁温度200-300℃,形成渣皮范围可达直径的2-4倍,从而保护炉壳免受渣皮及煤气流的经常冲刷,形成了相对稳定的操作炉型。 (5)揭示了铁基材质冷却壁内水管结垢及垢瘤生成的机理。给出了抗结垢材质冷却水管的选择方向,也为冷却水处理剂与冷却水管冲洗剂提出了新的配方。 技术指标 该系统应用后,在基本不增加成本情况下,大型高炉高炉寿命可延长3-4年;基本消除因冷却器漏水而造成的炉凉、炉缸冻结事故和炉缸炉底烧穿事故;高炉操作稳定性变好。同时高炉吨铁焦比降低3kg,风温提高5℃。

1280立米高炉冷却壁安装方案

徐州华宏特钢有限公司1#1380m3高炉冷却壁安装施工方案 编制: 审核: 批准: 河北冶金建设集团有限公司 二0一三年六月

目录 1、工程概况 (1) 2、编制依据 (1) 3冷却壁的安装工艺 (1) 3.1 炉体冷却壁安装 (1) 3.2 炉喉钢砖安装 (2) 4 质量保证措施 (3) 5 安全保证措施 (3)

1、工程概况 本方案为徐州华宏1380m3高炉冷却壁安装方案,共有16段,38种规格,共507块。最大重量为3973kg,最小重量为779kg。部分冷却壁为镶砖冷却壁,重量总计约1210吨。 2、编制依据 1、中钢设计院所发图纸。 2、《冶金机械设备安装工程——炼铁设备》GB208—85。 3、《冶金机械设备安装工程质量检验评定标准》YB9243—92。 3冷却壁的安装工艺 3.1 炉体冷却壁安装 1、安装前应对所有的冷却壁和冷却板进行水压试验及通球试验。水压试验采用1.5 Mpa,保压20分钟,泄露率不得超过3%,用0.75千克钢锤敲击冷却壁各部分不得有“冒汗”现象。通球试验采用Φ48mm直径的木球,用压缩空气将木球从冷却水管一头吹入,从另一头吹出,应畅通。运输或安装过程中有碰撞则必须重新检验。完毕后应封闭管口,防止杂物进入,并保护好管口螺纹。 下面为冷却壁分组试压示意图。

2、冷却壁依照图纸编号和水冷壁编号均匀分布安装。每一层中各块冷却壁之间的间隙设计值为30毫米,偏差为±10mm,每层之间的间隙为30mm,偏差为±1 0mm。安装标高以风口带为基准,各层之间的相对位置以冷却壁展开图中轴线为基准。 3、冷却设备吊装 1)冷却设备进炉的方案: a、冷却壁安装按照从一层逐步向上进行安装。 b、在炉壁标高▽+5.070米处南侧开孔,在孔南侧制作进料平台,利用25T履带吊 车将4块冷却壁吊至运输小车,通过运输小车将冷却壁运送至炉内操作平台。 c、先将第一块就位,可利用螺栓孔用倒链在炉外向炉皮拉到炉壳内表面,贴合就 位并穿入方头螺栓进行固定,之后第二块,依次四块全部就位。 d、每层就位后,调整各块冷却壁使其标高一致以及各种间隙符合技术要求。 2)冷却壁内操作人员站在制作活动吊盘上。在操作面上方均匀焊4个吊环,用4个5T倒链吊起吊盘。依次用倒链将吊盘升高,再向上依上述方法进行操作。 4.冷却壁安装固定螺栓时,每个螺栓要拧紧同等程度保证受力均匀。每安装完一层冷却壁将其吊耳去掉。 5、安装偏差 1)、每层冷却设备上平面标高与设计标高的偏差小于10 mm. 2)、冷却之间的水平和垂直间隙应均匀,与设计间隙的偏差小于lOmm; 3)、冷却壁与铁口框,渣口大套法兰,风口大套法兰之间最小间隙不小于lOmm。 6、各道焊缝必须焊满,不得有泄漏。烘炉后如有泄漏应补焊。 7、冷却壁安装完毕,待冷却系统配管完毕,对系统进行通水试验,检查有无泄漏及冷却水量,判断系统内有无堵塞。 3.2 炉喉钢砖安装 l、炉喉钢砖安装 1)、正式安装前在钢平台上对炉喉钢砖进行予组装,组装时放出大样,校核钢砖组成的内圆是否符合要求,予装合格后对其进行编号,以便于安装时按顺序安装。 2)、照放出的标高线,焊好托板的筋板,再焊托板。托板上平面标高为25.lOOm,误差<1.5mm。 3)、水冷炉喉钢砖最后两块不装,待炉喉钢砖安装完毕后再装最后两块水冷钢砖。

(完整版)北京科技大学+钢铁冶金学(炼铁部分)知识点复习

炼铁知识点复习 第一章概论 1、试述3 种钢铁生产工艺的特点。 答:钢铁冶金的任务:把铁矿石炼成合格的钢。工艺流程:①还原熔化过程(炼铁):铁矿石→去脉石、杂质和氧→铁;②氧化精炼过程(炼钢):铁 →精炼(脱C、Si、P 等)→钢。 高炉炼铁工艺流程:对原料要求高,面临能源和环保等挑战,但产量高, 目前来说仍占有优势,在钢铁联合企业中发挥这重大作用。 直接还原和熔融还原炼铁工艺流程:适应性大,但生产规模小、产量低,而且 很 多技术问题还有待解决和完善。 2、简述高炉冶炼过程的特点及三大主要过程。 答:特点:①在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。 三大过程:①还原过程:实现矿石中金属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的金属与脉石的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁水。 3、画出高炉本体图,并在其图上标明四大系统。 答:煤气系统、上料系统、渣铁系统、送风系统。 4、归纳高炉炼铁对铁矿石的质量要求。 答:①高的含铁品位。矿石品位基本上决定了矿石的价格,即冶炼的经济性。 ②矿石中脉石的成分和分布合适。脉石中SiO2 和Al2O3 要少,CaO 多,MgO 含量合适。③有害元素的含量要少。S、P、As、Cu 对钢铁产品性能有害, K、Na、Zn、Pb、F 对炉衬和高炉顺行有害。④有益元素要适当。 Mn、Cr、Ni、V、Ti 等和稀土元素对提高钢产品性能有利。上述元素多时,高炉冶炼会出现一定的问题,要考虑冶炼的特殊性。⑤矿石的还原性要好。矿石在炉内被煤气还原的难易程度称为还原性。褐铁矿大于赤铁矿大于磁铁矿,人 造富矿大于天然铁矿,疏松结构、微气孔多的矿石还原性好。⑥冶金性能优良。冷态、热态强度好,软化熔融温度高、区间窄。⑦粒度分布合适。太大,对还原不利;太小,对顺行不利。 5、试述焦炭在高炉炼铁中的三大作用及其质量要求。 答:焦炭在高炉内的作用:(1)热源:在风口前燃烧,提供冶炼所需的热量;(2)还原剂:固体碳及其氧化产物CO 是氧化物的还原剂;(3)骨架作用: 焦炭作为软融带以下唯一的以固态存在的物料,是支撑高达数十米料柱的骨架,同时又是煤气得以自下而上畅通流动的透气通路;(4)铁水渗碳。 质量的要求:粒度适中、足够的强度、灰分少、硫含量少、挥发成分含量 合适、反应性弱(C+CO2=2CO)、固定C 高等。 6、试述高炉喷吹用煤粉的质量要求。 答:1、灰分含量低、固定碳量高;2、含硫量少;3、可磨性好;4、粒度细;5、爆炸性弱,以确保在制备及输送过程中的人身及设备安全;6、燃烧性和反 应性好。

中天7号高炉冷却壁八年零破损

摘要立足8年炉龄的中天钢铁7号高炉,采取一定长寿技术和管理措施,对中天钢铁7号高炉炉役后期在强化冶炼与高炉长寿方面所做的工作进行了总结分析,通过采用精料、加钛矿护炉、优化操作制度以及合理维护等操作技术措施,7号高炉在炉役后期实现了稳定顺行生产,延长了高炉寿命,单位炉容产铁量超过10000 t/m3,各项技术经济指标不断改善。关键词高炉长寿炉役后期 中天钢铁7号高炉始建于2011年,于12月16日顺利开炉,容积850m3,20个风口送风,炉前东西场两边各一铁口,炉缸使用的是北京瑞尔非金属材料有限公司提供的大块单元式风口组合砖,整体式陶瓷杯壁(带密闭隔热夹层),双向错台的陶瓷杯垫砖,见图1。上料系统采用斜桥小车上料,无料钟旋转溜槽多环布料;炉前东西出铁场均采用摆动沟罐位,冲渣系统采用环保底滤法,保证高炉出尽渣铁;高炉本体冷却采用工业水开路循环;鼓风机AV50—14,热风炉为顶然式,送风采用两烧一送原则。 截止2020年2月份已连续正常生产八年多时间,期间无特殊炉况发生,通过操作维护和加

强炉体监护工作高炉投产八年来无冷却壁烧损,打破了高炉炼铁生产过程中发生冷却壁烧损的历史,创造了“中天骄傲”。高炉利用系数已达3.8t/(m3·d)以上,燃料比520kg/t以下。截止目前,7号高炉在一代炉龄无大、中修情况下单位炉容产铁量突破1.06万吨,参照目前高炉长寿标准,7号高炉已经成功跨入世界钢铁企业长寿高炉行列,并且在全国同等立级高炉中多项技术经济指标名列前茅,尽管已处于炉役后期,仍然保持着稳定高产的生产状态。其中多年来主要经济指标如表1所示。由表中可以看出7号高炉各项指标在稳定不断进步。2020年因新型冠状肺炎疫情的影响,公司决定7号高炉2月3日降料面停炉,为后续开炉快速达产于3月5日开始炉内扒料,通过测量观察风口以上冷却壁镶砖基本还保留,炉缸除了东西铁口橡角区侵蚀到碳砖表面,其它侧壁区域陶瓷杯完整存在,见图2。停炉时风口组合砖状况至停炉时所有风口无变形,上翘现象;停炉时陶瓷杯壁砖的状况铁口中心线以上位置,陶瓷杯壁砖侵蚀最大位置,剩余杯壁厚度200mm,包括铁口上方的二层陶瓷杯壁砖。停炉时陶瓷杯垫状的状况由于停炉前高炉运行良好,高炉本体各处温度平稳,按照熔损计算,炉底陶瓷杯垫砖侵蚀度低,因此本次停炉后不准备对炉缸底部进行处理,辩证的说明高炉炉缸没有安全隐患,高炉还可延续生产。 1 操作制度

高炉长寿的现状与意义

高炉长寿的现状与意义 【太阳说】随着工艺技术和认知水平的进步,尤其在钢铁经营形势举步维艰的态势下,高炉长寿越来越受到炼铁业相关人士的重视。但是,在实际生产过程中,高炉长寿操作理念基础并不牢靠,眼前经济效应、重生产轻维护、砌筑安装施工队伍断档因素等等,影响着一代高炉寿命。最终,虽然装备水平、炼铁技术水平提高了,但也达不到高炉长寿的目标。。。。。。 开篇 《高炉炼铁工艺设计规范》GB50427-2008明确要求,高炉一代炉役的工作年限应达到15年以上。在高炉一代炉役期间,单位炉容产铁量达到或大于10000t。 高炉长寿是一项系统工程,涉及到设计、设备和耐火材料选型、制造与安装、设备维护、生产操作和长寿维护等一系列的环节。 一般用两个指标来衡量高炉高效长寿:1)寿命:一代炉役寿命;2)效率:一代炉役单位炉容产铁量;即:从上一次大修后开炉出铁到本次停炉最后一次产铁的累计生铁产量除以高炉容积。 越来越多的炼铁业界同仁意识到了高炉高效长寿的长远经济效益和现实意义,尤其高炉大型化、国家宏观调控去产能的今天,实现高效、优质、低耗、长寿、环保、安全已成为大家共同追求的目标。在钢铁经营形势持续“严冬”模式下,高炉大修仅更换耐材和冷却设备费用就高达几千万费用(参考30万元/m3估算),左右着经营决策者。 新装备、新材料、新工艺的应用,一部分高炉达到了世界一流水平,但却事与愿违,高炉过早停炉大修,是设计上的问题?还是生产问题?还是装备制造和安装质量?困惑着业界的朋友。。。。。。为此,笔者(微信号:高炉长寿太阳说)结合自己现场生产、维护经验,在高炉长寿技术和装备技术研究的基础上,为大家剖析生产过程中高炉长寿技术系列问题,系列文章分为:耐材篇、冷却设备篇、冷却系统篇、高炉生产监控篇、高炉长寿生产技术篇、炉体长寿维护篇、高炉出铁技术篇、工程技术服务篇、以及先进技术与设备篇等等。。。。。 [注:太阳所写高炉长寿技术相关文章,是在前辈的基础上,结合生产实践所提炼出来,在此感谢炼铁前辈的辛勤汗水。鉴于自身认知水平的不足,工艺技术的不断进步,文章不对或欠妥之处,欢迎批评、讨论。欢迎转载、收藏、点赞,但须署名太阳并注明来自微信公众号“高炉长寿太阳说”。同时,我们也提供技术咨询和工程技术服务。] 如果你觉得文章对有所帮助,请关注我们,你的支持和鼓励,是我们最大的动力。

高炉冷却壁安装方案

目录 一、冷却壁安装概述 (1) 二、施工工艺流程及操作要点 (1) 三、施工材料与设备 (10) 四、质量控制 (11) 五、安全措施 (11) 六、环保措施 (12)

一、冷却壁安装概述 1.1概述 新3#高炉是钢铁有限公司节能技术减排改造项目,本工程工程量大、技术要求高、牵涉专业多、施工难度大、质量标准高、施工工期紧,其中冷却壁设备安装数量多、吨位大、工序复杂,为尽量缩短施工工期,安全优质按时完成该项施工任务,特制订本《冷却壁安装施工方案》。本座高炉炉身第1~5段采用灰铸铁(HT200)冷却壁。其中第1段43块;第2段42块;第3段42块;第4段42块;第5段26块。第6~8段采用铜冷却壁,每段各42块。第9~15段采用球墨铸铁(QT400-20)冷却壁。其中第9段40块;第10段38块;第11段36块;第12段34块;第13段32块;第14段30块;第15段为“C”型冷却壁,共36块。 二、施工工艺流程及操作要点 2.1铸铁冷却壁安装工艺流程(见工艺流程图2.1-1图)

工艺流程图 2.1-1图 2.2铜冷却壁安装工艺流程 2.2.1铜冷却壁的主要安装流程:吊装前旋入定位销、套入水管护套密封胶圈→铜冷却壁安装就位→旋入固定螺栓(第7段的固定螺栓可在吊装前预装)→套入固定螺栓斜垫片、平垫片、预紧螺母→调整铜冷却壁正确位置→扭紧螺母→固定螺栓与螺母、螺母与垫片、垫片与炉壳焊接→套入定位销焊接板—定位销与焊接板、焊接板与炉壳焊接→旋入测温管、套入焊接板、测温管与焊接板、焊接板与炉壳焊接→堵塞铜冷却壁之间的纵向和周向间隙→炉壳与铜冷却壁之间空隙灌浆→检查并清除外炉壳浆液溢出料→焊接螺栓密封罩→焊接波纹补偿器。 2.3水冷壁安装 2.3.1铸铁冷却壁安装应遵循下列要求 1、冷却壁运到现场安装前,应将冷却壁分类摆放,进行外观检查,并按设计文件要求对冷却壁逐块进行通球试压检验,符合要求后才能开始制作样板。 2、用经纬仪在炉壳内分出十字线(0°、90°、180°、270°),先保证冷却壁在炉壳内1/4范围匀布,再扩展到一周匀布,同时用样板在炉壳上预安装,并做好编号,要求与冷却壁相对应。 3、对于已开孔进行安装的冷却壁,应根据图纸结合专用器具实测冷却壁进出水管位置和螺栓孔位置,在炉壳上对已开的安装孔进行复核。 4、安装就位后的冷却壁可采用铁楔进行间隙调整,具体冷却壁

炼铁厂安全教育基础知识正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 炼铁厂安全教育基础知识 正式版

炼铁厂安全教育基础知识正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1、《安全生产法》由江泽民主席于 20xx年签署七十号令予以公布,(自20xx 年11月起施行) 2、《安全生产法》的立法目的是为了加强安全生产监督管理,防止和减少(生产安全事故),保障人民群众生命和财产安全,促进经济发展。 3、安全生产方针 《安全第一,预防为主》 4、首先我们要明确安全的内容是什么? (1)安全思想教育(2)安全技术教

育(3)工业卫生技术教育 (4)安全管理知识教育(5)安全生产经验教训 5、安全生产过程中的"三违"是什么? (1)违章指挥(2)违章操作(3)违反劳动纪律 6、出了事故"四不放过"指什么? (1)事故原因不查清不放过; (2)事故责任人不处理不放过; (3)事故整改不落实不放过; (4)事故教训不吸取不放过; 7、什么是"三不伤害"? (1)不伤害别人(2)不伤害自 己(3)不被别人伤害 8、安全管理的五道防线?

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

高炉冷却壁的传热学分析

钢铁 IRON & STEEL 1999年 第34卷 第5期 No.5 Vol.34 1999 高炉冷却壁的传热学分析* 程素森 薛庆国 苍大强 杨天钧 摘 要 应用传热学理论计算分析了高炉冷却水的稳定性、冷却水的水速、冷却水管与冷却壁本体的间隙及冷却壁的高度对长寿高效高炉冷却壁寿命的影响。 关键词 高炉 冷却系统 HEAT TRANSFER ANALYSIS OF BLAST FURNACE STAVE CHENG Susen XUE Qingguo CANG Daqiang YANG Tianjun (University of Science and Technology Beijing) ABSTRACT In this paper, effect of the cooling water stability, cooling water velocity, gap between cooling water pipe and stave and height of stave on the stave life is analyzed by heat transfer theory. KEY WORDS blast furnace, cooling system 1 前言 在1994年国际炼铁会议上,霍戈文公司(Hoogven)的专家提出了下一个世纪钢铁联合企业生存的条件之一是高炉寿命达到15年。日本千叶6号高炉(容积为4500m3)到1997年底已经连续生产20年6个月,创高炉长寿的世界记录。80年代以来国外新设计的高炉寿命一般在15年以上,而我国1000m3以上高炉的中修周期目前一般为4~5年,大修周期一般为9年左右。因此,就整体而言我国高炉寿命与国外相比仍有很大差距。 高炉是一个巨大的反应器,其寿命与许多因素有关,依据我国对高炉寿命的调查结果,冷却系统的设计和制造质量是影响高炉长寿的重要因素之一。过去高炉冷却系统的设计是根据经验或破损调查,随着计算技术及传热学理论及其应用的不断发展,加之人们对冷却器认识的不断深化,应用传热学数值计算对冷却器进行结构参数优化已经成为可能。 2 冷却系统的设计 冷却系统包括冷却水及冷却器。首先,冷却水质的好坏直接关系到冷却器能否达到设计的冷却效果,关系到能否保证冷却器不被烧坏。其次,合理的冷却水水速既可以保证冷却器的冷却能力,又可以降低能耗。冷却器结构参数的合理选取既可以保护炉墙免受炉内热流冲击破坏,又可以减少炉内热量损失,降低燃料消耗。 2.1 冷却水

高炉工程冷却壁安装方案

达州智源1—318M3高炉工程冷却壁 试 压 及 安 装 方 案 中国五冶达州项目部

目录 第一章概述 1.1编制依据 (5) 1.2工程简介 (5) 1.3 冷却壁安装参考规范 (5) 1.4 质量标准 (5) 第二章冷却壁安装方案 2.1 冷却壁试压 (6) 2.2 冷却壁安装技术要点 (6) 2.3 冷却壁安装工艺流程 (7) 2.4冷却壁安装工艺要点 (7) 2.5冷却壁安装临时平台需用材料汇总 (9) 2.6.试压需设备﹑材料﹑人员 (10) 第三章安全保证措施 3.1安全管理目标 (11) 3.2施工安全生产保证体系 (11)

第一章概述 1.1 编制依据 (1)招标文件规定及国家现行的规范和标准。 (2)本单位有关人员对工程建筑场地的勘察。 (3)本单位质量体系文件。 (4)本单位承担类似工程的经验。 (5)施工组织设计。 (6)业主提供的图纸资料。 1.2 工程简介 高炉系统工程中,冷却壁安装分为炉底、炉缸、炉腹、炉腰、炉身五部分八段共188块,最重的一块为2.028t,冷却壁总重约242t,为了保证工期的绝对性,制定合理的安装方案,对确保冷却壁安装的及时性非常重要。 1.3 冷却壁安装参考规范 1、《钢结构工程施工质量验收规范》(GB50205-2001); 2、《钢结构制作安装施工规范》YB9254-95; 3、《机械设备安装工程施工及验收通用规范》(GB50231-98); 4、《炼铁机械设备工程安装施工验收规范》GB 50372—2006。 1.4 质量目标:工程质量达到合同规定的合格要求。

第二章冷却壁试压及安装方案 2.1冷却壁试压 冷却壁及支梁式水箱在安装之前应进行水压试验和外观检查,并进行通球试验,步骤如下: 1.采用8t吊车配合,按图纸编号将1-8层冷却壁分段试压,打压合格后用红油漆填上合格,并填写打压资料。 2.采用串联打压,每5块一组,发现压力表有下降现象,则对每块单独打压,不合格的打上记号,反之则全部合格。 3.试验使用的压力表,应经校核合格并有铅封或在校验合格有效期内;压力表的精度不低于1.5级;表盘的满刻度值应为最大被测压力的1.5倍。试验压力为1.2MPa(注:试验压力参考重庆钢铁集团有限公司冷却壁制造及安装总说明中第4.2条)水压试验应缓慢上升,待到试验压力后稳定10min,再将试验压力降至设计压力,停压30min以压力不降,无渗漏合格。 4.通球试验采用木球,木球的直径为钢管内径的76%,正反向都能顺利通过木球为合格。 5.试验结束后及时撤除压力表,阀门等设施,排尽积液并盖上管帽。 2.2 冷却壁安装技术要点 1.安装冷却壁应在铁口框﹑渣口﹑风口﹑法兰及进风弯管拉杆座﹑液压炮锚钩座等设备安装完毕后,才能进行。 2.在安装冷却壁前应根据实际管口及螺栓孔位置在炉壳上开孔。 3.每段冷却壁中有一块两边平行的合门用冷却壁,应在每段最

循环冷却水排水系数等基础资料全

循环冷却水基础知识 一.循环水工作原理 因循环水生产的工艺特点决定,水在循环使用的过程中,会出现水温升高、水体平衡破坏以及结垢、腐蚀、微生物危害等问题。因此循环水处理需解决两方面的问题: a.要使已升高的水温降低,以保持较好的冷却效果-----称之为循环水冷却。 b.要防止因水体平衡破坏和系统特点导致的结垢物沉淀、水质腐蚀及微生物繁殖的危害,以保持整个循环水系统正常运行,针对这方面进行的水质处理称为循环水处理。 二.循环水冷却原理: 本装置采用的是敞开式循环冷却水系统,水的冷却主要在冷却塔完成。循环水经过换热设备升温后返回至冷却塔与空气直接接触,在蒸发散热、接触散热和辐射散热三个过程的共同作用下得到冷却。 (1)蒸发散热 水在冷却设备中形成大小水滴或极薄的水膜,扩大其与空气的接触面积和延长接触时间,使部分水蒸发,水汽从水中带走汽化所需的热量,从而使水冷却。 (2)接触传热 水与空气对流接触时,如果空气的温度低于水的温度,则水中的热量会直接传给空气,使空气温度升高,水温降低。

二者温差越大,传热效果越好。 (3)辐射传热 辐射传热不需要传热介质的作用,而是由一种电磁波的形式来传播热能的现象。辐射传热只是在大面积的冷却池才起作用。在冷却塔的传热中,辐射散热可以忽略不计。 这三种散热过程在水冷却中所起的作用,随空气的物理性质不同而异。春、夏、秋三季,室外气温较高,因此以蒸发散热为主,最炎热的夏季的蒸发散热量可达总热量的90%以上。冬季空气温度较低,接触散热的作用增大,从夏季的10%~20%增加到40%~50%,严寒的天气甚至可增加到70%左右。 冷却塔一般由通风筒、配水系统、淋水装置、通风设备、收水器和集水池组成,其中淋水装置也称填料,是冷却设备中的一个关键部分,其作用是将需要冷却的热水多次溅散成水滴或形成水膜,以增加水和空气的热交换。冷却塔中水的冷却过程主要是在淋水装置中进行的。 三.循环水处理基本概念 循环水处理是用物理的或化学的方法使循环水即不产生结垢,也不发生腐蚀,同时去除循环水中悬浮杂质,杀灭循环水中微生物的过程。 (1)阻垢处理

1#高炉冷却壁

1#高炉冷却设备烧损原因分析及采取的对策 曹冶民李斌宜 (龙门钢铁集团有限责任公司) 摘要龙钢1#高炉由于设计、设备、冷却制度及操作等方面的原因,造成冷却设备烧损频繁,通过分析,制定出一系列对策,实践证明,效果显著。 关键词冷却设备烧损原因分析对策 1、概述: 龙钢1#高炉有效容积450m3,于2003年元月投产,使用的冷却设备有镶砖冷却壁、光面冷却壁、冷却板以及水冷炉喉钢砖。由于施工时间紧,设备有缺陷,炉顶设备及炉后上料系统故障频繁,冷却制度不合理及操作方面的影响等原因,造成炉身冷却板大面积烧坏,局部炉壳温度升高,发红、冒煤气甚至冒火星、喷渣,严重影响高炉的正常生产。 2、高炉冷却情况 2.1高炉本体冷却壁简况 1#高炉本体冷却采用半密闭循环冷却系统,壁板结合,密集式冷却,共有冷却壁460块,冷却板224块,水冷炉喉钢砖18块。从炉底向上共有19段冷却壁,第一至四段(炉底、炉缸区)为光面冷却壁;第五至十四段(炉腹、炉腰、炉身下部区)为镶砖冷却壁;第十五至十九段(炉身上部)为光面冷却壁;冷却板位臵从炉腰至炉身镶嵌在冷却壁夹缝中。冷却壁的分布情况见表(1)

表(1)1#高炉冷却壁分布情况 2.2冷却水循环系统简况 2.2.1冷却设备 从开炉至2004年5月以前,高炉本体各部位的冷却设备均工作正常,但是从2004年5月中旬炉身下部冷却板开始烧损,截至2006年4月,共计损坏冷却设备60块:其中炉身冷却板41块,占冷却板总数的18.3%,现已全部更换;炉腰冷却板2块,暂时无法更换;炉腹冷却壁3块,2块加外冷却水箱,1块加外喷水;炉喉钢砖损坏14块,现全部灌浆后封死。具体损坏时间及数目见表(2) 2.2.2炉体冷却系统运行情况 开炉初为了满足冷却要求, 高炉配备常压供水水泵3台,两 开一备;高压供水水泵2台,一开一备,水泵的具体参数见表(3)由于我公司使用的循环水为工业水,水质硬度大,无法达到 软水的要求,为了满足生产的需要,因此在冷却水中配加YH缓腐 阻垢剂和杀菌除藻剂。加入缓腐阻垢剂的主要作用是控制水中钙、镁离子浓度,降低冷却水的硬度。加入杀菌除藻剂主要是杀死水 中的藻类。开炉初炉体各部位的冷却参数见表(4)。

相关文档
最新文档