容海热电厂一次风机变频改造节能分析

容海热电厂一次风机变频改造节能分析
容海热电厂一次风机变频改造节能分析

容海热电厂一次风机变频改造节能分析【摘要】容海热电厂一次风机风门开度平均在45%左右,风门节流损耗很大,同时存在风道磨损严重,风机控制特性变差等问题。对一次风机进行变频改造后,不仅节约了能源,同时延长了设备使用寿命,保证了机组的经济运行。

【关键词】一次风机,变频改造,节能分析

1.机组运行情况

容海热电厂于2003年投入运行,属于煤矸石资源综合利用热电厂,装配2台480t/h循环流化床锅炉,2台135mw发电机组,配套4台一次风机。由实际运行数据得知,当发电机组负荷为80~130mw 时,一次风机风门开度在30~40%之间,电机电流在120~140a左右。机组负荷变化范围很大,而风门开度变化很小,一次风机经常处于低效率工况下运行。因为一次风机风门调节方式为挡板调节,节流损失很大,经济性较差,同时,还存在如下问题:(1)配套电机在额定转速下运行,挡板调节节流损失大,造成风道压力过高,威胁系统设备密封性能,同时风道磨损严重。(2)长期风门调节,加速风门自身磨损。(3)设备使用寿命短,维护量大,维修成本高。

2.改造的必要性

近十多年来,变频器在控制领域的应用已经非常广泛[1],同时鉴于上述原因,对一次风机进行变频改造,实现节约厂用电,提高效率的目标。

通过高压变频器对风机配套电机进行变频控制,实现了风量的

空压机变频节能改造方案

第一部分变频节能改造背景 一、基本情况 二、变频调速技术 第二部分空压机的改造缘由 一、空压机介绍 二、存在的主要问题 三、变频改造的优点 第三部分实现方法 一、公司简介 二、实现方法 第四部分投资估算及服务承诺 一、投资估算 二、服务承诺 第一部分变频节能改造背景 一、基本情况 广西南宁华诺糖厂空压站现有315KW/380V 空压机3 台, 160KW/380V 空压机4 台每年耗电量约200多万元。对华诺糖厂来说是一

笔很大的开支。 近年来,我国经济飞速发展,对能源的需求尤其是是对电能的需求激增。去年夏季,珠三角和长三角许多城市不得不拉闸限电,我国不仅在电能开发上需要加快速度,而且还应该在节约电能方面狠下功夫,据统计,我国在电能利用率上仅有34%左右,比发达国家低10 多个百分点,电能供给缺口大,电能利用率低,致使电费一涨再涨。去年8 月份,襄樊市电力缺口大,电价上涨0.05元/度,达0.52元/ 度,使公司的成本开支增大,要降低成本,抓住主要矛盾,首先是降低电耗! 二、变频调速技术 交流电动机变频调速是近25 年内发展起来的新技术,而在我国的普及应用已有10 多年,即使在这短短的10 多年里,国内变频器技术发展很快,技术相当成熟,并且有些变频器(如英威腾变频)装到成套 出口到美国和澳大利亚。在国内广泛应用在风机、水泵、压缩机及调速设备上,应用的用户很多,使用后反映都不错。 变频调速技术在国内压缩机上应用的处于高速增长期,我们专业做变频器推广应用的企业已做了许多压缩机节能改造的工程,节电效果相当明显,业绩发展很快。尤其是2001 年国家经贸委下发的《关于加快风机水泵压缩机变频节能改造的意见》给我们襄樊华强照明有限公司节电工作指明了明确

变频器在风机上的应用

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

除尘风机节能改造方案

第一部分项目综述 一、本次拟改对象简介 通过我公司工程师对炼铁分厂原料场除尘风机的细致勘察和科学分析,调查工况如下: 原料场除尘系统采用布袋除尘方式,风机动力由一台1250kw的电机提供,采用风门调节来控制系统风量,主要是针对翻斗机来料和返矿经皮带机输送至料场,再将料从料场经堆取料机提取,经混料机混匀后供给烧结的过程中产生的扬尘进行处理。期间主要扬尘来自于各皮带转换时,卸料产生。系统将扬尘经除尘点进行收集后,进行集中除尘处理。系统除尘管道共包含各类阀门39个,以下为阀门相关情况:

二、本项目实施的必要性 原料场除尘风机采用调节阀的方式调节系统参数,这种调节方式是最原始的调节方法,仅仅是改变通道的流通阻力,其开合度大小不与流量成比例,从而驱动源的输出功率并没有改变,浪费了大量电能,而且调节阀调节人工操作控制精度差、无法实现自动化控制,容易误操作,且设备使用效率不高,不能充分满足工艺要求。经我司技术人员根据风机工况进行多次检测,如采用适配风机加变频调速,年节能量在42万Kwh。 原料场除尘系统覆盖范围广,除尘点多且位置分散,除尘管道比较长且弯道多,导致风阻、风损增大,进而降低了除尘风量和风压,导致除尘效果差,达不到环保要求。 由于大功率电机的起停和非线性负载的使用,供电线路中电压、电流谐波含量大;电力污染较严重;电压、电流波形失真;设备及短网损耗大、输送效率降低。电力系统低劣的电力品质,易造成输电线路及电机等设备温升增高,噪音增大,损耗增加,设备故障率上升,严重时可引起开关保护跳闸和其它停车事故,增加企业生产成本,造成设备维修成本升高、生产不稳定等危害。 因此企业有必要采取有效措施减少能源的浪费,提高除尘系统能源利用率,提升系统除尘效果。

洁净室空调机组变频节能实例(修改版)

洁净室空调机组变频节能改造实例 胡士光李孝胜马艳香 (北京奥星恒迅包装科技有限公司,北京怀柔) 摘要:本文详细介绍了某医药包材企业北京制造中心洁净室空调机组变频节能改造实例。包括空调机组变频节能改造理论计算,方案设计的数据计算分析;改造完成后空调系统的再调试,运行数据实测;改造总体节能效果。本改造工程在保证洁净房间换气次数基本不变的前提下,实现了空调机组变频节能,并对洁净空调系统设计,施工提出一些合理化建议。 关键词:洁净室;空调机组;变频节能;投资回报。 An Energy Saving Example of HV AC System in Clean Room Hu Shiguang Li Xiaosheng Ma yanxiang (BJMC of Austar Beijing Huairou) Abstract:This article introduces an energy saving technology improvement for HVAC system in a Beijing pharmaceutical packaging manufacturing center. Including energy saving technology calculation, design analysis; HVAC recommissioning; measured operation data; the total energy saving. This program realizes the energy saving in keeping ACR unchanged. At the end, some suggestions have been given for design and construction. Key words:The Clean Room, HVAC; Energy Saving by VSD,Return on investment. 一般情况下空调机组在设计时机组的总风量都要比实际应用偏大一些,风机工频运行时,往往都采用关小阀门的开度来调节风量,根据风机特性曲线,运行工况点向后移动,输出流量减少,扬程增大,从而造成了风管阻力增大,大量的能源浪费在阻力损耗上。由流体传输设备风机的工作原理可知,风机的流量与其转速成正比;风机的压力(扬程)与其转速的平方成正比,而风机的轴功率等于流量与压力的乘积,故风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。根据上述原理可知:改变风机的转速就可改变风机的功率。 例如:将供电频率由50Hz降为45Hz,则P45/P50=453/503=0.729,即P45=0.729P50(P为电机轴功率);将供电频率由50Hz降为40Hz,则P40/P50=403/503=0.512,即P40=0.512P50(P为电机轴功率)。由以上内容可以看出,用变频器进行流量控制时,可节约大量电能。 用阀门、自动阀调节不仅增大了系统节流损失,而且由于对空调的调节是阶段性的,造成整个空调系统工作在波动状态;工频转换为变频后,使系统工作状态稳定,并延长机组的使用寿命。 1 奥星北京制造中心洁净厂房空调机组现状 北京奥星恒迅包装科技有限公司北京制造中心是国内医药包装材料生产领先企业,主要生产输液用膜,接口盖等,制造中心工厂位于北京雁栖经济开发区,共有1#,2#两座厂房,为ISO7级和ISO8级洁净厂房,分别由8套空调系统提供洁净空气,设计换气次数为20次/小时。空调机组由DDC进行简单控制温度和湿度。全部空调机组未配置变频

23冷却塔风机变频改造方案

冷却塔风机变频改造方案 一、变频器的工作原理和节能分析 1.1 风机的特性 风机是传送气体的机械设备,是把电动机的轴功率转变为流体的一种机械。风机电机输出的轴功率为: 图1中风机的压力与风量的关系曲线及扭矩与电机速度的关系曲线,充分说明了调节阀调节风量法与变频器控制的调节风量法的本质区别与节能效果。 (1) 电动机恒速运转,由调节阀控制风量

图1 风机的运行曲线 如图1所示,调节阀门的开启度,R会变化。关紧阀门,管道阻力就增大。 管道阻力由R1变到R2,风机的工作点由A点移到B点。 在风量从Q1减少到Q4的同时,风压却从H1上升到H5,此时电机轴的功率从P1变化到P2。 (2) 变频器调节电机的速度来控制风量 当风量由Q1变化到Q4时,便出现图上虚线所示的特性。达到Q4、H4所需的电机轴功率为P3,显然P2大于P3,其差值P2-P3就是电机调速控制所节约的功率。 二、冷却塔系统变频改造过程 2.1 冷冻机组冷却循环水系统介绍: 冷冻机组的冷却循环水系统如图2所示。冷冻机组的冷却循环水系统主要由冷冻机组、冷却水泵、冷却塔组成。冷却水经冷却水泵加压后,送入冷冻机组的冷凝器,届时,由冷却水吸收制冷剂蒸气的热量,使制冷剂冷却、冷凝。冷却水带走制冷剂热

量后,被送入冷却塔,经布水器,通过冷却塔风机降温,降温后的冷却水通过出水管,流入冷却水泵,经加压后再送入冷冻机组的冷凝器。 图2 冷冻机组冷却循环水系统图 2.2 冷却塔变频节能改造原理 图3 冷却塔变频改造示意图 三、变频器选择

由于风机负载为平方转矩类负载,因此变频器应选择V/F控制型通用变频器,日锋变频器为优化电压空间矢量型变频器,使用寿命高于同类产品,接近于零的故障率,性能价格比非常好,为变频器市场上最优越产品之一。 四、总结 冷却塔风机加装变频后具有以下优点: ·操作方便,安装简单; ·能进行无级调速,调速范围宽,精度高,适应性强。 ·节能效果非常明显; ·由于采用了变频控制,随着转速的下降,风压、风量也随之下降,使得冷却水的散失也下降,节约了水量。 ·由于用水量下降,水的硬度指标上升减慢,使得水处理的用药量减少; ·由于转速下降,减少了减速箱的磨损,延长了减速箱的寿命; 总之,冷却塔变频器控制系统的使用,使得厂房调温系统可靠性提高,安全性好,具有明显的节电效果。 冷却塔是冷冻机组的冷却水最主要的热交换设备之一,它主要靠冷却塔风机对冷却水降温,风机过去是靠交流接触器直接启动控制,风机的转速是恒定的,不能调速,因此,风机的风量也是恒定的,不能调节。为了使冷冻机组进口冷却水温度保持在某个温度段之间,我们在冷却水泵的出口,即冷冻机组的冷却水进口管道上安装一个温度传感器,采集冷却水温度,通过给出一路模拟信号给变频器,经变频器自身的PID进行调节如图3所示,变频器给出适当的电压和频率给冷却塔电机调节冷却塔风机转速

扶梯变频节能改造方案

扶梯变频节能改造方案

目录 一、扶梯变频节能技术简介 二、扶梯变频改造方案 三、节能计算 四、适用标准 五、改造费用 六、改造工期

扶梯变频节能技术简介 一. 自动扶梯(人行道)控制柜对电机的控制方式分VVVF 变频节能控制和Y-△控制。 其中VVVF 变频节能控制又分“变频非自启动节能”和“变频自启动节能” 两种方式;而当变频驱动回路或光电检测回路发生故障的时候,还可通过“紧急备用运行功能”选择开关(选配功能)让设备切换到Y-△常规控制方式。 (1)VVVF 变频的控制的节能方式 通过增加变频器和乘客检测装置来实现节能。 二. 变频非自启动节能 1. 功能描述通过增加变频器来控制扶梯运行的速度,当梯上有乘客时,扶梯以高速运行 (例如额定速度),提高客流量,当光电检测探头在一段时间内没有检测到乘客通过时,扶梯开始减速转为低速运行(例如0.1m/s,参数可调),此时一直处于待机运行中,即为非自启动节能。 运行状态描述:变频控制,无人时低速,有人时高速,时序图如下:高速运行时间记为TQ,可设置,设置方式根据所用控制器的不同而定(现有PLC 和微机控制器两种),具体时间根据梯的提升高度和速度而定。 运行步骤示意如下: ①当扶梯上电停止等待,有方向(比如上行)开始运行时,此时扶梯以低速开始运行进 入待机等待。 ②下机房乘客检测装置检测是否有人通过,当有人通过时,控制器内部的高速运行时间 计数器(记为TC)清零,此时扶梯开始缓慢加速至高速运行。 ③ 高速运行时间计数器(记为TC)开始计数,当TC

变频技术在加热炉鼓风机应用的节能效果分析

变频技术在加热炉鼓风机应用的节能效果分析 摘要:针对板材厂中板线3#加热炉鼓风机传统风量控制方法的缺点,结合变频 调速控制方法的理论和特点, 并通过具体实例对变频调速技术运用3#加热炉鼓风 机时的节能状况进行详细分析和计算,总结出了节能效果和推广该技术的意义。 关键词:中板加热炉鼓风机变频器效果分析 引言 板材厂中板线3#加热炉年出钢总量占总产量的80%以上。由于处于高炉煤 气管网的末端,煤气热值及压力都波动都很大,生产负荷变化也较大,造成鼓风 机供风量和风压也跟着大幅的波动,给鼓风机和引风机的正常运行和加热炉最优 控制带来了较大的影响,3#加热炉现有两台鼓风机,一台是低压风机,供风量无 法满足生产要求很少使用,另一台为高压风机。引风机两台,分别是空气侧引风 机和煤气侧引风机组成,鼓风机、引风机的调节都是通过调节风管上的调节阀进 行调节,由于高压鼓风机转速高过低压鼓风机许多,所以炉子的风压、风量出现 富余,风压、风量的大幅波动严重影响炉内空煤气混合状况,增加了氧化烧损。 系统存在的主要问题有:(1)无法随时动态跟踪工艺进行风量调节以满足最佳工艺的要求,同时在生产过程中引风机、鼓风机风管上的风阀开度仅开到40%-70%,造成不必要的电能消耗。(2)由于供给的助燃风量过剩,导致钢坯氧化烧 损较高,带走的热量过多造成不必要的能源消耗和金属消耗。(3)在生产操作过程 中如果进风口风门开度调节不当,在小风量时很容易产生鼓风机共振,严重影响 设备安全运行。 一、变频节能技术原理分析 从本质上对变频节能技术进行分析的话,就是利用有效输出电压的调节,来 合理的控制风机的实际功率,实现对转速的合理调节,进而达到对风量的调整。 将变频技术应用到风机中,风口的挡板就可以不再利用,处于完全打开的状态就 可以,这样就可以利用变频技术,对风量的输出进行合理调整了。风机转速一般 按照以下公式可以得出: n=(1-s)n0 n0=60f/p 其中n代表着实际转速,n0代表理论转速,s代表转差率,f代表电机的运行频率(60是60s),p代表着电机极对数。从这个公式可以看出:在转差率 s忽略不 计的情况下(s=0-0.05),电机的实际转速n=60f/p,也就是说n与f是存在正比关 系的,当n的值增加时,f的值就也会增加;当f值减少时,控制功率也必然会 减少,因此对f值进行合理的控制和调整,就可以实现对电机转速n的调节。 二、系统控制 将备用鼓风机改为变频控制,变频器选用400Kw的G130西门子变频器柜控制。既满足了助燃风量的要求,同时随时动态跟踪工艺要求进行风量调节,实现 了最佳工艺要求。引风机采用了在引风机软启动控制柜和1#、2#炉鼓风机变频控制柜之间加装转换控制柜,利用1#、2#炉变频风机控制柜控制引风机,既降低了成本投入也满足了生产要求。另外采用变频控制降低了不仅电能的消耗,同时减 少了氧化烧损,提高了产品的质量。人机界面友好,操作简单。风压控制采用变 频器,设定为固定风压时,根据流量的需求变化自动调节频率,极大的较少了高 压风机的操作强度。风压系统具有自动手动两种控制模式,增加了系统的可靠性,控制精度高。

风机变频调速节能改造的分析及计算

风机变频调速节能改造的分析及计算 张恒谢国政张黎海 (昆明电器科学研究所,云南昆明 650221) 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理,介绍了针对阀门及液力耦合器调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算 一、 引言 在工业生产、发电、居民供暖(热电厂)和产品加工制造业中,风机水泵类设备应用范围广泛。其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能量是困难的,这在一定程度上影响了变频调速节能改造的实施。

二、 变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!” 变频器本身不是发电机。在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。 叶片式风机水泵的负载特性属于平方转矩型,即负载的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量 (Q)与转速(n)的一次方成正比;扬程(压力)H 与转速的二次方成正比;轴功率 (P)则与转速的三次方成正比。即: ''n n Q Q = ; 2''(n n H H = 2''(n n p p = ; 3''(n n P P = 当风机、水泵的转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。因管路阻力曲线不随转速变化而变化,故当流量由Q1变至Q2时,运行工况点将由A 点变至C 点。 图1风机流量、压力特性

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

水泵深度变频节能改造分析

水泵深度变频节能改造分析 发表时间:2018-03-20T11:41:12.230Z 来源:《电力设备》2017年第29期作者:刘辉 [导读] 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。 (安徽晋煤中能化工股份有限公司安徽阜阳 236400) 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。本文以凝结水变频控制系统出发,并结合实际生产数据分析,提出凝结水泵变频调节系统节能改造的相关建议。 关键词:凝结水泵;变频运行;节能效果 1凝结水系统概述 凝结水泵是火电厂的重要辅机,其耗能在厂用电中占一定的比重。凝结水泵工频方式运行时耗能高、节流损失大、压力高,使凝结水系统的整体效率偏低。目前,大多数火电厂都对凝结水泵进行了变频改造,多采用“变频一拖一”“变频一拖二”运行方式,一般可节电30%左右,且设备运行可靠,可明显提高电厂的技术和经济指标,所以凝结水泵变频改造技术己成为电力行业广泛推广的节能项目之一。本文以华能营口热电厂凝结水泵的深度变频改造为例,分析其节能效果。 某厂两台330MW机组,每台机组配备3台50%容量的凝结水泵,2台运行1台备用,其中A泵采用“变频一拖一”控制,B,C泵采用“变频一拖二”控制,同时给水管道上配置了除氧器给水主调节阀和给水辅调节阀。凝结水泵采用抽芯式结构,部件可拆装更换,泵壳设计成全真空型。凝结水泵深度变频改造的同时也给凝结水系统的控制带来一系列的新问题: (1)改造后,水泵的保护、联锁及凝结水系统相关调节阀的控制回路都需要做改动和优化,保证在各种异常工况下泵及相关调节阀的正确动作,来维持凝结水位的稳定运行; (2)改造后,泵由变频控制,原有调节阀调节系统压力难以满足原有凝结水用户对压力的需求,所以必须根据机组的工况设定合适的压力,来满足整个系统安全性和经济性的要求。 2凝泵变频控制系统的改进 2.1凝泵变颓控制系统的改进 改造之前,低负荷运行时,一台凝结水泵运行,用再循环门的开度和加减补水量的方式来控制凝汽器水位;高负荷时,两台凝结水泵运行,用调整再循环门的开度和加减补水量的方式来控制凝汽器水位。 改造后,整个除氧器水位自动控制系统设计为典型的两段式控制,即两套控制回路,其中一套为凝泵出口母管压力控制回路,靠凝结水泵变频控制,其中母管压力设定值为机组负荷的折线函数;另一套为除氧器水位控制回路,由除氧器主、辅调节阀控制,并且控制方式采用了单冲量和三冲量。当凝结水流量大于350t/h时,凝结水泵需提高转速以满足系统需要,此时凝泵变频器投入水位自动控制,调节门自动切换为凝泵出口压力控制。由于除氧器容积较大,作为被调量的除氧器水位存在较大惯性,负荷增减过程中给水流量变化较大时有可能出现“虚假水位”现象,使得给水流量和凝结水流量的不平衡增大,延长了调节时间,故凝泵变频器调节除氧器水位设计三冲量控制回路以解决这一问题,主调节器调节除氧器水位,副调节器调节除氧器入口凝结水流量,同时将总给水流量作为副调节器的前馈信号。当凝结水流量发生扰动时,通过内回路的作用可以迅速消除:当给水流量发生扰动时,通过内回路的作用可以使凝结水流量迅速跟踪给水流量的变化。 2.2报泵变颇独制系统改进后调节手段 (1)机组启机自第一台凝结水泵启动至150MW负荷时,凝泵变频不得投自动,手动调整凝泵变频保持凝泵出口压力在1.OMPa以上,此时除氧器水位由除氧器水位主调阀投自动(除氧器辅调阀不能投自动)或手动调整保持。 (2)机组负荷大于150MW且凝结水流量大于350 tlh,两台凝结水泵均变频启动运行正常,进入凝汽器疏水扩容器的疏水门全部关闭后可考虑将凝泵变频器投入自动运行。 (3)凝泵变频器投入自动运行前,应检查凝泵出口压力给定值与凝泵出口实际压力基本相同,但不得小于0.70 MPao (4)凝泵变频器投入自动运行后应检查凝泵出口压力和除氧器水位平稳,无较大波动,除氧器水位主调阀和凝泵变频器自动调整正常,两台汽泵密封水压差在正常范围。 (5)机组负荷大于170MW,除氧器水位主调阀接近全开后,手动将除氧器水位辅调阀逐渐开启,以满足公司节能要求。 (6)机组正常运行凝泵定期轮换应在负荷低于250MW以下进行。先解除备用泵联锁,缓慢转移出力后停运一台运行泵,再变频启动备用泵,操作过程中注意保持凝泵出口压力稳定。 此次改造方案实施前凝结水泵虽采取变频运行,但出口压力不能降低很多,变频深度受到影响,正常运行除氧器水位调整门开度未能全部打开,存在节流现象,凝泵变频的节电优势没有很好发挥。为充分发挥凝泵变频运行的节能、节电潜力,为了充分体现价值工程,汽机、热工专业技术人员经过多次试验,并对数据进行分析,提出除氧器水位由凝结水泵变频控制的改造方案,经多专业密切配合,进行了现场实施。 3凝泵深度变频运行节能效果 制约凝结水泵变频改造节能效果的最主要因素是凝结水泵出口压力允许最低值,其是由众多凝结水用户共同决定的。最常见的凝结水用户为给水密封水、低压旁路减温水和低压缸轴封减温水等。 3.1报泵深度变翻运行效果 图1为机组负荷与凝泵出口压力关系曲线,根据试验结果看出,#1,#2机凝结水泵变频调节除氧器水位改造方案实施后,凝泵出口压力由最低的的1.2MPa降低至0.75MPa,由最高的2.1MPa降低至1.7MPa o

风机变频调速器

风机型变频调速器选型 产品特点: ■针对风机节能控制设计 ■内置PID和先进的节能软件 ■高效节能,节电效果20%~60%(根据实际工况而定) ■简便管理、安全保护、实现自动化控制 ■延长风机设备寿命、保护电网稳定、保减磨损,降低故障率 ■实现软起,制动功能 更多描述: 应用行业: □罗茨风机□矿山风机□离心风机□工业风机□环境工程 阿启蒙GP400系列高性能矢量变频器采用先进的DSP控制系统,通过高精度的控制算法完成优化的无速度传感器矢量控制,有效抑制低频震荡;丰富的端子使应用更加灵活,内置输入电抗器性能更稳定,完备的电磁兼容设计适用于对使用环境要求更加苛刻的场合。此系列产品广泛应用纺织化纤、塑胶、建材、有色金属等对速度控制精度、转矩响应速度、低频输出有很高要求的场合。在风机领域已经大面积使用。 产品主要特点: ?高性能的电流矢量控制、V/f控制、转矩控制 ?丰富的外围接口 ?可扩展控制键盘 ?G/P合一 ?内置输入直流电抗器(18.5kW及以上机型) ?16段多段速控制、PID控制、摆频控制 ?提供RS485串行通讯接口,采用标准Modbus协议 ?产品符合EMC(EN61000-6-4、EN61800-3)标准规范 阿启蒙在变频领域在国内处于领导地位。 二、变频节能原理: 1. 风机运行曲线

采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H-Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开)假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到 n2,根据风机参数的比例定律,画出在转速n2风量(Q-H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率 从流体力学原理得知,风机风量与电机转速功率相关:风机的风量与风机(电机)的转速成正比,风机的风压与风机(电机)的转速的平方成正比,风机的轴功率等于风量与风压的乘积,故风机的轴功率与风机(电机)的转速的二次方成正比(即风机的轴功率与供电频率的二次方成正比):

中央空调系统变频节能改造方案

中央空调系统变频节能改造方案 目录 1中央空调变频节能方案介绍 (2) 1.1 变频节能原理 (2) 1.2 中央空调节能空间 (3) 1.2.1 设计余量 (3) 1.2.2 末端的负荷变化 (3) 1.2.3 水泵和风机定流量控制方式 (3) 2中央空调水泵变频控制 (4) 2.1 冷冻泵、冷却泵主回路设计 (4) 2.2 冷冻水泵控制电路设计 (5) 2.3 冷却水泵控制电路设计 (5) 3中央空调末端风柜变频控制 (6) 3.1 风机变频主回路设计 (6) 3.2 风柜变频控制电路设计 (6) 3.3 风柜节能改造前后比较 (7) 4节能设备选型 (8) 4.1 变频器的选用 (8) 4.1.1 科创力源变频器具备如下特点 (8) 4.2 温差控制器的选用 (8) 4.3 温度传感器的选用 (9) 5中央空调系统进行变频改造的优点 (9) 6 附件:节能改造设备配置 (10) 表一:系统改造设备统计 (10) 表二:节能控制柜配件统计 (11)

1 中央空调变频节能方案介绍 根据人人乐连锁超市深圳市学府店中央空调系统的现场勘察,数据的测量和采集,以及管理人员的系统描述和技术要求,制作了一份中央空调系统节能改造方案,该方案对中央空调系统的改造和维护很方便,成本、性价比高,具有很好的兼容性和扩展性,全方位系统优化和协调运行,实现系统节能。 1.1 变频节能原理 变频节能原理:由流体传输设备(水泵/风机)的工作原理可知:水泵/风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过(图1)可以直观的看出在流量变化时只要对转速/频率稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。 根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。 图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。 图1:风机水泵节能曲线图

一次风机变频改造及节能分析

一次风机变频改造及节能分析 摘要:介绍了某电厂一次风机的变频改造方案,给出了一套可靠的控制策略。比较了一次风机变频控制和工频控制的节能效果,阐述了变频控制技术在电厂节能降耗的效果,对降低厂用电率,提高机组运行效率有很大的意义。 关键词:一次风机;变频改造;控制策略;节能 Abstract: A certain power plant is introduced of the primary air fan frequency converter design, and design a reliable control strategy for the primary air energy-saving effect of adopting transducer fore-and-aft is compared, which has practical meaning on reducing power plant curl consumption and increasing unit running efficiency. Key words: induced draft fan; frequency converter reconstruction; control strategy; energy-saving 1引言 在火力发电厂中,一次风机是最主要的耗电设备之一,这些设备都是长期连续运行并常常处于变负荷运行状态,其节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已经被推到了能源战略的首位。 2设备概述 华电集团某电厂一期工程采用2×330MW国产亚临界、燃煤空冷抽汽凝汽式供热机组,锅炉、汽轮机均采用上海电气集团公司设备。其中锅炉型号SG-1170/,为亚临界参数汽包炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。每台锅炉配四台钢球磨煤机,一次风机为静叶可调轴流风机。 3 一次风机变频改造方案 % 主要设计原则 目前,交流调速取代其它调速及计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流调速技术是节能、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速、启动和制动性能、高效率、高功率因素和节电效果、广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。

中央空调系统变频节能改造案例分析

中央空调系统变频节能改造案例分析 一、前言 中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。 随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。 二、1、原系统简介 某酒店的中央空调系统的主要设备和控制方式:100冷吨冷气主机2台,型号为三洋溴化锂蒸汽机组,平时一备一用,高峰时两台并联运行;冷却水泵2台,扬程28米,配用功率4 5 KW,冷水泵有3台,由于经过几次调整,型号较乱,一台为扬程32米,配用功率37KW, 一台为扬程32米,配用功率55KW, 一台为扬程50米,配用功率45KW。冷却塔6台,风扇电机5.5KW,并联运行。 2、原系统的运行 某酒店是一间三星级酒店。因酒店是一个比较特殊的场所,对客人的舒适度要求比较高,且酒店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。 由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

群光广场中央空调冷冻、冷却水泵及风机节能改造方案

深圳市海利科科技开发有限公司SHENZHEN HAILIKE SCIENCE AND TECHNOLOGY EXPLOIFATION CO.,LTD. 群光(百货)广场集中空调/冷冻系统节能 及集中监控改造方案 科技创新以人为本

群光(百货)广场集中空调/冷库系统节能 及集中监控改造方案及预算 首先感谢您在百忙之中阅读我公司的节能改造方案,也感谢您给予我公司这样一次宝贵的机会,希望您能提出宝贵的建议及批评。以下是我公司对此次节能方案的概叙:根据贵公司的招标文件要求,我公司有针对性的做出了节能及集中监控改造方案,使该系统具备以下特点: ·系统配置精良,自动化程度高,便于整个系统的集中管理; ·回路、系统、特殊单元的监控功能;能快速查阅故障、数据更改等监控工作。 ·高速画面数据,OS传送及高速总线连接; ·具备保密功能; ·基于WINDOWS的全中文操作系统,并完全支持从发现故障位置,分析原因到复位为止时的整个过程; ·优化了的视窗32版本综合开序环境,具备画面转换器、文件处理、求助视窗、调试、过程管理器等等功能; 同时,我公司承诺改造后的最低节电率为20%,但依据现场的实际情况来推算改造后节电率在30%以上,以下针对各部分进行综叙: 一、监控中心工作站监控管理系统 采用韩国LS K120系列产品,内置32BIT的RISC高速图芯形片,为同类人机界面中速度最快的一种。可用标准的WINDOWS工具进行配置,使用软键、功能键或触摸控制,简化了

操作,也保证了操作的安全性;并可轻松地连接其他控制系统。即使在光线很差的情况下也有很高的对比显示和极佳的可读性,并支持中文字符集,使用户操作方便。 中央空调节能自动控制系统监控装置改造方案报价(一套)单位:元 二、冷却水泵节能自动控制系统改造方案及预算 集中空调系统冷却水泵共有七台:5台132K W、2台30K W,以及冻库系统冷却水泵共有二台:2台18.5K W。改造分别采用一台变频器拖动七台水泵和一台变频器拖动二台水泵的循环控制方式,采用温差做为控制的标准信号。 节能改造分别采用一台132K W和一台18.5KW的变频器及相应的空气开关、智能控制器、接触器、热继电器、P L C及传感器组成的控制系统,系统改造后能达到节能降耗及无人值守自动控制的目的。 该控制系统由变频回路和工频回路两部分组成: 变频回路:由一台变频器,空气开关,3个交流接触器和自动运行控制回路及信号报警回路组成变频循环运行回路。工频回路:空气开关、交

风机的变频调速节能改造的节能空间估算

风机的变频调速节能改造的分析及计算 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算一、引言 在工业生产、发电、居民供暖(热电厂)、和产品加工制造业中,风机水泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能改造的实施。本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。 二、变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提

风机变频节能改造技术方案

低压风机变频节能改造 技 术 方 案 (初稿) 编制:高龙 审核: 日期: 2012 年 12 月 25 日

目录 第一章公司简介 (2) 第二章行业背景分析 (3) 第三章系统方案 (4) 一、现场工况分析 (4) 二、设备选型 (5) 三、方案论述 (7) 第四章节能直接效益分析 (8) 第五章使用变频器的间接效益 (12) 第六章 GD200系列变频器简介 (13) 第七章质量保证及服务承诺 (14)

第一章公司简介 深圳市英威腾电气股份有限公司,立足电气传动、工业控制领域,为全球用户提供专业化产品和服务,2010年在深交所A股上市,股票代码:002334。现设有国内办事处30多个,海外办事处2个,拥有海内外经销合作伙伴上百家,用户遍布全球50多个国家和地区。 目前英威腾主要产品有高、中、低压通用及各行业专用变频器、交流伺服系统、制动单元、能量回馈单元等。产品在市政、建材、塑胶、油田、机械、化工、冶金、纺织、印刷、机床、矿山等行业广泛应用。 英威腾是国家级高新技术企业,拥有深圳市唯一的“变频器工程技术研究开发中心”。 英威腾变频器产品包括低压CHA/CHV/CHE/CHF/GD各行业专用系列、中压660V/1140V系列、高压CHH (3KV/6KV/10KV)系列等,功率范围涵盖0.4~8000kW,满足不同行业不同场合的各种变频控制应用需求。 成熟矢量控制技术、各行业专用变频控制技术的掌握以及国际领先四象限控制技术的突破使英威腾的发展持续领先,成为中国变频器行业的领导者。高性能交流伺服系统的开发与成功应用标志着英威腾向运动控制领域的拓展与延伸。 英威腾大楼研发部门 测试部门生产车间

相关文档
最新文档