并联机器人操作细则

并联机器人操作细则
并联机器人操作细则

运动控制开发平台操作细则:

一、步进电机平台

1.上电计算机电源、驱动器电源、端子板电源。

2.运行GTCmdPCI_CH。

3.在菜单栏选择出现“基础参数设置”界面。

4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。

设置“行程开关触发电平”

设置“编码器方向”,默认值0

设置控制周期,运控卡缺省的控制周期是200 μs。

5.点击“打开运控卡”按钮。

6.点击“确定”按钮。

7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。

8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。

9.选择“清状态”,如右图,清除当前轴不正确的状态。

10、设置控制输出,驱动使能(轴开启)

在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当

前轴的驱动器和电机的设置相统一。

SV卡:

可以选择输出模拟量,即0;

亦可选择输出脉冲量,即1。

SV卡:

选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。

4.在“运动控制模式”栏设置运动参数

5.点击“参数更新”按钮,

二、直流伺服电机平台

1~6步同步进电机一样

7、在轴的控制窗口中选中第4轴。

8、在“伺服滤波器参数设置”框中设置“比例增益”为10。

9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。

10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。

11、点击“清状态”键,使控制器的第四轴事件状态清除。

12、点击“参数更新”键,使第四轴开始运动

补充:

1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA

2、ENA

3、ENA4.

2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

表示第一轴的运动完成标志,重新运动之前需要“清状态”。

又如:表示四个轴都被设置成闭环控制,第一轴已经被开启。

3、GT400控制卡有16个通用I/O口,点击软件中,可以看到,选中其中的某个,在面板上会亮起相应的灯,在实际的2-DOF并联机构中用到了其中的两个IO口来控制气压泵的电磁阀。

4、对于坐标系的控制,单击软件中

(1)、先选择要映射的轴,例如是X,Y轴,那么就选中,再单击

,然后同样选中,再单击。

(2)、设置合成加速度和速度,,设置完后单击。

(3)、设定起点,,完成后点击。

(4)、结束缓冲区命令,单击。

(5)、设置插补方式,设置插补参数

(6)、单击,第一轴和第二轴按照设定的插补方式运动。

5、在对演示软件进行操作的时候,在软件下方都会出现相应的编程函数,如:

2-DOF并联机构操作细则:

1.上电计算机电源、驱动器电源、机箱电源。

2.运行GTCmdPCI_CH。

3、观察软件右侧的“轴系状态”看是否有报警和错误。

4、运行演示软件gpm_pa.exe。

5、标定:用鼠标点击“Calibration”按钮后,在命令状态栏会提示:

"Please Turn The Parallel Mechanism to The Home Position Manually, Then Click The‘OK’Button”;用手将并联机构连杆末端移到零点位置,然后按“OK”将当前点定为零点,并记下绝对编码器读数;

6、运动按钮:按“Motion”按钮,下方的运动按钮由灰变亮,运动按钮可用。

7、回零:按“Home”按钮,并联机构连杆末端自动从当前点回到零点位置;在命令状态栏会提示:

“Parallel Mechanism is Going Home......”

8、直线:按“Line”按钮,并联机构连杆末端从当前位置到规划目标位置按直线轨迹运动;在命令状态栏会提示:

“Parallel Mechanism is Running in Line Motion Mode......”

9、圆周运动:按“Circle”按钮,并联机构连杆末端按圆周轨迹运动;在命令状态栏会提示:

“Parallel Mechanism is Running in Circle Motion Mode......”

10、演示运动:按“Demo”按钮,并联机构连杆末端按给定的直线,圆周等轨迹连续运动;在命令状态栏会提示:

“Parallel Mechanism is Running in Line & Circle Motion Mode Continually......”

11、仿真:按“Emulation”按钮,仿真界面出现。

12、退出:按“Exit”按钮,退出演示程序。

补充:

1、并联机构超限不停,是控制软件出错,应立即按电控箱的急停按钮,并检查控制软件。

2、更换锂电池时,因绝对编码器掉电,会使电机驱动器报警。必须用通过驱动器将绝对编码器清零才能消除报警。

操作步骤:(1)、打开机箱,启动设备。

(2)、在第一个驱动器上,按set键,出现dp_5pd

(3)、按mode键,按最后的上下键,选择AF_Enc

(4)、按set键

(5)、常按最后一个键,直到出现finish,清零完成

(6)、其它2个驱动器同样操作。

3、第一次编程运行机构时,务必将运动臂卸下。

4、绝对编码器是通过计算机串口1读取的,可以用演示软件“绝对式编码器测试软件”来测试。

5、编程时,有两个动态链接库需要添加,一个是GT400.DLL,包含控制卡的所有运动函数,另一个是CommLib.dll,在读取绝对编码器进行串口通讯时用到。

6、绝对编码器的电池如果用完,在更换完毕,驱动器重新清零后,机构需要重新调零,也就是在运动平面上标定一个参考点。

具体步骤是:(1)、通过种种方法在运动平台上标注出一个具体点的坐标,演示软件

gpm_pa.exe中用到的点为(216.5,250),所以必须极其精确的标注

出这个点的位置。

(2)、打开演示软件,点击“Calibration”按钮后,将机构推到点(216.5,250),然后点击“ok”,标注完成。

(3)、打开“绝对式编码器测试软件”,读取当前编码器的读数,并记下

(4)、打开另一个演示软件GPM2012.exe,在其调试程序中有个文件“标定参考零点.ini”,打开,填入刚才记录的绝对编码器读数。

ABB工业机器人操作手册

目录 一、系统安全 (1) 二、手动操纵工业机器人 (1) 1.单轴运动控制 (1) 2.线性运动与重定位运动控制 (3) 3.工具坐标系建立 (5) 4.示教器上用四点法设定TCP (6) 操作方法及步骤如下: (6) 三、程序建立 (10) 1.建立RAPID程序 (10) 2.基本RAPID程序指令 (11) (1)赋值指令 (11) (2)常用的运动指令 (12) (3) I/O控制指令 (14) 1)Set数字信号置位指令 (14) 2)Reset数字信号复位指令 (15) 3)WaitDI数字输入信号判断指令 (15) 4)WaitDO数字输出信号判断指令 (15) 5)WaitUntil信号判断指令 (15) (4)条件逻辑判断指令 (15) 1)Compact IF紧凑型条件判断指令 (15) 2)IF条件判断指令 (16) 3)FOR重复执行判断指令 (16) 4)WHILE条件判断指令 (16)

一、系统安全 以下的安全守则必须遵守,因为机器人系统复杂而且危险性大, 万一发生火灾,请使用二氧化炭灭火器。 急停开关(E-Stop)不允许被短接。 机器人处于自动模式时,不允许进入其运动所及的区域。 在任何情况下,不要使用原始盘,用复制盘。.搬运时,机器停止,机器人不应置物,应空机。 意外或不正常情况下,均可使用E-Stop键,停止运行。 在编程,测试及维修时必须注意既使在低速时,机器人仍然是非常有力的,其动量很大,必须将机器人置于手动模式。 气路系统中的压力可达0. 6MP,任何相关检修都要断气源。 在不用移动机器人及运行程序时,须及时释放使能器(EnableDevice)。 调试人员进入机器人工作区时,须随身携带示教器,以防他人无意误操作。 在得到停电通知时,要预先关断机器人的主电源及气源。 突然停电后,要赶在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。 维修人员必须保管好机器人钥匙,严禁非授权人员在手动模式下进入机器人软件系统,随意翻阅或修改程序及参数。 二、手动操纵工业机器人 1.单轴运动控制 (1)左手持机器人示教器,右手点击示教器界面左上角的“”来打开ABB菜单栏;点击“手动操纵”,进入手动操纵界面;如图1-1所示。

并联机器人仿真运动控制的多线程实现

并联机器人仿真运动控制的多线程实现 Multithreading Realization of Simulation Motion Control of the Parallel Robot (海军工程大学)彭利坤邢继峰肖志权曾晓华 PENG, Likun XING, JifengXiao, Zhiquan Zeng, Xiaohua 摘要:现代运动模拟器对响应快速性、跟踪准确性等仿真运动特性提出了更高要求,使得并联机器人机构的运动控制更为复杂。以某型潜艇操纵模拟器为例,其控制软件采用模块化设计,利用NT环境下多线程技术,结合多媒体定时器、普通定时器,实现软件的洗出滤波、运动学反解、运动信息发送、安全保护等多任务的有机调度。在外控线程中建立网络数据接收、数据处理、液压缸控制信息发送等三个子线程,将它们从外控线程中分离出来,大大提高了数据传输和处理及运动控制的实时性和可靠性。 关键词:并联机器人;多线程;多媒体定时器;运动控制 中图分类号:TP311.1; TP391.9 文献标识码:A 文章编号: Abastract: In order to meet the demand of the emulational kinetic characteristics of modern motion simulator such as fast response and precise tracking, the control system of the parallel robot mechanism becomes more complex. As an example of submarine manipulating simulator, the modularization design and the technologies such as the multimedia timer, common timer and multithreading under NT environment etc. are adopted in the control system programing, which realize the multitask scheduling of washout filter, inverse kinematics solution, sending control data and safeguarding. By separating three sub-threadings, the Ethernet data acquisition, the data processing and the hydraulic cylinder control information sending, from the external control threading, the real time performance and reliability of the data transmitting, processing and motion control can be improved. Key words:parallel robot; multithreading; multimedia timer; motion control 1 引言 飞机、舰船、赛车、列车等运动模拟器系统,是以Stewart平台为原型的并联机器人机构最重要的应用方向,它们一般构成分布式半实物仿真系统。以某型潜艇操纵模拟器为例,整个模拟系统由教练控制台、模拟潜望镜、舱段操艇装置、六自由度(6DOF)并联机器人机构等四个分系统构成,几个分系统通过以太网传输交换数据。其中液压6DOF并联机器人为模拟潜艇空间运动的关键机构,其控制软件必须完成潜艇姿态数据的接收、处理、控制执行器(一般为液压缸)动作、实时动态显示分析等繁杂的任务。这种多任务的软件开发,基于过程的编程设计已显得力不从心,而面向对象的多线程编程因其具有接口能力强、并行处理、运用灵活等优点,成为设计本控制软件的首选。 2 控制模块 该控制软件包括洗出滤波算法、运动学反解、内控、自检、外控、逻辑控制、安全保护、平台起停、实时动态显示、正解监控、网络通讯等多个控制模块。 2.1 洗出滤波算法 虽然各种运动模拟器模拟运动的侧重点有所不同,但洗出滤波总是需要的。在模拟运动过程中,液压缸的行程有限,故在一次动作完成后,必须换向回到中性位置,以使下一个运动模拟有足够的行程,通常将这种回到中性位置的附加运动称为运动的洗出。通过运动学仿真、质心坐标转换等计算过程,而得到被仿真设备的速度、加速度,再通过高、低通滤波器滤波、积分等一系列算法转化为运动平台的线位移和角位移的过程称为运动的滤波。经典的 彭利坤:博士研究生 基金项目:军队研制基金资助项目(JXB-2004-21)

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

《工业机器人操作与编程》课程标准

《工业机器人操作与编程》课程标准 1.课程性质和任务 《工业机器人操作与编程》是工业机器人技术专业必修的职业核心课程,工业机器人自动化生产线成套设备已经成为自动化装备的主流和未来发展方向,工业机器人的操作是一门实用的技术性专业课程,也是一门实践性较强的综合性课程,在工业机器人专业课程体系中占有重要地位,令学生能全面把握工业机器人应用的安装、配置与调试方法。本课程主要通过分析工业机器人的工作原理,通过涂胶、搬运、喷漆等常用工艺的实践,使学生了解各种工业机器人的应用,熟练掌握工业机器人的操作方法,锻炼学生的团队协作能力和创新意识,提高学生分析问题和解决实际问题的能力,提高学生的综合素质,增强适应职业变化的能力。 2.学习领域描述 国际先进国家在汽车、电子电器、工程机械等行业大量采用了工业机器人自动化生产线,以保证产品质量,提高生产效率,这就需要大量的具备工业机器人基本操作、在线示教、离线编程技能的,对机器人搬运、涂胶、喷漆、码垛等工艺具有足够的了解,能够控制机器人完成上述任务的操作技能型人才 3.先修课程和后续课程 先修课程:《工业机器人技术基础》、《机械制图与CAD》、《机械设计》 后续课程:《工业机器人拆装与维护》、《工业机器人离线编程》、《工业机器人操作与编程》 4.课程目标 掌握工业机器人的编程和操作方法,了解工业机器人常用工艺,通过这门课的学习,使学生对机器人有一个全面、深入的认识,培养学生综合运用所学基础理论和专业知识进行创新设计的能力,并相应的掌握一些实用工业机器人控制及规划和编程方法。 学习完本课程后,学生应当能具备从事工业机器人企业生产第一线的生产与管理等相关工作的基础知识和能力储备,包括: (1)掌握用示教器操作工业机器人运动的方法 (2)能新建、编辑和加载工业机器人程序 (3)能够编写工业机器人搬运动作的运动程序 (4)能够编写工业机器人涂胶运动的运动程序 (5)能够编写工业机器人喷涂运动的运动程序 (6)能够编写工业机器人上下料运动程序 (7)能够编写工业机器人码垛运动程序

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

工业机器人操作编程职业技能等级标准

工业机器人操作编程职业技能等级标准

目录 前言 (3) 1范围 (4) 2规范性引用文件 (4) 3术语和定义 (4) 4面向工作岗位(群) (5) 5面向院校专业领域 (5) 6职业技能等级标准 (6) 参考文献 (8)

前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准起草单位:由北京赛育达科教有限责任公司主持,联合机械工业教育发展中心、机械行业工业机器人与智能装备职业教育集团、苏州大学、常州机电职业技术学院、江苏汇博机器人技术股份有限公司、奇瑞新能源汽车技术有限公司、埃夫特智能装备股份有限公司、上海ABB工程有限公司等单位共同制订。 本标准主要起草人:孙立宁王志强蒋庆斌禹鑫燚陈小艳叶晖肖永强等声明:本标准的知识产权归属于北京赛育达科教有限责任公司,未经北京赛育达科教有限责任公司同意,不得印刷、销售。

1范围 本标准规定了工业机器人操作编程职业技能的等级,阐明了相关企业岗位工作规范及其职业技能要求。 本标准适用于工业机器人操作编程职业技能等级培训与考核,工业机器人技术应用领域相关岗位从业人员的培训和职业院校教师专业培训。 2规范性引用文件 下列文件对于本文件的使用是必不可少的,凡是注日期的版本适用于本文件;凡是未注日期的引用文件,其最新版本适用于本文件。 《工业机器人安全实施规范》GB/T20867-2007 《工业机器人坐标系和运动命名原则》GB 16977-1997 《工业机器人性能试验实施规范》GB 20868-2007-T 国家、行业、企业有关标准 3术语和定义 国家、行业标准界定的以及下列术语的定义适用于本文件。 3.1机器人本体(Manipulater) 也称操作机,其结构通常是由一系列固定的及相互铰接或相对滑动的构件所组成。它通常有几个自由度,用以抓取或移动物体(工具或工件)。 3.2末端操作器(End Effector) 为使机器人完成其任务而专门设计并安装于机器人腕部末端,直接执行工作要求的装置。如焊枪、焊钳、切割枪、夹持器等。 3.3工作空间(Working Space) 工业机器人执行任务时,其手腕参考点所能掠过的空间。 3.4 轴数(Controlled Axes)

关于六自由度并联机器人运动控制系统的结构设计

关于六自由度并联机器人运动控制系统的结构设计 运动控制系统作为六自由度并联机器人的关键控制系统,对机器人的精准快速运动具有至关重要的作用。通过对六自由度并联机器人结构、内部控制结构及其工作原理的介绍,提出运动控制系统的设计思路,并对其中的关键技术问题进行了深入分析,对提高六自由度并联机器人的研发和应用水平具有积极的推动作用。 标签:六自由度;并联机器人;运动控制系统;结构分析 近年来,随着计算机和电子信息技术的进步,机器人运动控制技术取得了突破性发展,机器人运动控制技术是将控制传感器、电机、传动机和驱动器等组合在一起,通过一定的编程设置对电机在速度、位移、加速度等方面的控制,使起机器人按照预定的轨迹和运动参数进行运动的一种高科技技术。伴随着机械工业自动化技术的发展,运动控制技术经过了由低级到高级,由模拟到数字,再到网络控制技术的发展演进过程。运动控制技术作为机械工业自动化的一项重要技术,主要包括全封闭伺服交流技术,直线式电机驱动技术、基于编程基础上的运动控制技术、基于运动控制卡的控制技术等。其中,基于运动控制卡的控制技术通过内部各种线路的集成组合,可以实现对各种复杂的运动进行控制,该技术系统驱动程序主要包括:运动控制软件、网络动态链接数据库、运动控制参数库等子系统。运动控制卡控制技术的出现和发展有效的满足了工业机械行业数控系统的柔性化、标准化要求,在工业自动化领域的应用越来越广泛。 1 六自由度并联机器人的构造 六自由度并联机器人作为现代工业自动化技术发展的代表,主要结构包括床身、连杆和运动平台等几个部分。其中运动平台与六个连杆相联接,每个连杆各自联接一个由虎克材料制成的滑块,这些滑块又与滚珠丝杠相连,在电机的驱动下可以带动滑块沿滚珠运动,进而带动连杆有规则的运动,从而改变平台的运动方向。通过在运动平台上安装不同的机械,可以有效满足不同工作的需求。在六根连杆工作程序中,每根连杆都由一台电机进行控制驱动来保证连杆运动的独立性,因此,可以实现六自由度的机器控制运动。 2 六自由度并联机器人运动控制系统工作原理与结构设计 2.1 并联机器人运动控制系统的工作原理 六自由度并联机器人运动控制系统主要由工控机、运动控制卡、伺服放大器、资料数据收集处理平台等系统组成。在机器人工作过程中,工控机借助一定的程序指令对运动控制卡发出命令,运动控制卡将六路脉冲同时发向六套伺服放大器,在脉冲命令的指引下,这些放大器做出进一步运动,进而带动机器人平台进行运动。同时,伺服放大器将运动中形成的信号数据传回到运动控制卡,进而完成一个全闭环式反馈控制运动。在运动过程中,可以通过Lab系统对并联机器人

关于机器人安全操作规范.doc

机器人安全操作规范 1.编制目的 为规范各类机器人操作,防止在调试、操作工业机器人过程中发生意外事件,规避各类不安全因素,使操作者及周围人员处于安全的工作环境中,制定本指导书。 2.编制依据 《工业环境用机器人安全要求第 1 部分:机器人》— 2011 《工业机器人安全实施规范》GB/T20867 — 2007 3.适用范围 适用于各类机器人的使用、操作、调试、示教等人员及其相关的管理、操作人员。 4.管理规定 示教前安全规定 (1)检查机器人的本体、控制柜等设备设施的完整程度,如发现任何异常请立即联系相关 专业人员处理。 (2)示教人员应目检机器人系统和安全防护空间,确保不存在产生危险的外界条件。 示教盒的运动控制和急停控制应进行功能测试,以保证正常操作。示教操作开始前,应排除故障和失效。编程时,应关断机器人驱动器不需要的动力。 (3)示教人员进入工作区域前,所有的安全防护装置应确保在位,且在预期的示教方式下能 起作用。进入工作区域前,应要求示教人员进行编程操作,但应不能进行自动运行操作。 (4)将控制柜上的钥匙开关选择到本地,防止操作过程中外围信号的输入,引起机器人在 操作者不知道的情况下进行误操作。

(5)确认急停键是否正常。 (6)在示教前,为安全起见,应该设立示教锁。 (7)在安全围栏内示教操作必须在机器人慢速并保证人员安全前提下才允许操作。 (8)所有相关操作需进行专业的培训并考核合格后才允许操作。 (9)为了防止示教者之外的其他人员误操作各按钮,示教人员应挂出警示牌以防止误启动。(10)确认在安全围栏内没有任何其他人。 (11)机器人系统有异常或故障时,禁止带病作业,应将故障排除后再进行操作。 (12)确认安全保护装置能够正确运行。 (13)如出现任何异常情况,均应停止操作。 示教安全规定 (1)示教期间仅允许示教编程人员在防护空间内,其他人员禁止入内。 (2)示教时,操作者要确保自己有足够的空间后退,并且后退空间没有障碍物,禁止依靠 示教。 (3)禁止带手套操作示教盒,避免误操作按键。 (4)操作机器人时,确保机器人运动空间内没有人员;如果必须进入机器人运动空间才能 示教,依照谁拿示教盒谁靠近机器人的原则,禁止不拿示教盒的人员指挥拿示教盒的人员进行操作;如果控制柜离机器人较远,必须两人配合示教,禁止使用呼喊的方式进行指挥,需要使用打手势的方式。 (5)示教期间,机器人运动只能受示教装置控制。机器人不能接受其他设备的控制命令。(6)示教人员应具有单独控制在安全防护空间内的其他设备运动控制权,且这些设备的控

并联机器人构型方法 (1)

机器人机构设计中最重要的步骤之一是解决机构型综合的问题,机器人机构构型方法的研究具有十分重要的理论和实际意义,尤其是并联机器人的型综合方法一直以来都受到国内外许多研究学者的关注。在并联机器人机构的构型理论研究中,基于机构末端运动特征描述与机构需要完成的功能的简单有效的构型方法还缺乏系统的研究。 并联机器人机构构型方法研究 8 多自由度机构,其构型综合是一个非常具有挑战性的难题。目前国内外主要有 5 种并联机构的型综合研 究方法,即:基于机构的结构公式的构型方法、基于螺旋理论的综合方法、基于群论和微分几何的综合 方法、基于单开链的型综合方法以及基于集合的综合方法。 1-3-1 基于机构的结构公式的构型方法 基于机构的结构公式(即自由度计算公式)的构型方法是比较传统的一种并联机构的型综合方法。 Tsai [84] 在1999 年用基于计算自由度的Grübler-Kutzbach 公式的列举法综合了一类三自由度并联机构。 基于并联机构自由度计算的一般Grübler-Kutzbach 公式为 ( ) 1 1 = = ??+ ∑ g i i M d n g f (1.1) 式中M 为机构的自由度数; d 为机构的阶; n 为机构的杆件数(包括机架); g 为运动副数; i f 为第i 个运动副的自由度数。 当给定机构的自由度数M 后,根据(1.1)寻求机构的每个分支运动链的运动副数。并联机构属于空 间多环机构,其独立环路数l 可以由下式给出 l = g ?n +1 (1.2) 该式即为著名的欧拉环路公式。将上式带入(1.1)中,可得到 =1 ∑= + g i i

f M d l (1.3) 定义并联机构中第j 个分支总的自由度数为 j C ,则有下式成立 =1 =1 ∑=∑ mg j i j i C f (1.4) 将(1.4)代入(1.3)消去 i f 后得到 ∑= + m j j C M d l (1.5) 对于分支运动链结构相同,且分支数等于机构自由度数的对称并联机构,又有以下条件成立m = M且l = M ?1 (1.6) 把(1.6)代入(1.5)消去l 后得到 = ?+1 j d C d M (1.7) 由上式在已知d 和M 时,可以得到分支运动链的自由度数 j C ,从而给出分支运动链。例如,d =3, M =3时,由式(1.7)可得 j C =3,分支运动链可以是RRR、RPR、PRR 等。并联机器人机构构型方法研究 1 0 寻找可以生成{ } gi L 的分支运动链,此时可利用位移子群乘法运算的封闭性获得不同结构的分支。 Hervé和Angeles 等较早将李群理论引入并联机构型综合。1978 年,Hervé [113] 基于位移群的代数结 构对运动链进行了分类,证明了所有六种低副所生成的运动都是位移子群,还给出了另外六种位移子群 以及子群间交集的运算法则,奠定了位移子群以及子群间交集的运算法则和位移子群综合法的理论基

平面并联机器人的运动学和动力学研究

平面2自由度并联机器人的运动学 和动力学研究 林协源1刘冠峰1 (1.广东工业大学广州) 摘要:本文面向高速高精LED电子封装设备设计了一种高速高精2自由度平面并联机构(2-PPa并联机器人)。该机构由一个动平台和两个对称分布的完全相同的支链组成,每个支链中都有一个移动副(驱动关节)和一个由平面平行四边形组成的特殊转动动副。首先推导出该机器人的运动学模型包括正反解;其次结合焊线机实际工艺要求提出多项机构性能指标对该机构的几何参数进行多目标优化;然后基于Euler-Lagrange 方程建立该机器人的动力学方程,最后通过算例分析两个移动副在动平台按照一定轨迹运动时其速度、加速度和驱动力的变化规律。这些为接下来研究该机器人的动态性能和系统解耦控制等都具有重要意义。 关键词:2自由度平面并联机器人运动学动力学 Kinematic and Dynamic Analysis of a Planar Two-degree-freedom Parallel Manipulator LIN Xieyuan1LIU Guanfeng1 (1.Guangdong University of Technology Guangzhou ) Abstract:In this paper,a type of planar 2-DOF parallel manipulator is proposed for uses in design of high- speed and high-accuracy LED packaging machines. The manipulator consists of a moving platform and two identical subchains. Each subchain is made of a prismatic joint (actuator) and a parallelogram with four passive revolute joints. We first derive the kinematic model of the manipulator. Then, we determine the optimal geometric parameters of the manipulator by solving a multi-goal optimization problem based on performance indices. We compute the dynamic equation use Euler-Lagrange formulation and use it to analyze the relationship between velocity, acceleration and driving torque of joints. This analysis is important for further study of the dynamic performance and the decoupling control methods for the manipulator. Key words:2-DOF Planar parallel manipulator Kinematics Dynamics 0 前言 在电子、包装和食品等轻工业场合中,机器人只需要3到4个自由度即可满足使用要求。串联机器人由于自身具有较大的质量和惯性,很难应用到需要高速高负载能力的场合。并联机器人很好的弥补了串联机器人这方面的不足。所以,近年来少自由度并联机器人的研究相当热门。其中3自由度并联机器人的研究已是相当深入[1-4]。在Z方向只需要较小的操作位移时,末端搭载一个1或2自由度的串联机构的2自由度并联机器人相对应3或4自由度的并联机器人会显得更加经济适用。 清华大学曽提出过两种平面2-DOF并联机器人:一种是PRRRP(P表示移动副,R 表示转动副)并联机器人,其中两移动副运动方向平行,且机器人的末端姿态是可变的[5];一种是2-PPa(Pa表示平行四边形机构)并联机器人,同样,该机器人的移动副运动方向也平行,不过其末端姿态不可变[6]。文章[6]中的并联机器人最后应用在了立式机床上。同样的2-PPa并联机器人,上海交通大学将其应用在高速高精度的场合

工业机器人基础操作

目录 项目一工业机器人基本结构认识与安全操作知识 (1) 项目二机器人的基本操作 (11)

项目一工业机器人基本结构认识与安全操作知识 一、布置任务 1.项目要求 (1)项目名称:工业机器人基本结构认识与基础操作 (2)计划课时:6 (3)器材及工具准备(现场准备) 表1 实验所需设备清单 2.教学主要内容及目的 通过该实训课程,将《工业机器人技术基础》中所学的机器人编程及调试技术应用于实际设计中。学习机器人的基本安全操作常识、机器人控制柜的基本结构、机器人示教器的基本操作等技术在实验平台上进行综合认知与练习,在理论和实验的基础上进一步对工业机器人的认识,更好的了解机器人的操作方式。 3.相关知识准备 机器人的基本组成、机器人的基本安全操作常识。 二、制定计划 教师辅助学生以小组方式,10人一组,由指导老师讲解基本操作要领及安全注意事项,讲解完成后,学生自己进行操作,讨论各步骤的注意事项及原因,以讨论加操作的方式进行学习。 三、实施项目任务 1. 实训内容 ①通过现场讲解,学习机器人的基本安全知识,为后续安全操作做基础; ②认识机器人控制柜,了解其主要结构及控制按钮的功能; ③认识示教器的基本操作方法。 2. 实训步骤

(1)工业机器人安全知识 a、记得关闭总电源 在进行机器人的安装、维修、保养时切记要将总电源关闭。带电作业可能会产生致命性后果。如果不慎遭高压电击,可能会导致心跳停止、烧伤或其他严重伤害。 在得到停电通知时,要预先关断机器人的主电源及气源。 突然停电后,要在来电之前预先关闭机器人的主电源开关,并及时取下夹具上的工件。 b、与机器人保持足够安全距离 在调试与运行机器人时,它可能会执行一些意外的或不规范的运动。并且,所有的运动都会产生很大的力量,从而严重伤害个人或损坏机器人工作范围内的任何设备,所以时刻警惕与机器人保持足够的安全距离。 c、静电放电危险 搬运部件或部件容器时,未接地的人员可能会传递大量的静电荷。这一放电过程可能会损坏敏感的电子设备。所以在有此标识的情况下,要做好静电放电防护。 d、紧急停止 紧急停止优先于任何其它机器人控制操作,它会断开机器人电动机的驱动电源,停止所有运转部件,并切断由机器人系统控制且存在潜在危险的功能部件的电源。 出现下列情况时请立即按下任意紧急停止按钮: 机器人运行时,工作区域内有工作人员。 机器人伤害了工作人员或损伤了机器设备。 e、灭火 发生火灾时,在确保全体人员安全撤离后再进行灭火,应先处理受伤人员。当电气设备(例如机器人或控制器)起火时,使用二氧化碳灭火器,切勿使用水或泡沫。 f、工作中的安全 注意夹具并确保夹好工件。如果夹具打开,工件会脱落并导致人员伤害或设备损坏。夹具非常有力,如果不按照正确方法操作,也会导致人员伤害。机器人停机时,夹具上不应置物,必须空机。 g、示教器的安全 示教器的使用和存放应避免被人踩踏电缆。 小心操作。不要摔打、拋掷或重击,这样会导致破损或故障。在不使用该设备时,

《工业机器人技术》课程标准

[课程] 《工业机器人技术》课程标准 1 课程概述 1.1 课程名称:工业机器人技术 1.2 课程性质:专业核心课 1.3 参考学时:56学时 1.4 参考学分: 2.5学分 1.5 开设时间:第四学期 2 课程性质和任务 本课程是工业机器人技术专业的一门专业核心课程,是必修课。其任务是:使学生掌握工业机器人系统构成、工业机器人编程等知识和进行机器工作站系统建模及仿真等技术,培养学生具备一定的工业机器人编程及仿真设计能力。内容包括工业机器人典型应用案例、离线编程基础、机器人工作站系统模型、程序及轨迹设计、工业机器人现场编程基础知识等。 3 课程目标 3.1 知识目标 (1)熟悉工业机器人离线编程应用领域; (2)掌握离线编程软件安装过程; (3)掌握离线编程软件的工作界面使用方法; (4)掌握工业机器人工作站系统外部设备模型构建方法; (5)掌握工业机器人仿真工作站的构建流程; (6)掌握工业机器人工作站的离线编程方法; (7)掌握工业机器人工作站的仿真测试方法; (8)掌握机器人工件及工作站设备的三维建模与设计分析。 (9)掌握工业机器人的现场手动操纵。 (10)掌握工业机器人的现场轨迹编程及设计。 3.2 能力目标 (1)能安装工业机器人离线编程软件; (2)能构建工业机器人工作站系统模型; (3)能按要求在离线编程软件下编写工作站控制程序;

(4)能对工业机器人工作站进行仿真测试。 (5)能对工业机器人进行现场操纵及编程操纵。 3.3 素质目标 (1)具有分析与决策能力; (2)具有发现问题,解决问题的能力; (3)具有良好的心理素质、职业道德素质以及高度责任心和良好的团队合作能力; (4)具有组织管理能力; (5)培养良好的职业素养和一定的创新意识; (6)养成“认真负责、精检细修、文明生产、安全生产”等良好的职业道德; 4 课程设计思路 根据职业能力标准,以重点职业能力为依据确定课程目标,依据职业能力整合所需相关知识和技能,设计课程内容,以工作任务为载体构建“能力递进”课程。 课程结构以就业岗位对就业人员知识、技能的需求取向,通过理实一体化教学、项目式技能训练、综合案例考核等活动,构建机器人工作站典型应用、轨迹设计及编程、机械及动态装置、现场编程基础等四大模块的知识结构和能力结构,形成相应的职业能力。本课程的前续课程是《机电工程技术基础》和《PLC控制系统的设计与维护》,并为后续课程《工业机器人工作站集成与维护》、《行业应用典型工作站维护》提供相应的理论及技术支持。 课程主要内容为ISO 10218-2-2011、IOS 15187:2000/GB/T 19399-2003、IEC 9506-3:1991、ISO/IEC 9506-3:1991、DIN7168-91、GB/T 33262-2016标准中的知识点和操作要求。 5 课程教学设计 表5.1 课程教学设计

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

并联机器人操作细则

运动控制开发平台操作细则: 一、步进电机平台 1.上电计算机电源、驱动器电源、端子板电源。 2.运行GTCmdPCI_CH。 3.在菜单栏选择出现“基础参数设置”界面。 4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。 设置“行程开关触发电平” 设置“编码器方向”,默认值0 设置控制周期,运控卡缺省的控制周期是200 μs。 5.点击“打开运控卡”按钮。 6.点击“确定”按钮。 7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。 8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。 9.选择“清状态”,如右图,清除当前轴不正确的状态。 10、设置控制输出,驱动使能(轴开启) 在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当 前轴的驱动器和电机的设置相统一。 SV卡: 可以选择输出模拟量,即0; 亦可选择输出脉冲量,即1。 SV卡: 选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。 4.在“运动控制模式”栏设置运动参数 5.点击“参数更新”按钮, 二、直流伺服电机平台 1~6步同步进电机一样 7、在轴的控制窗口中选中第4轴。 8、在“伺服滤波器参数设置”框中设置“比例增益”为10。 9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。 10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。 11、点击“清状态”键,使控制器的第四轴事件状态清除。 12、点击“参数更新”键,使第四轴开始运动 补充: 1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA 2、ENA 3、ENA4. 2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

工业机器人安全系统实施要求规范

工业机器人安全实施规范 GB/T20867-2007 工业机器人安全实施规范 Industrial robot-Safety implementation specification 目次 前言 引言 1? 范围 2? 规范性引用文件 3? 安全分析 4? 基本设计要求 5? 机器人设计和制造 6? 机器人系统的安全防护和设计 7? 使用和维护 8? 安装、试运行和功能测试 9? 文件 10? 培训 参考文献 前言 本标准为推荐性国家标准。 本标准由中国机械工业联合会提出。 本标准由全国工业自动化系统与集成标准化技术委员会归口。 本标准起草单位:北京机械工业自动化研究所。 本标准主要起草人:胡景谬、郝淑芬、聂尔来、许莹 本标准是首次发布。 引言 1? 工业机器人安全标准制修订概况 ? 国际工业机器人安全标准的制修订概况 ISO 10218是《工业机器人安全》国际标准的编号,此标准是国际标准化组织ISO/TC 184/SC 2/WG 3制定的,并于1992年1月正式发布实施,1997年9月经全体成员体投票复审,确认继续有效实施。近年来,随着科学技术的迅猛发展,工业机器人的品种不断增加,功能扩展,性能提高,应用领域亦更加广泛,不仅从制造业扩展到非制造业,甚至扩展到医疗、服务和康复领域,因此机器人使用的安全及防护问题日益突出。2000年,美国提出为了加强机器人和机器人系统的安全,使标准的制定者和使用者更便于交流和执行,并且标准还应考虑用于工业自动化的系统中除机器人系统以外的安全问题,因此需要对ISO10218:1992年的版本进行修订,同时提供了美国在1999年制定的标准版本。2000年ISO/TC 184/SC 2在美国举行的年会上形成决议,决定成立工作组,对安全标准进行修订。2001年在 日本举行的年会上工作组提出了新工作项目建议草案,把安全标准分成两个部分,第一部分为设计、构形和安装时的安全,第二部分为机器人重新组装、重新布置及使用时的安全规范。此两部分的内容比1992年版细化和增加了不少具体内容,特别是对安全防护电路的设计及对各类人员的安全防护措施更加明确。目前该标准正在制定中。 ? 我国工业机器人安全标准的制修订情况

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

相关文档
最新文档