球头立铣刀的参数化设计及有限元讲解

球头立铣刀的参数化设计及有限元讲解
球头立铣刀的参数化设计及有限元讲解

球头立铣刀的参数化设计及有限元分析

摘要:本文在国内外关于球头立铣刀的设计、分析等方面研究的基础上,应用Pro/ENGINEER技术和相关数学理论,研究了球头立铣刀的整体建模,以及参数化系统的建立,并从球头立铣刀的几何模型着手,建立了一个适用于球头立铣刀铣削的三维铣削力模型,应用软件对球头立铣刀进行了静力分析和模态分析。本文的主要研究内容为:

从球头立铣刀的几何模型着手,将球头立铣刀刀刃进行离散化处理,利用常规铣削力经验公式,建立一个适用于球头立铣刀的三维铣削力模型。并利用ANSYS 有限元软件对球头立铣刀进行静力分析,模态分析。校核所设计铣刀的应力,并将得到的固有频率与立铣刀在外力作用下的振动频率相比较,避免发生共振现象。本文的研究成果将大大改善高精度数控球头立铣刀的设计方法,缩短刀具的设计周期,从而快速响应市场的需求。同时本文开发的球头立铣刀参数化设计系统也为其他类似的刀具设计的研究提供参考。

关键词:球头立铣刀;切削力模型;有限元分析

第一章绪论

在当今制造业的快速发展中,切削加工起着十分重要的作用。现代切削刀具在推进制造技术进步和提高企业加工效率、降低制造成本等方面发挥了重要的作用[1]。其中,球头立铣刀作为一种高性能的自由曲面加工刀具,其性能和品质的优劣对于切削加工的精度、效率和产品品质都有直接而重要的影响。球头立铣刀刀具与数控机床或加工中心配合可以实现高效率、高质量的加工,在模具、汽车、航空航天、机械电子等制造领域应用广泛。

现代刀具设计、制造技术是机械制造与设计的重要技术之一。它已逐步发展成集数学理论、计算机应用技术、现代设计方法等为一体的高新技术产业[2]。随着数控加工技术的不断精进,加工对象也日趋复杂,对于加工复杂曲面的特种回转面类型的刀具如球头立铣刀等高精度、高性能刀具的需求也与日俱增。

国外较我国在刀具方面的研究起步早、投入成本高,在刀具设计与制造方面储备了大量的经验和技术。中国市场在高精度数控刀具领域,起步比较晚,目前总的来说技术的水平还比较低。为了缩小与发达国家的差距,国内一些企业购进国外先进设备,直接购进国外成品毛坯,自主生产和制造。此种方式是拉近与国外优质刀具差距的一种方式。但是,这种方式也只能是短期效益,产品的核心技术和高附加值仍然被设备提供方和毛坯供货方垄断。因此,利用引进的新技术,进一步加强研究与应用,掌握现代产品制造的先进技术,使技术理论化,是振兴我国刀具行业主要的路径之一[3][4]。在对球头立铣刀刀具方面,加强对球头立铣刀的设计与制造理论的研究,开发出属于自己的刀具设计软件,是实现此类刀具国产化的重要途径。

1.1 球头立铣刀的特点及种类

球头立铣刀属于像其他端面立铣刀、旋转锉等外形复杂的回转面类型的刀具。它在精加工刀具中占有很大的比例,被广泛用于航空、汽车、船舶制造工业及铸造、塑料成型、医疗器材或工艺美术品加工等多种行业。它也是复杂三维曲面精加工中所用到的重要刀具之一,其独特的刃形形、螺旋型使得球头立铣刀的加工精度高,刀具寿命长、并且可以轴向进刀,它满足了对复杂空间曲面自动加工的需要。

球头立铣刀的制造一般都是采用磨制加工,其螺旋沟槽也有通过轧制成形的。它的形状和性能特点决定了其成形方法与通常的按形面精确去除金属的铣削加工的区别。同时,它的几何建模和加工成形理论也有自己的特点。由于球头立铣刀的尺寸比较小,刃型复杂,且需要在走刀中由砂轮直接刃磨出刀具的齿槽,并保证加工后的刀刃形状符合要求,即球头刀刃必须在球面上,同时前刀面和后刀面也要达到一定的要求,这必然会使球头立铣刀的成形过程和加工方法都比较复杂,

设计与制造也比较困难。所以目前这种刀具在国内主要依靠进口或者通过进口昂贵的加工设备来进行制造与生产。

球头立铣刀属于模具铣刀,它可分为圆柱形球头立铣刀和圆锥形球头立铣刀两种。圆柱形球头立铣刀由球头与圆柱两部分组成,而锥形球头立铣刀由球头、圆锥与圆柱三部分组成。它们的结构特点是球头上布满切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。球头立铣刀工作部分用高速钢或硬质合金制造。球头立铣刀根据其刀刃曲线形状的不同,又可分为直线刃、螺旋形刃等[5-7]。直线刃是早期的球头立铣刀形状,其特点是沿刀具轴向看,球头部分的切削刃为直线。这种铣刀在切削过程中排屑不畅、易形成积屑瘤、影响表面光洁度及精度、磨损快。目前己很少使用这种刃形的球头立铣刀,随着刀具设计与制造技术的不断提高,刀刃形状已逐渐改进成螺旋形的曲线。其中等螺旋角螺旋形刀刃由于刃形为形,使得切削的均匀性有很大的提高,改善了切削条件,从而提高了加工质量和延长了刀具的寿命。但是,由于等螺旋角刀刃曲线无法达到球头的顶部,因此它必须在靠近球头的顶部处利用其他刃口曲线来代替,这样必然使得刃口曲线变得复杂化,也影响了基于该刃口曲线的球头立铣刀前刀面和后刀面的设计与制造。

1.2 球头立铣刀的国内外研究现状

早期的球头立铣刀的球头部分的切削刃为直线,即直线刃球头立铣刀。随后为改善直线刃球头立铣刀的性能,日本的研究者研制出了切削刃为曲线的球头铣刀,它是以圆锥面为前后刀面,以圆锥与球面的交线为切削刃。但由于其自身结构的局限性,它不能在任意方向进刀。基于这种情况,国外的研究者又设计出了螺旋形形的可以沿任意方向进刀的球头立铣刀,它实现了传统结构的突破,具有较好的性能。随后,国内外的研究机构与学者开始对螺旋形的球头立铣刀的数学模型与切削力模型进行了较为广泛的研究。

Y.Altina, S.Engin等人通过定义刃口曲线与铣刀轴线的夹角为球头立铣刀刃口曲线的螺旋角的方式来进行刀刃的设计[8-10]。同时他们提出了如果螺旋角为定值时,在球头立铣刀设计与制造时会产生的问题,并对模型进行了优化或重建[11]。S.K.Kang, K.F.Ehman等人通过设计沟槽截形来研究球头立铣刀的螺旋沟槽的模型[12]。Yucesan[13][14]等基于微分几何理论研究了球头刀刃的几何模型,给出了刀刃微元前、后刀面与切削力相关的各几何向量,局部切削力模型被表示为前、后刀面上正压力与摩擦力的矢量和,建立的表达式系数可根据试验数据用最小二乘法求得。

国内也对球头立铣刀进行了研究。国内一些高校如湖南大学、佳木斯大学、哈尔滨工业大学等不少的学者对球头立铣刀的模型设计与磨削加工提出了很多有价值的观点。国内的研究包括有以下几个方面:

(1)球头立铣刀形状的设计与模型建立。包括刀刃曲线建模、前后刀面几何模

型、铣刀沟槽螺旋面建模等。文献[15][16]对铣刀槽型端截形、法截形设计进行了比较完整的分析,得到了典型的刀槽截形模型。文献[17][18]讨论了回转面刀具上的等螺旋角和等导程刀刃曲线的设计计算方法,该方法也适用于球头立铣刀。导出了球头螺旋线方程式,并解决了球头立铣刀顶部平面刀刃曲线与螺旋刃的光滑连接问题。文献[19]提出了一种运动关系简明、刃磨加工调整参数较少的球头立铣刀前刀面加工数学模型。建立了形单刃球头立铣刀内、外前刀面及螺旋、平面后刀面的数学模型。

(2)球头立铣刀的切削力模型及有限元分析的研究。基于切削力与切屑负载之同的经验关系,通过对球头铣刀的微分化方法,建立了球头铣刀基本切削力模型[20]。采用微分化方法建立了球头铣刀切削力数学模型。通过对球头铣刀铣削微元切削层参数的描述,分析了切削层厚度对球头铣刀主切削力的影响[21]。在考虑刀具的瞬时变形和刀具变形的再生反馈对切削厚度的影响的基础上,建立了包含主轴偏心、刀具磨损、刀具振动和工件振动的球头铣刀动力学模型。通过建立刀具刃口曲线的空间模型,然后从理论出发分析离散单元的铣削力的变化,最终建立了一个适用于球头铣刀铣削的三维铣削力模型[22]。在的广义螺旋铣刀几何模型基础上,建立了小直径螺旋球头铣刀的刀具前刀面几何模型和切削力模型,通过将特征概念引入数控加工过程,提出了球头刀加工时的“爬坡”与“下坡”等加工特征的切削力模型求解方法。

从球头立铣刀相关的研究可以看出,尽管国内外不少学者对其进行了不少研究,但研究结果过于零散、缺乏系统性。部分文献仅研究球头立铣刀的刃口曲线,或前刀面,或后刀面,或简单的沟槽构造的设计,另一部分文献只对模型的一小部分建模与分析,并未做整个设计模型与分析。对球头立铣刀的研究,目前尚未形成成熟的、统一的球头刀具的刃形设计理论,在一些刃形设计问题上甚至各执一词。在实际运用中,也存在各种各样的刀刃曲线,这些曲线往往只是凭经验或根据加工设备的加工能力来设计的,缺乏系统的、有效的理论分析和指导。

球头立铣刀模型的设计和分析仍然是国内待解决的技术问题。本文在国内外关于球头立铣刀的设计、分析等方面研究的基础上,应用技术和相关数学理论,研究了球头立铣刀的整体建模,以及参数化系统的建立,并从球头立铣刀的几何模型着手,建立了一个适用于球头立铣刀铣削的三维铣削力模型,应用软件对球头立铣刀进行有限元分析。从而建立比较完善的球头立铣刀的设计、分析理论。

1.3 课题的意义和主要研究内容

本文选取了“球头立铣刀参数化设计及有限元分析”作为研究课题。本课题以解决球头立铣刀设计中的参数化建模和铣削力分析方面的问题为目的,其主要意义在于:

1.建立球头立铣刀的完整的数学模型,使得球头立铣刀的刃形设计理论更加系统化。

2.根据球头立铣刀的数学模型及相应的。技术对球头立铣刀进行参数化建模,从而缩短刀具的设计周期,快速响应市场的需求。

3.建立球头立铣刀的切削力模型,实现球头立铣刀切削力的预报,并对球头立铣刀的设计进行校核,使设计出来的产品能适应市场的需求。

在国内外关于球头立铣刀的设计、分析等方面研究的基础上,以计算机软件和相关数学、力学理论为手段,对球头立铣刀的参数化系统和有限元分析进行研究。论文的主要研究内容和技术要点包括以下几个方面:

1.通过对传统等螺旋角刃口曲线的模型进行分析,建立了球头立铣刀柱面、球面上等导程螺旋线的数学模型。并联系实际加工过程,计算出球头立铣刀退刀槽扫描曲线以及球头部分前刀面成形曲线的数学模型。

2.以球头立铣刀的建模曲线模型为基础,在上建立了球头立铣刀的三维参数化模型。并利用对工系统进行二次开发,建立了球头立铣刀参数化系统。

3.从球头立铣刀的几何模型着手,将球头立铣刀刀刃进行离散化处理,利用常规铣削力经验公式,建立一个适用于球头立铣刀的三维铣削力模型。并利用ANSYS有限元软件对球头立铣刀进行静力分析,模态分析。从而校核所设计铣刀的应力,并将得到的固有频率与立铣刀在外力作用下的振动频率相比较,从而避免发生共振现象。

第二章球头立铣刀切削力模型及有限元分析

铣削加工时的切削力是一个变化的量,因为铣刀是多齿刀具,而整个切削过程为周期性断续切削。切削力的变化取决于刀齿的切入角的变化,因为而切入角的变化影响切削深度的变化,最终影响切削力的变化。正是由于切削过程的复杂性,少月影响它的因索又很多,因此目汀尚未有简便的计算切削力'内理沦公式,一般都是通过大量实验,由测力仪测得切削力后,根据切削条件然后进行数据处理,然后得出经验的计算公式。本文建立〔球头立铣刀切肖力模型是在前`人研究的华础上,把球头立铣刀的切削刃看做一系列微元,并假设每一个切削刃元足直线的斜角切削过程的切削力模型。

2.1 球头立铣刀切削力模型的建立

球头立铣刀加上复杂曲面时切削力模型建立的基本策略是将刀具切削刃沿轴向等间隔分层离散成许多很小的切削微元,离散后的每个微元层可近似为一个简单的斜角切削的圆柱铣刀,其微元图如图所示,其坐标系O1x1y1z1为固定坐标系,R为球头立铣刀半径,φ为刀具转角,dz为微元层的厚度,β是刀刃点在刀具旋转坐标系O2x2y2z2的相位角,θ为离散刀刃点与y1轴正方向的夹角。作用在

刀刃微元层上的空间切削力可以分解成微径向力dFr 、微轴向力dFt ,求得所有微元层的切削力,最后求和即为球头立铣刀的切削力。

图2.1 球头立铣刀离散分层模型

由图2.1 2.2知,由于离散后的每个微元层可近似为一个斜角切削车刀,刀刃上的任何微元层所产生的三个方向的微元铣削力都可以用车削的经验公式来表示。

图2.2 球头立铣刀单层切削模型

瞬时切削力合力模型

瞬时切削合力是指在刀具处于转角位置中时,所有参与切削的切削微元受到的切削力矢量和。某一时刻给定刀具转角位置Φ,作用在刀具上的瞬时切削合力在x,y 和z 方向的分量F x (Φ),F y (Φ),F z (Φ)可以表示为。

其中N i 是指刀具刀刃数,N j 是指第j 个刀刃上参与切削的切削微元个数。、

每转平均切削力模型

每转平均切削力是切削力特征的一个非常重要的方面,它反映了刀具旋转一周过程中(刀具转角Φ从0变化到2π)所有切削微元切削力作用的综合结果。 根据每转平均切削力的定义,X 、Y 、Z 方向的平均切削力可表示为:

2.2 球头立铣刀有限元分析

2.2.1 球头立铣刀的静态分析

2.2.1.1 球头立铣刀模型单元类型的确定

单元类型的选择将影响到该模型的网格能否成功划分。根据球头立铣刀的实体模型,可近似的将球头立铣刀的几何模型作为回转轴类零件来对待,由于采用六面体单元相对比较难,一般采用四面体单元来生成有限元模型。本文中采用

“SOLID45”单元。SOLID45是三维8节点四面体结构实体单元,在保证精度的同时允许使用不规则的形状,SOLID45有相容的位移形状,适用于曲面边界的建模。每个节点有三个自由度沿节点坐标X,Y,Z 方向的平动。SOLID45有塑性、蠕变、应力强化、大变形和大应变的功能。

2.2.1.2 球头立铣刀模型材料属性的确定

由于球头立铣刀切削是要承受摩擦、冲击和振动等作用,所以球头立铣刀材料应具备高的硬度和耐磨性、高的强度和韧性、耐热性、工艺性能和经济性。本分

析中,球头立铣刀的材料选用硬质合金(YT15),材料的性能指标如表所示。

2.2.1.3 球头立铣刀模型材料属性的确定

通过软件,在球头立铣刀的实体模型上确定单元类型、材料属性之后,就可以对球头立铣刀进行网格划分。软件提供了多种单元划分和各种网格划分的方法。在本分析中,采用工对球头立铣刀进行网格划分,得到的球头立铣刀的网格图

2.2.1.4位移边界条件的确定

所谓位移边界条件,实际上是球头立铣刀所受的约束条件,它也是球头立铣刀所受的一类负载。有限元分析是以弹性力学为基础的,求解弹性力学问题必须满足边界条件,从数学方面看,这是保证结构刚度方程的唯一解所必需的从物理方面看,是给结构施加足够的约束,以消除结构的刚体位移。

根据球头立铣刀装夹的实际情况来约束它的自由度,即沿轴向方向长度为

40mm 的表面约束切向、径向、轴向长度为二的位移均为零,而旋转自由度:M x 、M r 均为零,M z 是球头立铣刀的旋转方向,是唯一没有固定的约束,但由于转速恒定,

所以也可以认为M z 是受约束的,即球头立铣刀的约束条件为全约束。在球头立铣

刀的网格划上确定位移边界条件,得到球头认铣刀的有限元模型,如图所示。

2.2.1.5载荷的施加

网格划分完成并在有限元模型上确定位移边界条件之后,就可以在有限儿模型上施加载荷了,假定球头立铣刀用来铣削键槽,则它的两个刃都参与切削。于是,切削力被平均分配在两个刃上,以均布载荷的形式将平均铣削力F x 、F y 、F z 加在球头立铣刀的主切削刃上。

2.2.1.6 静态分析的结果

球头立铣刀承载的应力及其变形对球头立铣刀在加工过程中的稳定胜、球头立铣刀的磨损、破损有很大的影响。按照前面的加载方式在球头立铣刀的有限元模型上施加载荷和约束条件,进行求解。

2.2.2球头立铣刀的模态分析

振动现象是机械结构系统常常遇到的问题。大部分结构系统都不希望有振动发生,振动会造成结构疲劳破坏。然而结构本身具有某种程度的刚性,固其固有振动频率及模态是机械结构设计必须了解的特性之一,进而避免激振频率和结构固有频率相同产生共振现象。

模态分析用于确定设计中的结构或部件振动特性,同事也是其他更详细的动力学分析的起点,例如瞬态动力学分析、谐响应分析、谱分析,故模态分析的方法及流程是非常重要的。

模态分析常分实验模态分析和计算模态分析。实验模态分析在结构生产以后才能执行,对于球头立铣刀来说,利用实验模态分析法求解固有特性需要进行大量实验,实验周期长,投资大计算模态分析可以在机械制造之前,也可以在机械制造之后进行,当然在有实验条件的情况下,把两种模态分析结合起来,会取得更好的结果。有限元分析法是计算模态分析常用的方法。

ANSYS模态分析过程由以下几个步骤组成:

1.设置相关选项

模态分析是一个线性分析,尽可能选用线性单元。任何非线性选项如塑性和接触(间隙)单元即使定义了也将被忽略,并且在材料特性中一定要定义密度,因为要用到质量矩阵。

2.建立模型

在模态分析中,唯一有效的载荷是零位移约束,如果在某个自由度处指定了一

个非零位移约束,ANSYS软件将以零位移约束取代在该自由度处的设置。

3.选取求解方法,获得解答

如果有外力约束,则是预应力问题。声明模态分析方法,获得解答。求解器的输入内容主要是固有频率,由于振型还没有被写到数据库或结果文件中,因此还不能对结果进行后处理。要进行后处理,还需要对模态进行扩展。

4.扩展模态,观察结果

将获得的模态扩展到整个结构,以便检查结果或用于其它分析,实际上“扩展”这个词指将振型写入结果文件。模态扩展的结果写到结构分析的结果文件中,主要的结果数据有固有频率、已扩展的振型、相对的应力和力的分布等。

球头立铣刀的模态分析主要是计算其固有频率和振型。其中建模,选择单元类型,设定单元尺寸,网格划分及约束过程与静态分析基本相同,在此不在赘述。在模态分析中唯一有效的负载是零位移约束,然后开始求解计算。输出

0-100000Hz范围的二阶次以及相对应的固有频率和振型。

最终输出的球头立铣刀有限元模态分析结果为:一阶固有频率为4611Hz,二阶固有频率为5461I-Iz,三阶固有频率为 18024Hz,四阶固有频率为21106Hz。可以看出,一阶和二阶固有频率很接近,是模态密集区;三阶和四阶固有频率相差较大;二阶和三阶固有频率相差很大,为模态稀疏区。

2.3 本章小结

本章首先从球头立铣刀的几何模型着手,将球头立铣刀刀刃进行离散化处理,把每一个离散单元的铣削视为斜角切削,利用车削的经验公式,建立了一个适用于球头立铣刀铣削的三维铣削力模型,并计算出球头立铣刀的三向平均铣削力。然后将'工建立的球头立铣刀实体模型导入软件,进行球头立铣刀的静力分析和模态分析,校核所设计铣刀的应力,并将得到的固有频率与立铣刀在外力作用下的振动频率相比较,从而避免发生共振现象。

总结和展望

本文在国内外关于球头立铣刀的设计、分析等方面研究的基础上,对球头立铣刀的整体建模,参数化系统的开发,以及有限元分析进行了深入的研究。根据前面章节的讨论,得到以下几个方面的结论:

1.通过对传统等螺旋角刃口曲线的模型进行分析,建立了球头立铣刀柱面、球面上等导程螺旋线的数学模型。并联系实际加工过程,计算出球头立铣刀退刀槽扫描曲线以及球头部分前刀面成形曲线的数学模型。

2.根据球头立铣刀刃口曲线,退刀槽扫描曲线,以及前刀面的刃底曲线的数学模型,应用可变截面扫描和边界混合等工具分别绘制了周刃沟槽、退刀槽、后刀面、球头部分的主沟槽和副沟槽等曲面,然后应用曲面的合并、阵列以及实体化

的方法,在上建立了球头立铣刀的三维参数化模型。

3.从球头立铣刀的几何模型着手,将球头立铣刀刀刃进行离散化处理,利用常

规铣削力经验公式,建立一个适用于球头立铣刀的三维铣削力模型。然后通过和之间的数据接口模块,将由建立的三维模型导入软件中,并利用有限元软件对球

头立铣刀进行静力分析,模态分析。校核所设计铣刀的应力,并将得到的固有频率与立铣刀在外力作用下的振动频率相比较,避免发生共振现象。

参考文献

[1] 陈逢军.基于五轴数控磨床加工的球头立铣刀数学模型及仿真研究[D].长沙: 湖南大

学,2006

[2] 姚南殉,王志杰.数学在刀具设计中的应用[M].北京:科学出版社,1998.

[3] 沈壮行.我国高效切削加工技术的发展落后于机械工业需要的深层次原因及解决对策

[J].工具技术,2006,40(4):38.

[4] 沈壮行.中国工具工业发展现状、问题浅析及改进建议[LJl.机械工程师2008,3:8一11.

[5] 韩成顺.特种回转面螺旋铣刀的非数控制造模型研究[M].哈尔滨哈尔滨工业大学出版

社,2001

[6] 刘世霞,唐余勇,孙家广.球面铣刀修磨几何模型研究[J].计算机辅助设计与图形学

报,2000(3):195-199

[7] 韩小东,唐余勇,吴昌柞平头铣刀与带角圆铣刀的选择[J].佳木斯大学学

报,2000(18):34-37

[8] Wu.C-T1,Chen.C一K2,Tang.Y-Y3.Modelling and computer simulation of grinding of

the ball end type rotating cutter with a constant helical angle [J].Proceedings of the Institution of Mechanical Engineers一Part 13一EngineeringManufacture, 2001,215(11):1581一1594.

[9] S.Engin,Y,Altina.Mechanics and Dynamics of General Milling Cutters

[J].PartI:Helical End Mills.Int.J.Mach.Tools. manufact,2001(41):2195-2212. [10] Y.Altinta,S.Engin.Generalized Milling cutters [J].Annals of the Modeling

Mechanicsand DynamicsCIRP,2001,50(1):25-30.

[11] Chen, W.-F.A mathematical solution to the design and manufacturing problemsof

ball一end cutters having a cutting edge with constant angle to theaxis.Proceedings of the Institution of Mechanical Engineers [J].Part

C:Journalof Mechanical Engineering Science,2004,218(3):301一308.

[12] S.K.Kang,K.F.Ehman.A CAD Approach to Helical Groove

MachiningMathematical Model and Model Solution:International [J].Journal of MachineTools &Manufacture, 1996,36(1):141一153.

[13] G.Yucesan,Y.Altinas.Mechanics of Ball-Nose End Milling Process

[J].ASMEJournal of Manufacturing Science and Engineering,1993,164:543一551.

[14] G.Yucesan,Y.Altinas.Improved Modelling of Cutting Force Coefficients in

Peripheral Milling [J].Int.J.Mach.Tools Manuf,l994,34:473-487.

[15] 孙春华,刘井玉,任秉银.特种回转面刀具螺旋槽的通用几何模型[J].工具技术,

2000,34(3):1719.

[16] 刘井玉,夏广岚,于峰.特种回转面螺旋槽铣刀端截形线设计[[J].丹东纺专学报,

2002,9(3):1-2.

[17] 何耀雄,周云飞,周济.球头刀具刃形建模与过渡刃设计口1.机械工程学报,2001,3

7(9):1O1-104.

[18] 丁秀娟,邵成林,唐余勇.等导程回转刀具虚拟实境的通用模型及其应用[[J].佳木斯

大学学报(自然科学版),2002,20(2):175-177.

[19] 汪羿,何彪等.新型球头立铣刀刃磨加工研究[J].贵州工业大学学报(自然科学

版),2004,33(5):95-98.

[20] 马万太,林志航,陈康宁.刚性的球头铣刀切削力模型[[J].机械科学与技术,

1998,17(3):422-424.

[21] 姜彬,郑敏利等.球头铣刀切削力的预报[[J].哈尔滨理工大学学报,2001,6(6):20-24.

[22] 李作丽,赵军等.球头铣削切削力预测模型的解析计算[[J].山东科技大学学报(自然科

学版),2005,24(1):76-78.

数控铣床对刀具的要求及铣刀的种类

数控铣床对刀具的要求及铣刀的种类 班级:09机制学号:姓名: 一、对刀具的要求 在切削加工时,刀具切削部分与切屑、工件相互接触的表面上承受很大的压力和强烈的摩擦,刀具切屑区产生很高的温度,受到很大的应力。在加工余量不均匀的工件或断续加工时,刀具还受到强烈的冲击和振动,因此刀具材料应具备以下基本要求: 1.高的硬度和耐磨性刀具材料的硬度必须比工件材料的硬度要高,一般都在60HRC以上。耐磨性是指材料抗磨损的能力。一般说来,刀具材料的硬度越高、晶粒越细、分布越均匀,耐磨性就越好。 2.有足够的强度和韧性切削过程中,刀具承受很大的压力、冲击和振动,刀具必须具备足够的抗弯强度和冲击韧性。一般说来,刀具材料的硬度越高,其抗弯强度和冲击韧性值越低,这两个方面的性能尝尝是矛盾的。一种好的刀具材料,应根据它的使用要求,兼顾以上两方面的性能,并有所侧重。 3.耐热性高耐热性是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能,也包括刀具材料在高温下抗氧化、粘结、扩散的性能,故耐热性有时也称为热稳定性。良好的耐热性是衡量刀具材料切削性能的一项重要指标。 4.经济性经济性也是评价刀具材料切削性能的一项重要指标。有些刀具材料虽然单位成本较高,但因使用寿命长,分摊到每一个零件上的刀具成本就降低。除上述两点之外,铣刀切削刃的几何角度参数的选择及排屑性能等也非常重要,切屑粘刀形成积屑瘤在数控铣削中是十分忌讳的。总之,根据被加工工件材料的热处理状态、切削性能及加工余量,选择刚性好,耐用度高的铣刀,是充分发挥数控铣床的生产效率和获得满意的加工质量的前提。 二、刀具的分类 1.按直径分类 1)公制(mm)刀常用直径为:0.5、 1 、1.5 、2 、2.5、 3 、4 、5 、6、 8 、10 、12 、16 、20、 25、 28 、30 、32 、35、 40、 50 、63。 2)英制(INCh)刀常用直径为:1/8、1/4、1/2、3/16、5/16、3/8、5/8、3/4、1、1.5 、2。

球头立铣刀的参数化设计及有限元讲解

球头立铣刀的参数化设计及有限元分析

摘要:本文在国内外关于球头立铣刀的设计、分析等方面研究的基础上,应用Pro/ENGINEER技术和相关数学理论,研究了球头立铣刀的整体建模,以及参数化系统的建立,并从球头立铣刀的几何模型着手,建立了一个适用于球头立铣刀铣削的三维铣削力模型,应用软件对球头立铣刀进行了静力分析和模态分析。本文的主要研究内容为: 从球头立铣刀的几何模型着手,将球头立铣刀刀刃进行离散化处理,利用常规铣削力经验公式,建立一个适用于球头立铣刀的三维铣削力模型。并利用ANSYS 有限元软件对球头立铣刀进行静力分析,模态分析。校核所设计铣刀的应力,并将得到的固有频率与立铣刀在外力作用下的振动频率相比较,避免发生共振现象。本文的研究成果将大大改善高精度数控球头立铣刀的设计方法,缩短刀具的设计周期,从而快速响应市场的需求。同时本文开发的球头立铣刀参数化设计系统也为其他类似的刀具设计的研究提供参考。 关键词:球头立铣刀;切削力模型;有限元分析

第一章绪论 在当今制造业的快速发展中,切削加工起着十分重要的作用。现代切削刀具在推进制造技术进步和提高企业加工效率、降低制造成本等方面发挥了重要的作用[1]。其中,球头立铣刀作为一种高性能的自由曲面加工刀具,其性能和品质的优劣对于切削加工的精度、效率和产品品质都有直接而重要的影响。球头立铣刀刀具与数控机床或加工中心配合可以实现高效率、高质量的加工,在模具、汽车、航空航天、机械电子等制造领域应用广泛。 现代刀具设计、制造技术是机械制造与设计的重要技术之一。它已逐步发展成集数学理论、计算机应用技术、现代设计方法等为一体的高新技术产业[2]。随着数控加工技术的不断精进,加工对象也日趋复杂,对于加工复杂曲面的特种回转面类型的刀具如球头立铣刀等高精度、高性能刀具的需求也与日俱增。 国外较我国在刀具方面的研究起步早、投入成本高,在刀具设计与制造方面储备了大量的经验和技术。中国市场在高精度数控刀具领域,起步比较晚,目前总的来说技术的水平还比较低。为了缩小与发达国家的差距,国内一些企业购进国外先进设备,直接购进国外成品毛坯,自主生产和制造。此种方式是拉近与国外优质刀具差距的一种方式。但是,这种方式也只能是短期效益,产品的核心技术和高附加值仍然被设备提供方和毛坯供货方垄断。因此,利用引进的新技术,进一步加强研究与应用,掌握现代产品制造的先进技术,使技术理论化,是振兴我国刀具行业主要的路径之一[3][4]。在对球头立铣刀刀具方面,加强对球头立铣刀的设计与制造理论的研究,开发出属于自己的刀具设计软件,是实现此类刀具国产化的重要途径。 1.1 球头立铣刀的特点及种类 球头立铣刀属于像其他端面立铣刀、旋转锉等外形复杂的回转面类型的刀具。它在精加工刀具中占有很大的比例,被广泛用于航空、汽车、船舶制造工业及铸造、塑料成型、医疗器材或工艺美术品加工等多种行业。它也是复杂三维曲面精加工中所用到的重要刀具之一,其独特的刃形形、螺旋型使得球头立铣刀的加工精度高,刀具寿命长、并且可以轴向进刀,它满足了对复杂空间曲面自动加工的需要。 球头立铣刀的制造一般都是采用磨制加工,其螺旋沟槽也有通过轧制成形的。它的形状和性能特点决定了其成形方法与通常的按形面精确去除金属的铣削加工的区别。同时,它的几何建模和加工成形理论也有自己的特点。由于球头立铣刀的尺寸比较小,刃型复杂,且需要在走刀中由砂轮直接刃磨出刀具的齿槽,并保证加工后的刀刃形状符合要求,即球头刀刃必须在球面上,同时前刀面和后刀面也要达到一定的要求,这必然会使球头立铣刀的成形过程和加工方法都比较复杂,

球头立铣刀铣削力有限元分析

有限元分析(论文) 球头立铣刀铣削力有限元分析 专业:机械电子 学生姓名:张娇 学号: 201201024

摘要 本文从球头立铣刀的几何模型着手,建立了一个适用于球头立铣刀铣削的三维铣削力模型,分析刀具几何角度的变化对切削力的影响,作为有限元分析的基础。应用有限元软件ANSYS,研究在不同铣削条件下(背吃刀量、每齿进给量、主轴转速、悬伸长度等)球头立铣刀的受力情况。 建立球头立铣刀仿真实体模型,进行有限元分析表明:其它铣削条件不变时,背吃量越大,球头立铣刀变形量和应力都同时增大,而且二者的增长幅度和增长趋势几乎相同;当每齿进给量增加时,球头立铣刀变形量和应力都同时增大,但是二者的增长幅度不同,球头立铣刀应力的增长更大一些;主轴转速越高,球头立铣刀变形量和应力也会越大,二者的增长趋势相同但是幅度不同,球头立铣刀变形量的改变较大。 Summary In the present paper,a three dimensional milling force model for ball-nose end mill Was established based on its the geometric model of cutting end edge.The influences of cutting edgeangles on cutting force were analyzed.With the assist of the finite element software“ANSYS”,real stress distributione were studied in the differen millingconditions,such as cutting depth,the feed amount of each tooth,main shaft rotation and theextended length etc.

立装可转位槽铣刀的设计开发

立装可转位槽铣刀的设计开发 摘要 可转位刀具具有切削效率高、刀具寿命长、加工质量好、综合经济效益显著等优点,因此在我国机械制造等行业的应用日益广泛。随着国内先进数控机床的应用不断增加,与之配套的可转位刀具的应用也日益显示出其重要性,同时数控加工也对可转位刀具的设计提出了更高要求。随着计算机硬件与软件的发展,CAD技术不断向着智能化、集成化、网络化和参数化的方向发展。用CAD方法开发产品时,零件设计模型的建立速度是决定整个产品开发效率的关键。 本课题中,现代可转位刀具不仅应能满足高速切削、干式切削等先进切削技术的需要,而且对产品功能的多样化、结构的合理化、外观造型的美观等方面也提出了更高要求。由于可转位刀具形状及装配关系复杂,排屑槽多为曲面,尺寸大都为投影尺寸,设计工作繁琐,采用传统的手工绘图设计方法效率很低,费时费力,且不易保证设计质量。应用UG(Unigraphics)软件的三维实体造型(3D Solid Mod-eling)及数控编程(Manufacture)功能,使可转位刀具的设计变得简单、方便,大大提高了设计效率和设计精度,且易于实现产品的CAD/CAM一体化开发,大大加快了刀具的研发周期。 关键词立装刀具;可转位刀具;三维实体造型

Design and development of vertically mounted indexable slot milling cutter Abstract Indexable cutting tool with high efficiency, long tool life, good processing quality, comprehensive and significant economic benefits, etc., and therefore in China's machinery manufacturing industry is increasingly widespread. With the application of advanced CNC machine tools increasing ancillary indexable cutting tool applications are increasingly shows its importance, but also for the CNC machining of indexable cutting tool design put forward higher requirements. With the development of computer hardware and software, CAD technology continues toward intelligent, integrated, networked and parametric direction. When developing products using CAD methods to establish the speed part design model is to determine the key to the entire product development efficiency. In this topic, modern indexable cutting tool should not only be able to meet the needs of high-speed cutting, dry cutting and other advanced cutting technology, and diversification of product features, rationalizing the structure, appearance and other aspects of appearance also put forward higher requirements . Due to the shape of indexable cutting tools and assembly complex relationship, flutes and more curved, size mostly projection size, design work tedious, using traditional hand-drawing low design efficiency, time-consuming, and difficult to guarantee the quality of design.

数控加工球头铣刀与刀面加工应用研究

数控加工球头铣刀与刀面加工应用研究 数控加工球头铣刀与刀面加工应用研究 【摘要】本文对采用与轴线成定角螺旋刃口的球头铣刀在设计、制造中的难点以及相应的处理方法和数学模型作一简介,然后通过虚拟制造中的相应图形验证其可行性。 【关键词】二轴联动;数控加工;球头铣刀;应用研究 1球顶刃口曲线设计难点及解决方法 螺旋刃口的设计难点令球头铣刀的球面方程为 r={(R2-z2)?cosf,(R2-z2)? sinf,z} (1) 式中:R――球面半径 z,f――球面参数球面上与轴线成定角y 的刃口曲线应当满足微分方程 (2) 当R2tan2y-z2sec2y Rsiny 时微分方程无实解,也即在此部分球面上设计不出与轴线成y 角的刃口曲线。后续平面刃口曲线由于在球头上z∈[Rsiny,R]的部分区域内设计不出与轴线成y 角的刃口曲线,因此只能用其它刃口曲线替代,最简单的方法是用平面刃口曲线替代。如要保证刃口曲线在连接点处的一阶导数连续,且前角相等,取z=Rsiny 的刃口曲线点作为连接点并不合适。由《球头铣刀刃口曲线的求解及螺旋沟槽的二轴联动数控加工》可知,磨削沟槽时砂轮的轴向、径向进给速度分别为 (3) (4) 式中:r―沟槽底部所在的截圆半径w―刀体回转角速度 当加工接近z=Rsiny 的沟槽时,进给速度vz、vg均趋于无穷大,这在实际制造中是无法实现的。因此,在选择连接点时,应离开 z=Rsiny 一定距离,避免因进给速度剧变而给工程实现带来的困难,选取z=Rsin(y -y0)(y0>0)即可解决这一难题。下面的问题是求平面方程。虽然许多文献均提及这一问题,但均未给出数学模型,故简介如下:由《球头铣刀刃口曲线的求解及螺旋沟槽的二轴联动数控

立铣刀参数

立铣刀参数 铣刀种类及直径代木铝钢铜 转速S 进给F 转速S 进给F 转速S 进给F 转速S 进给F 立铣刀0.5 3500 1000 3500 1000 3500 1000 3500 1000 立铣刀 1 3500 1000 3500 500 3500 500 3500 500 立铣刀 2 3500 1600 3500 1500 3500 1000 3200 800 立铣刀 4 3300 2000 3500 2000 3500 1500 3200 1600 立铣刀 6 3200 2000 3500 2800 3500 1800 3000 2000 立铣刀8 3000 2000 3000 2800 2800 1800 2800 2200 立铣刀10 2800 2000 2700 2800 2500 1800 2500 2000 立铣刀12 2000 2800 2000 3000 1800 2500 2200 2000 立铣刀16 1000 2000 1600 2000 1300 2000 1800 1800 立铣刀20 900 1200 800 1800 750 1000 700 1000 立铣刀25 850 1000 750 1100 700 900 700 950 球头立铣刀0.5 3500 6000 3500 6000 3500 1000 3500 1000 球头立铣刀 1 3500 6000 3500 3500 3500 300 3500 3500 球头立铣刀 2 3500 6000 3500 1000 3500 600 3500

1000 球头立铣刀 3 3500 6000 3500 1000 3500 800 3500 1500 球头立铣刀 4 3500 6000 3500 1000 3500 800 3200 1000 球头立铣刀 6 3500 6000 3500 800 3500 800 3000 1000 最佳答案常用計算公式 一、三角函數計算 1.tanθ=b/a θ=tan-1b/a 2.Sinθ=b/c Cos=a/c 二、切削刃上选定点相对于工件的主运动的瞬时速度。 2.1 铣床切削速度的計算 Vc=(π*D*S)/1000 Vc:線速度(m/min) π:圓周率(3.14159) D:刀具直徑(mm) 例題. 使用Φ25的銑刀Vc為(m/min)25 求S=?rpm Vc=πds/1000 25=π*25*S/1000 S=1000*25/ π*25

球头铣刀高速铣削铣削力建模分析

球头铣刀高速铣削铣削力建模分析 摘要:本文针对球头铣刀铣削特点,运用金属切削理论等,对球头铣刀铣削力建模进行了系统深入的研究,在针对球头铣刀高速铣削力研究的整个过程中,根据原有的经验公式及切削机理,主要对铣削力进行具体研究,研究球头铣刀切削微元上所受到的切向力,径向力和轴向力的受力情况,进而沿刀刃进行积分,通过局部坐标系转换到整体坐标系,用数值积分方法建立铣削力模型。 关键词:球头铣刀;铣削力;建模 1.概述 随着全球工业市场竞争的日趋激烈,产品的复杂性和加工质量要求越来越高。而随着CAD/CAM系统和CNC加工中心的进步,我们可应用球头铣削来满足复杂表面的加工需要。由于在复杂曲面加工中,很难选择恰当的参数使得加工过程既能提高生产率,同时又能保证工件质量。为了保证产品加工质量且避免刀具破损或刀具过变形等不期望结果的发生,通常做法是选择保守的加工参数。然而,这会降低生产率。这需要在加工参数和加工质量及加工效率之间达到一个最佳的匹配。 铣削加工过程是由“机床—刀具—工件”构成的、各种影响因素综合作用的系统。在加工进行过程中随时会受到各种随机因素的干扰,其中的干扰因素主要包括:工件材质不均匀造成的材料微观硬度变化,刀具磨损造成的刀具几何参数的改变,切削参数变化及切削振动等,这些因素都会使加工系统转变为动态系统。 因此,球头铣削过程分析和铣削力仿真对加工精度预测、铣削过程自适应控制以及工艺参数优化都有非常重要的意义。 2.铣削力建模 2.1 局部铣削力的计算 切削力的准确建模是分析和预报切削加工性能的基础(工艺参数的选择、切削过程稳定性、刀具磨损及破损的监控等)。由于铣削过程非常复杂,在此过程中铣削力不断变化,通常的切削理论不能趋势应用于铣削过程,因此,球头铣刀加工复杂曲面切削力模型建立的基本策略是将刀具切削刃沿轴向等间隔划分成许多很小的切削微元,每个微段相当于一个简单的斜角切削,作用在刀刃微段上的空间铣削力可以分解成微切向力、微径向力和微轴向力。刀具受到的切削力为参加切削的切削微元的受力之和,切削微元的受力分析是根据切削力与切削负载之间的经验关系。本文采用Lee和Altintas所提出的斜角切削的切削微元的受力公式: 在整体坐标系中,X方向为刀具的进给方向,Z方向垂直于水平面,根据右

数控机床上常用的铣刀

数控机床上常用的铣刀 数控机床上常用的铣刀:一、面铣刀,面铣刀的圆周表面和端面都有切削刃,端部切削刃为副切削刃。面铣刀多制成套式镶齿结构,刀齿为高速钢或硬质合金,刀体为40Cr 二、立铣刀,立铣刀的圆柱表面和端面上都有切削刃,它们可同时进行切削,也可单独进行切削。立铣刀圆柱表面的切削刃为主切削刃,端面上的切削刃为副切削刃。注意,因为立铣刀的端面中间有凹槽,所以不可以做轴向进给。 三、模具铣刀,他的结构特点是球头或端面上不满了切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。 四、键槽铣刀,它有两个刀齿,圆柱面和端面都有切削刃,端面刃延至中心。加工时先轴向进给达到槽深,然后沿键槽方向铣出键槽全长。 五、鼓形铣刀,他的切削刃分布在半径为R的圆弧面上,端面无切削刃。加工时控制刀具上下位置,相应该面刀刃的切削部位,可以在工件上切出从负到正的不同斜角。R越小,鼓形铣刀所能加工的斜角范围越广。 六、成形铣刀,一般都是为特定的工件或加工内容专门设计制造的。 还有些通用铣刀,但因主轴锥孔有别,必须配制过渡套和拉钉 1)盘铣刀 一般采用在盘状刀体上机夹刀片或刀头组成,常用于端铣较大的平面。 2)端铣刀 端铣刀是数控铣加工中最常用的一种铣刀,广泛用于加工平面类零件,图1是两种最常见的端铣刀。端铣刀除用其端刃铣削外,也常用其侧刃铣削,有时端刃、侧刃同时进行铣削,端铣刀也可称为圆柱铣刀。 3)成型铣刀

成型铣刀一般都是为特定的工件或加工内容专门设计制造的,适用于加工平面类零件的特定形状(如角度面、凹槽面等),也适用于特形孔或台。图2示出的是几种常用的成型铣刀。 4)球头铣刀 适用于加工空间曲面零件,有时也用于平面类零件较大的转接凹圆弧的补加工。 5)鼓形铣刀 主要用于对变斜角类零件的变斜角面的近似加工。 除上述几种类型的铣刀外,数控铣床也可使用各种通用铣刀。但因不少数控铣床的主轴内有特殊的拉刀装置,或因主轴内孔锥度有别,须配制过渡套和拉杆。

具有倾斜角度的球头铣刀

与加工表面呈倾角的球头铣刀的切削力模型 第二部分,切削条件、跳动、犁切和倾角的影响 M. Fontaine, A. Moufki, A. Devillez, D. Dudzinski 修订日期: 2006 —12—12;收稿日期: 2007 —01—12 ————————————————————————————————摘要 本文着重对球头铣刀刀具轴线和工件加工表面之间的加工倾角造成对切削力的影响进行了理论研究。从热力切割模型计算得到的切削力,在本论文第1部分介绍[M. Fontaine, A. Moufki, A. Devillez切割中球头与工具面倾角铣削力模型。第一部分的预测力模型和实验验证J. Mater. Process. Technol. 189 (2007) 73–84]在这里我们将展开详细的讨论并且与实验结果进行比较。前文提出的球头铣刀模型可应用于直线刀具轨迹和变化的加工倾角的机械加工中。本文则同时对斜面和轮廓配置进行了研究。研究中的实验结果是在一台装配Kistler测力计的3 轴数控铣床上进行测试的,注意这里指出的形状和切削力信号水平。为了确定最佳倾角,我们对刀具作用最大的切削力的变化做了研究。全文对切削条件、径向跳动、犁切现象和切削稳定性造成的影响分别进行了讨论。 关键词:球头铣刀,切削力量,切削条件,刀具跳动;犁切;刀具倾角 1.简介 许多学者提出了有效的模型来预测铣削操作中切削力。一些实验结果对钢[2-15],铝合金[14-18],锌合金[19,20]或航空合金[6,21-23]是有效的。然而,这些因素对结果的影响很少被讨论。众所周知,一些参数的影响在切削力水平和变化是明显的,并且在加工模型中考虑这些因素是重要的。在球头铣刀的主要参数是切削条件、刀具的跳动、犁切现象和加工倾角。在加工时,我们总是把它们分开对待而不是统一考虑。 在文献中,球头铣削加工所得到的切削力实验结果往往是相对切削条件((主轴频率,进给量,切削深度,切削模式)的影响。最主要的原因是,实验测试需要大量的时间和经费。许多实验文献表明对于变化的切削速度值与额定进给率相关[3,4,6,11,13,15,18,19,21],而有其他文献研究表明是受进给率和主轴运动频率的双重影响[7,11,12,16,17,22]。通常的装置来测量切削力是压电式测功机,高速铣削,但它的使用是受限于所使用的传感器动态响应。然而,只有研究处理高切削速度的学者数量减少[6,7,12,22]。有些作者提出是由于轴向切削深度[7,15,19,21]或是径向切削深度[13,17],也有提出是两者共同影响的结果[3,4,6,12,16,20,22]。在过去研究的过程中,主要还是应用一些旧的切削模式,却鲜有人将它与最新的切削模式进行对比。 刀具跳动是传统地以面铣削加工为蓝本的,仅有少部分学者提出一些解决方案将球头铣削中刀具的运动考虑进来。这样,跳动就通常被认为仅是径向偏心(径向跳动)[3,14],而摆角(轴向跳动)却很少考虑。在球头铣刀中,有限的刀具的直径和长度减少了自身对跳动的影响。在一个完整的五轴铣削力模型中,利用轴向跳动精确计算工件加工表面与刀具的接触面是非常有趣的[22]。这些过去的文献表明,径向跳动对边缘的接触面和切削力大小有着巨大的影响,尤其是对于高切削速度和低切削厚度的情况。 非剪切现象出现在尖端,并产生额外的力作用在刀具上。它们可以由正交切削下产生的滑移线所决定[24,25]。在球头铣刀中,它们曾被隐晦地考虑到机械模型,但并没有进行具体的说明。然而,一些学者通过利用剪切和从转向实验中获得的边缘系数[21]将剪切过程从边缘现象中分离出去,或者直接通过铣削实验反推然后进行二乘法调整或卷积积分法

不锈钢的铣削加工参数

不锈钢的铣削加工 铣削不锈钢的特点是:不锈钢的粘附性及熔着性强,切屑容易粘附在铣刀刀 齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。 铣削不锈钢除端铣刀和部分立铣刀可用硬质合金作铣刀刀齿材料外,其余各类铣刀均采用高速钢,特别是钨—钼系和高钒高速钢具有良好的效果,其刀具耐用度可比W18Cr4V提高1~2倍。适宜制作不锈钢铣刀的硬质合金牌号有YG8、YW2、813、798、YS2T、YS30、YS25等。 铣削不锈钢时,切削刃既要锋利又要能承受冲击,容屑槽要大。可采用大螺旋角铣刀(圆柱铣刀、立铣刀),螺旋角b从20°增加到45°(g n =5°),刀具耐用 度可提高2倍以上,因为此时铣刀的工作前角g 0e 由11°增加到27°以上,铣削轻快。但b值不宜再大,特别是立铣刀以b≤35°为宜,以免削弱刀齿。 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数为g f =5°、g p =15°、 a f =15°、a p =5°、k r =55°、k′ r =35°、g 01 =-30°、b g =、r e =6mm,当V c =50~90 m/min、 V f =630~750mm/min、a′ p =2~6mm并且每齿进给量达~时,铣削力减小10%~15%, 铣削功率下降44%,效率也大大提高。其原理是在主切削刃上磨出负倒棱,铣削时人为地产生积屑瘤,使其代替切削刃进行切削,积屑瘤的前角g b 可达20~~302,由于主偏角的作用,积屑瘤受到一个前刀面上产生的平行于切削刃的推力作用而成为副屑流出,从而带走了切削热,降低了切削温度。 铣削不锈钢时,应尽可能采用顺铣法加工。不对称顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。 高速钢刀具加工参数: 直径:主轴转速(r/min)进给量mm/min 3~4 1100~750 10~15 5~6 750~ 550 15~20 8~10 600~350 20~30 12~14 350~270 30~37 16~18 270~230 37~47,5 20~22 250~200 47~55

基于ProMechanica的数控立铣刀优化设计

第一章 CAD/CAE/CAM的简述 1.1 CAD/CAE/CAM的发展历程 1963年美国教授I.E. Su terland成功研制出了世界上第1套实时交互的计算机图形系统SKETCHPAD,它标志着CAD技术的诞生。在1952年美国MIT试制成功了世界上第1台数控铣床,解决了复杂零件的加工自动化,促使了数控编程技术的发展。20世纪50年代中期,MIT研制开发了自动编程语言(APP)提出了被加工零件的描述、刀具轨迹的计算、后置处理及数控指令自动生成等CAM基本技术。从此以后,CAD技术与CAM技术便相辅相成地发展起来,在过去的40多年中,CAD/CAM技术经历了如下四个主要发展阶段【14~15】: ①20世纪50年代的初始准备阶段美国麻省理工学院(MIT)于1950年在“旋风”计算机上采用阴极射线管(CRT)做成图形终端,并能显示图形。50年代后半期出现了光笔,由此开始了交互式计算机图形学的研究。 ②20世纪60年代前期的研制试验阶段此阶段是交互式计算机图形学发展的最重要时期。该时期较著名的交互式系统有:1963年美国学者Ivan.Su therland研究的“sketchpad”系统;1964年美国通用汽车公司的“DAC一1”系统;1965年洛克希德公司推出的“CAD/CAM”系统,贝尔电话公司的“GRAPHIC一1”系统等,但当时刷新式显示器价格十分昂贵,CAD 系统因此难以普及。 ③ 20世纪60年代末至70年代的商品化阶段交互图形技术日益成熟并得到广泛应用,此时期CAD/CAM的发展着重于绘图技术,几何模型化及工程分析研究工作,仍以分离的单个软件应用为主。此时它们大多是6位机上的三维线框系统及二维绘图系统,只能解决一些简单的产品设计问题。 ④ 20世纪80年代后的迅速发展阶段20世纪80年代工业界开始认识到CAD/CAM新技术 的重要性,大量推出新原理、新方法、新软件,并把单一功能软件集成,使之不但能绘制工程图形,而且能进行自由曲面设计、有限元分析、三维造型、机构及机器人分析与仿真等多种应用。与此同时,计算机硬件及输人、输出设备也有较大发展,32位的工作站可以和小型机、甚至中型机相媲美,价格低廉的彩色光栅图形显示器占据统治地位,计算机网络获得以广泛应用,所有这些都大大促进了CAD/CAM的更大发展。30年来,工业发达国家的CAD技术不断创新、完善,逐步发展形成一个从研究开发、生产制造到推广应用和销售服务的完整的高技术产业。 CAE技术比起CAD、CAM发展得晚,在20世纪60-70年代,处于探索阶段,有限元技术主要针对结构分析问题进行发展,以解决航空航天技术发展过程中所遇到的结构强度、刚度以及模拟实验和分析。20世纪70-80年代是CAE技术蓬勃发展时期,出现了大量的机械软件,软件的开发主要集中在计算精度、硬件及速度平台的匹配、计算机内存的有效利用及磁盘空间利用上,而且有限元分析技术在结构和场分析领域获得了很大的成功。20世纪90年代CAE技术逐渐成熟壮大,软件的发展向与各CAD软件的专用接口和增强软件的前后置处理能

立铣刀的分类及使用要求

立铣刀的分类及使用要求 立铣刀的主切削刃是圆拄面上,端面上的的切削刃是副刀刃。工作时不能沿着铣刀的轴向作进给运动。按照国家标准规定:立铣刀直径为2-50毫米,可分为粗齿与细齿两种。直径2-20为直柄范围,直径14-50为锥柄范围。标准立铣刀有粗齿和细齿两种。粗齿立铣刀的齿数为3~4个,螺旋角β大些;细齿立铣刀(3张)立铣刀的齿数为5~8个,螺旋角β小些。切削部分的材料为高速钢,柄部为45钢。 立铣刀的定义及分类: 1.平头铣刀,进行粗铣,去除大量毛坯,小面积水平平面或者轮廓精铣; 2.球头铣刀,进行曲面半精铣和精铣;小刀可以精铣陡峭面/直壁的小倒角 3.平头铣刀带倒角,可做粗铣去除大量毛坯,还可精铣细平整面(相对于陡峭面)小倒角。 4.成型铣刀,包括倒角刀,T形铣刀或叫鼓型刀,齿型刀,内R刀。 5.倒角刀,倒角刀外形与倒角形状相同,分为铣圆倒角和斜倒角的铣刀。 6.T型刀,可铣T型槽; 7.齿型刀,铣出各种齿型,比如齿轮。 8.粗皮刀,针对铝铜合金切削设计之粗铣刀,可快速加工. 铣刀常见有两种材料:高速钢,硬质合金。后者相对前者硬度高,切削力强,可提高转速和进给率,提高生产率,让刀不明显,并加工不

锈钢/钛合金等难加工材料,但是成本更高,而且在切削力快速交变的情况下容易断刀。 立铣刀装夹加工心用立铣刀大多采用弹簧夹套装夹方式,使用时处于悬臂状态。但切削参数选用同时又受机床、刀具系统、被加工工件外形以及装夹方式等多方面因素影响,应根据实际情况适当调整切削速度进给速度。 硬质合金立铣刀使用高速钢立铣刀使用范围使用要求较为宽泛,即使切削前提选择略有不当,也不至泛起太大题目。如加工系统泛起共振,其原因可能切削速渡过大、进给速度偏小、刀具系统刚性不足、工件装夹力不够以及工件外形或工件装夹方法等因素所致,此时应采取调整切削用量、增加刀具系统刚度、进步进给速度等措施。所以立铣刀装夹前,应先将立铣刀柄部刀夹内孔用清洗液清洗干净,擦干后再进行装夹。而硬质合金立铣刀固然高速切削时具有很好耐磨性,但它使用范围不及高速钢立铣刀广泛,且切削前提必需严格符合刀具使用要求。

数控铣床对刀具的要求及铣刀的种类

数控铣床对刀具的要求及铣刀的种类 数控铣床对刀具的要求及铣刀的种类 1)对刀具的要求1)铣刀刚性要好一是为提高生产效率而采用大切削用量的需要;二是为适应数控铣床加工过程中难以调整切削用量的特点。当工件各处的加工余量相差悬殊时,通用铣床遇到这种情况很容易采取分层铣削方法加以解决,而数控铣削就必须按程序规定的走刀路线前进,遇到余量大时无法象通用铣床那样“随机应变”,除非在编程时能够预先考虑到,否则铣刀必须返回原点,用改变切削面高度或加大刀具半径补偿值的方法从头开始加工,多走几刀。但这样势必造成余量少的地方经常走空刀,降低了生产效率,如刀具刚性较好就不必这么办。 2)铣刀的耐用度要高尤其是当一把铣刀加工的内容很多时,如刀具不耐用而磨损较快,就会影响工件的表面质量与加工精度,而且会增加换刀引起的调刀与对刀次数,也会使 工作表面留下因对刀误差而形成的接刀台阶,降低了工件的表面质量。 除上述两点之外,铣刀切削刃的几何角度参数的选择及排屑性能等也非常重要,切屑粘刀 形成积屑瘤在数控铣削中是十分忌讳的。总之,根据被加工工件材料的热处理状态、切削性能及加工余量,选择刚性好,耐用度高的铣刀,是充分发挥数控铣床的生产效率和获得 满意的加工质量的前提。 (2)常用铣刀种类 1)盘铣刀一般采用在盘状刀体上机夹刀片或刀头组成,常用于端铣较大的平面。 2)端铣刀端铣刀是数控铣加工中最常用的一种铣刀,广泛用于加工平面类零件,图4-3 是两种最常见的端铣刀。端铣刀除用其端刃铣削外,也常用其侧刃铣削,有时端刃、侧 刃同时进行铣削,端铣刀也可称为圆柱铣刀。

图4-3 3)成型铣刀成型铣刀一般都是为特定的工件或加工内容专门设计制造的,适用于加工平面类零件的特定形状(如角度面、凹槽面等),也适用于特形孔或台。图4-4示出的是几种常用的成型铣刀。 图4-4 4 )球头铣刀。适用于加工空间曲面零件,有时也用于平面类零件较大的转接凹圆弧的补加工。图4-5是一种常见的球头铣刀。

球头铣刀计算直径与切削速度计算

球头铣刀计算直径与切削速度计算 Click:99 Date:7/12/2011 5:23:34 AM 球头铣刀的计算直径Deff一般要小于铣刀直径Dc,故其实际转速不应按铣刀直径Dc计算,而应按计算直径Deff计算。 Deff=(Dc2-(Dc-2×ap)2)0.5 为铣刀直径,ap为切削深度。而: n=Vc×1000/(π×Deff) 公式: 3.14*d*n 切削速度Vc=-------- (m/s) 1000 Vc*1000 主轴转速n=--------- (r/m) d*n 进给量f= fz*Z (fz-每次进给量,Z-刀齿数) 进给速度Vf=n*fz*Z 球头铣刀Deff 铣刀直径Dc 切削深度ap

2 2 Deff={Dc-(Dc-2*ap) }*0.5 Vc*1000 n=---------- (mm/min) p* Deff 切削宽度L:(又称步距)一步切削宽度L与刀具直径 d成 正比,与切削深度成反比。 d=D-2r(r圆角半径) 平底刀:L=(0.6-0.9)d 圆鼻刀:L=(0.8-0.9)d 用球头刀进行平面或斜面的残余高度控制: I‘前一球刀中心与后一球刀中心的距离’ R‘球刀半径’ h‘残余高度’ ......(平面)I=2 R*R-(h-R).......... (斜面)I`=I(sin@) . ......h`=R- ............. UG 编程要点知识: 轮廓切削方法通常用于零件的侧壁或者外形轮廓的精加工,外形可以事封闭的或者敞开的,可以是连续的或者非连续的,具体的应用有内壁和外形的加工、陡、壁的介层加工等。常用的方式是在精加工中使用轮廓切削方式,在粗加工中使用跟随工件切削方式。 球头铣刀计算直径与切削速度计算 Click:99 Date:7/12/2011 5:23:34 AM 球头铣刀的计算直径Deff一般要小于铣刀直径Dc,故其实际转速不应按铣刀直径Dc计算,而应按计算直径Deff计算。

端铣刀选取

数控加工刀具选择 在数控加工中,刀具的选择直接关系到加工精度的高低、加工表面质量的优劣和加工效率的高低。选用合适的刀具并使用合理的切削参数,将可以使数控加工以最低的加工成本、最短的加工时间达到最佳的加工质量。 模具数控加工中使用的刀具种类很多,下面对常用刀具的性能及选用加以介绍。 1.刀具形状选择 加工中心上用的立铣刀主要有3种形式:球头刀(R=D/2)、端铣刀(R=0)和R刀(R<D/2)(俗称“牛鼻刀”或“圆鼻刀”),其中D为刀具的直径,R为刀尖圆角半径。某些刀具还带有一定的锥度A。刀具形状的示意图如图1-59所示。 (a)球刀(b)环形刀(c)平底刀(d)锥形平底刀 图1-59 刀具形状示意图 (1)平刀(平底刀、端铣刀)粗加工和精加工时都可使用。平刀主要用于粗加工、平面精加工、外形精加工和清角加工。使用平刀加工要注意由于刀尖很容易磨损,可能影响加工精度。 (2)圆鼻刀(牛鼻刀、圆角刀)主要用于模坯粗加工、平面精加工和侧面精加工,适合于加工硬度较高的材料。常用圆鼻刀圆角半径为0.2~6。在加工时应该优先选用圆鼻刀。 (3)球刀(球头刀、R刀)主要用于曲面精加工,对平面开粗及光刀时粗糙度大、效率低。 以上为模具数控加工中常用的刀具,其他类型刀具使用较少。 2.刀具材料选择 常用刀具材料为高速钢、硬质合金。非金属材料刀具使用较少。 (1)高速钢刀具(白钢刀)高速钢刀具易磨损,价格便宜,常用于加工硬度较低的工件。 (2)硬质合金刀具(钨钢刀、合金刀)硬质合金刀具耐高温,硬度高,主要用于加工硬度较高的工件,如前模、后模。硬质合金刀具需较高转速加工,否则容易崩刀。硬质合金刀具加工效率和质量比高速钢刀具好。 3.刀具结构形式选择 常用硬质合金刀具有整体式和可转位式两种结构形式。 (1)整体式铣刀的刀具整体由硬质合金材料制成,价格高,加工效果好,多用在光刀阶段。此类型刀具通常为小直径的平刀及球刀。(2)可转位式铣刀前端采用可更换的可转位刀片(舍弃式刀粒),刀片用螺丝固定。刀片材料为硬质合金,表面有涂层,刀杆采用其他材

加工中心切削参数

加工中心切削参数标准化管理部编码-[99968T-6889628-J68568-1689N]

加工中心.数控铣床.刀具名称.转速进给、下刀量 例:立铣刀必备知识(按照加工45号钢材) 刀具名称、转速(/min)、进给(mm/min)、下刀量(mm) 63R6(刀片) 600 2500-3000 50R6(刀片) 650-850 2500-3000 刀片) 1200 2000-2500 刀片) 700-1200 2000-2500 刀片) 2000-2500 2000-3000 刀片) 2200-2500 2200-3000 球头刀2000-2500 2000 球头刀 2200-2500 2000-3000 10(球头刀 2500 1800-2000 球头刀 2500-2800 1500-1800 6(球头刀 4000 1500-1800 球头刀 5000-6000 1800 3(球头刀 7000 1500-1800 球头刀 12000 1500-2000 球头刀 16000 1200-1500 1(球头刀 20000 1200 (球头刀 20000 500 (球头刀 7000 1500 30R5(平底立铣)720-1000 2000-3000 平底立铣) 300-600 2000-2500 平底立铣) 600-1000 2000-2500 平底立铣) 1600 2000-2500 平底立铣) 2000-2200 2000-2500 平底立铣) 2200-2500 2000-2500 平底立铣) 2500 1500-

2000 平底立铣) 3000 1500-2000 平底立铣) 3500-4000 1500-2000 3(平底立铣) 6000 1500-1800 平底立铣) 9000 1500 平底立铣) 12000 1200-1500 平底立铣) 18000 1000-1500 铣刀大体上分为: 1.平头铣刀.进行粗铣.去除大量毛坯.小面积水平平面或者轮廓精铣 2.球头铣刀.进行曲面半精铣和精铣.小刀可以精铣陡峭面/直壁的小倒角。 3.平头铣刀带倒角.可做粗铣去除大量毛坯.还可精铣细平整面(相对于陡峭面)小倒角。 4.成型铣刀.包括倒角刀.T形铣刀或叫鼓型刀.齿型刀,内R刀。 5.倒角刀.倒角刀外形与倒角形状相同.分为铣圆倒角和斜倒角的铣刀。 型刀.可铣T型槽. 7.齿型刀.铣出各种齿型.比如齿轮。 8.粗皮刀,针对铝铜合金切削设计之粗铣刀,可快速加工. 铣刀常见有两种材料: 高速钢.硬质合金。后者相对前者硬度高.切削力强.可提高转速和进给率.率让刀不明显.并加工不锈钢/钛合金等难加工材料.但是成本更高.而且在切削力快速交变的情况下容易断刀。立铣刀的基本使用范围.端面铣削:适用于较小平面范围、较小切削深度的操作要求。加工后的零件表面相对较为“粗糙不均”。 键槽加工.一般来说.生产一道高质的键槽需要至少两把铣刀。月牙键槽加工.一般来说.这个过程需要一把铣刀.用全面进给进刀法操作。

不锈钢的铣削加工参数

. . 不锈钢的铣削加工 铣削不锈钢的特点是:不锈钢的粘附性及熔着性强,切屑容易粘附在铣刀刀 齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工 硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。 铣削不锈钢除端铣刀和部分立铣刀可用硬质合金作铣刀刀齿材料外,其余各类铣刀均采用高速钢,特别是钨—钼系和高钒高速钢具有良好的效果,其刀具耐用度可比W18Cr4V提高1~2倍。适宜制作不锈钢铣刀的硬质合金牌号有YG8、YW2、813、798、YS2T、YS30、YS25等。 铣削不锈钢时,切削刃既要锋利又要能承受冲击,容屑槽要大。可采用大螺旋角铣刀(圆柱铣刀、立铣刀),螺旋角b从20°增加到45°(g n =5°),刀具耐用度可 提高2倍以上,因为此时铣刀的工作前角g 0e 由11°增加到27°以上,铣削轻快。但b值不宜再大,特别是立铣刀以b≤35°为宜,以免削弱刀齿。 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数为g f =5°、g p =15°、a f =15°、 a p =5°、k r =55°、k′ r =35°、g 01 =-30°、b g =0.4mm、r e =6mm,当V c =50~90 m/min、 V f =630~750mm/min、a′ p =2~6mm并且每齿进给量达0.4~0.8mm时,铣削力减小 10%~15%,铣削功率下降44%,效率也大大提高。其原理是在主切削刃上磨出负倒棱,铣削时人为地产生积屑瘤,使其代替切削刃进行切削,积屑瘤的前角g b 可达20~~302,由于主偏角的作用,积屑瘤受到一个前刀面上产生的平行于切削刃的推力作用而成为副屑流出,从而带走了切削热,降低了切削温度。 铣削不锈钢时,应尽可能采用顺铣法加工。不对称顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。 高速钢刀具加工参数: 直径:主轴转速(r/min)进给量mm/min 3~4 1100~750 10~15 5~6 750~ 550 15~20 8~10 600~350 20~30 12~14 350~270 30~37 16~18 270~230 37~47,5 20~22 250~200 47~55 硬制合金刀具:1500~2000 F120~150

相关文档
最新文档